生物可降解聚酯聚丁二酸丁二醇酯(PBS)的加工改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丁二酸丁二醇酯(PBS)是一种性能良好的脂肪族全生物降解材料,在理论研究和实际应用方面具有十分重要的意义。但是,PBS具有结晶性,其结晶度的高低、结晶形态和晶体结构的差异将影响PBS的性能,进而影响其应用。另外,PBS的分子量较低、熔融指数高、特性粘度低,在实际成型加工中存在较大的问题:如不能用流延、吹塑等生产工艺进行成型加工。并且PBS在化学合成制备过程中由于对体系压力和温度要求较大、生产成本较高,因此也在一定程度上限制了其在生物降解材料领域的进一步应用。
     由于PBS存在上述不足之处,本论文分别从降低材料成本,提高PBS的力学性能和加工性能等方面对PBS进行了相关改性。制备出PBS基糊化淀粉共混材料、MDI扩链改性材料和PBS基改性淀粉纳米晶复合材料。并对上述三种改性材料的性能进行探讨和研究。
     具体的研究内容如下:
     1.首先将淀粉进行糊化处理,以破坏淀粉的结晶区,使其成为无定形态,然后将糊化的淀粉干燥后与聚丁二酸丁二醇酯(PBS)在密炼机中进行共混,制备PBS基糊化淀粉复合材料。通过控制糊化淀粉的添加量,讨论糊化淀粉的含量对PBS基淀粉复合材料的力学性能和熔融指数的影响。通过X衍射分析观察淀粉的添加对PBS结晶性能的影响,结果表明:糊化淀粉的加入没有改变PBS的晶形但是降低了其结晶度。并通过扫描电镜对复合材料断面的扫描观察糊化淀粉与PBS的相容性。
     2.以4,4’-苯基甲烷二异氰酸酯(MDI)为扩链剂对聚丁二酸丁二醇酯进行扩链改性研究,在密炼机的作用下通过熔融共混制备扩链改性PBS。采用红外光谱分析证明扩链剂MDI与PBS成功进行了扩链反应,并对扩链PBS进行了热性能分析。通过控制扩链剂MDI的含量,讨论扩链剂含量对扩链改性PBS的力学性能、熔融指数、粘度以及生物可降解性能的影响,结果表明:当扩链剂MDI添加量为1.5g时,扩链效果最佳,继续增加扩链剂MDI的含量时,有效扩链反应降低,分子链间出现交联,不利于扩链改性PBS的生物降解。
     3.通过2,4-甲苯二异氰酸酯(TDI)与淀粉纳米晶(NSt)在有机溶剂中的接枝反应成功制备了TDI改性淀粉纳米晶(NTSt),并对改性淀粉纳米晶进行红外光谱分析、X射线衍射分析、润湿性实验和接触角测试,结果表明:接枝反应成功进行,改性后的淀粉纳米粒子具有亲油,低表面能的特点。然后将NTSt与聚丁二酸丁二醇酯(PBS)通过熔融共混制备PBS/NTSt复合材料,并对复合材料进行红外光谱分析、力学性能测试、热性能分析和扫描电镜测试。结果发现,NTSt可以均匀的分散在PBS基体中,复合材料的力学性能和热性能均提高了。
     本工作是对聚丁二酸丁二醇酯(PBS)的力学性能和加工性能进行相关改性的研究成果,为PBS的进一步改性研究提供了重要的科学依据,有利于PBS的进一步的拓展应用。因此本文在PBS的改性方面具有重要的理论意义和应用前景。
Poly(butylenes succinate) (PBS), as a aliphatic biodegradable material, is of great importance both to theoretical study and practical application. However, as a crystalline polymer, its performance and as well as its application will be affected by its crystallinity, crystal morphology and crystal structure. In addition, PBS can not be cast, blow molding in the production process due to its low molecular weight and viscosity but high MI. Moreover, the extended use of PBS in the field of biodegradable materials is also blocked with its high production costs which is due to high requirements on the pressure and temperature in the chemical synthesis preparation of PBS.
     Because of such shortcomings of PBS, the study on the modified PBS was discussed from reducing material costs, improving the mechanical properties and processing performance of PBS in this paper. Three modified PBS materials, containing PBS-based Gelatinized starch blends, modified PBS materials using MDI as chain extender, PBS-based modified starch nanocomposite materials, were prepared in this paper. Moreover, these three modified PBS materials were also discussed.
     Specific contents are as follows:
     1. First, the starch was processed by gelatinization treatment to destroy the crystalline regions of starch and so it became amorphous. Then PBS-based starch blends was prepared through the drying starch and PBS blending in the mixer. The influence of the content of gelatinized starch on the mechanical properties, melt index of PBS-based starch blends was discussed by controlling the content of gelatinized starch. The crystallization of PBS-based starch blends was analysed by the X-ray diffraction analysis. The results show that the crystal of PBS does not change, but its crystallinity reduces. The compatibility of PBS and gelatinized starch was observed by the scanning electron microscopy of the composite cross-section.
     2. Poly(butylene succinate) (PBS) was modified by chain extension using 4,4-diphenylmethane diisocyanate (MDI) as the chain extender. That the chain extension reaction happened between MDI and PBS was proved by Infrared spectra analysis. The thermal performance of modified PBS was characterized by Differential Thermal Analysis (DTA). The influence of the content of MDI on the mechanical properties, melt index, viscosity, and biodegradable properties of modified PBS was discussed by controlling the content of MDI. The results show that when the content of MDI was 1.5g, the effect of chain extension was best. Continuing to increase MDI, the effective chain extension reaction reduced and the cross-linking of PBS chains occurred. It is not conducive to the biodegradation of modified PBS.
     3. The modified starch nanocrystals were prepared successfully by the grafting reaction of toluene 2,4-diisocyanate(TDI) and starch nanocrystals in organic solvents. The modified starch nanocrystals were characterized by infrared spectroscopy analysis, X-ray diffraction analysis, Wettability tests and Contact angle measurements. The results show that the success of the grafting reaction of TDI and starch nanocrystals and the modified starch nanocrystals having a hydrophobic, low surface energy characteristics. Modified starch nanocrystals were also used as fillers to prepare PBS nanocomposites by melt blending.The PBS nanocomposites were characterized by FTIR, Differential Thermal Analysis (DTA), tensile testing and scanning electron microscopy. It is worth noting that the modified starch nanocrystals can be uniformly dispersed in the PBS matrix and the obtained PBS nanocomposites showed good thermal stability and enhancements in strength.
     The results of this research concerning the mechanical properties and processing performance of modified PBS provided important scientific foundation for the further study on the modification of PBS. It is conducive to the further application of PBS. Therefore, this study in this paper has theoretical significance and applied prospect on the modification of PBS.
引文
[1]张昌辉,寇莹,翟文举.PBS及其共聚酯生物降解性能的研究进展[J].塑料,2009,38(1):38-40.
    [2]高利斌,许国志.全生物降解聚丁二酸丁二醇酯(PBS)的加工改性研究[D].北京:北京工商大学,2006.
    [3]谢凯,陈一民等.聚酯型生物降解性高分子材料的现状及展望[J].材料导报,1989,12(2):39-42.
    [4]吴颖,郭士明,唐闻.生物降解聚酯-聚乙丙交酯的合成研究及应用[J].化工新型材料,2000,28(1):22-24.
    [5]黄发荣.环境可降解塑料的研究开发[J].材料导报,2000,14(7):40-44.
    [6]成钢.国内外可降解塑料的现状及其应用前景[J].金山油化纤,2000(3):44-47.
    [7]Zhang Mingqiu, Rong Minzhi, Lu Xun. Fully biodegradable natural fiber composites from renewable:All-plant fiber composites[J]. Composites Science and Technology,2005(65):2514-2525.
    [8]鲁博,张林文等.天然纤维复合材料[M].北京:化学工业出版社,2005:167-169.
    [9]杨惠娣.国内外生物降解塑料标准化现状和动向[J].中国塑料,1999(2):13-20.
    [10]冷波,全学军等.聚乳酸的研究现状及发展方向[J].重庆工学院学报,2003,17(2):10-15.
    [11]桂蕾,潘丽军.改性淀粉/聚乳酸复合材料的制备及其性能表征[D].合肥:合肥工业大学,2009.
    [12]黄发荣.全生物降解高分子材料的发展现状[J].化学世界,1999(11):570-574.
    [13]Mustafa N. Plastics Waste Management. Disposal, Recycling and Reuse[M], Dekker: NewYork:1993.
    [14]侯庆普,周春阳.生物降解高分子材料的研究新进展[J].现代化工,2000,20(12):20-24.
    [15]林莉.生物降解性塑料Biopol[J].化工新型材料,1997(10):20-21.
    [16]顾晶君,陈彦模.生物降解性聚酯聚丁二酸丁二醇酯(PBS)和聚对苯二甲酸-共-丁二酸丁二醇酯(PBST)的性能研究和纤维制备[D].上海:东华大学,2007.
    [17]Scott G, "Green"polymers[J]. Polym Degrad Stab,2000,68(1):1-7.
    [18]Kada E.J, PhotoPolym Sci Technol,1999,12(2):251-256.
    [19]张新峰,俞建勇.聚丁二酸丁二醇醋(PBS)的合成表征、共混改性及降解性能研究[D].上海:东华大学,2007.
    [20]王学川,张铭让,魏玉娟.有机物的生物降解性及其检测[J].中国皮革,2001(30):30-34.
    [21]任东.塑料的生物降解性及其检测方法[J].塑料工业,1994(2):65-67.
    [22]柏柳清,柏玉莲.聚合物生物降解ASTM测试中的问题及其保准测试方法[J].塑料,1995(24):45-48.
    [23]酒永斌,姚维尚,王晓青等. PBS-g-MAH及MAH对PBS/淀粉合金力学性能的影响[J].化工新型材料,2006,34(4):34-40.
    [24]Masahiko Okada. Chemical Synthesis of Biodegradable polymers[J]. Progress in Polymer Science,2002(27):87-133.
    [25]赵京波,杨万泰.合成生物降解性聚酯的研究进展[J].高分子通报,1996(2):11-21.
    [26]A.Bhaw-Luximon, D Jhurry, N.Spassky, Anionic polymerization of D,L-lactide initiated by lithium diisopropylamide[J]. Polymer,2001(42):9651-9654.
    [27]Robson F S., John W.Sherman, Kinetics and Mechanism of the Stannous Octoate-Catalyzed Bulk Polymerization of ε-Caprolactone[J]. Macromoecules,2002(35):1504-1512.
    [28]Kowalski A., Duda A., Penczek S.. Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with Tin(Ⅱ) Octoate.3.Polymerization of l,l-Dilactide[J]. Macromoecules,2000(33): 7359-7370.
    [29]许红.生物降解塑料Bionole[J].化工新型材料,1997(12):25-27.
    [30]高明,王秀芬,郭锐等.PBS基生物降解材料的研究进展[J].高分子通报,2004(5):51-55.
    [31]Takahashi H, Hayakawa T, Ueda M. Convenient Synthesis of Poly(butylene succinate) Catalyzed by Distannoxane[J]. Chen Lett,2000(6):684-685.
    [32]Marija S. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s[J]. Polym Degrad stad,2001(74):263-270.
    [33]Tokiwa Yutaka, Suzuki Tomoo. Takahara Yoshimasa and Ando Tadanao. JP 54119595A[P], 1979.
    [34]Nagata M, Goto H, Sakai W, Tsutsumi N. Synthesis and enzymatic degradation of poly(tetramethylene succinate) copolymers with terephthalic acid[J]. Polymer,2000(41):4373-4376.
    [35]Muller U, Witt E, Deckwer W. Architecture of biodegradable copolyesters containing aromatic constituents[J]. Polym Degrad Stab,1998(59):203-208.
    [36]Park Y H, Cho C G. Synthesis and characterization of poly[(butylene succinate)-co-(butylene terephthalate)]-b-poly(tetramethylene glycol) segmented block copolymer[J]. J Appl Polym Sci,2001(79):2067-2075.
    [37]张勇,冯增国,刘凤香等.聚对苯二甲酸丁二醇酯—co-聚丁二酸丁二醇酯—b-聚乙二醇嵌段的合成及表征[J].化学学报,2002,60(12):2225-2231.
    [38]张培娜,黄发荣,王彬芳.改性脂肪族聚酯的生物降解性研究[J].华东理工大学学报,2001(27):64-67.
    [39]Ratto J A, Auerbach M, Mitchekk J, Farrell R. Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system[J]. Polymer,1999(40):6777-6788.
    [40]Anna Romankiewicz, Tomasz Sterzynski. Structural characterization of α-and β-nucleated isotactic polypropylene[J]. Polymer International,2004,53(12):2086-2091.
    [41]高利斌,陈宇,许国志等.成核剂对PBS结晶性能及力学性能的影响[J].北京工商大学学报,2006,24(2):5-8.
    [42]宋聪雨,王佩璋,程希等.淀粉/PBS共混材料的制备和性能研究[J].中国塑料,2006,20(4):65-67.
    [43]Angellier H, Molina-Boisseau S, Belgacem MN, et al. Surface chemical modification of waxy starch nanocrystals[J]. Langmuir,2005(21):2425-2433.
    [44]Labet M, Thielimans W, Dufresne A. Polymer grafting onto starch nanocrystals[J]. Biomacromolecules,2007(8):2916-2927.
    [45]Thielemans W, Belgacem MN, Dufresne A. Starch nanocrystals with large chain surface modifications[J]. Langmuir,2006(22):4804-4810.
    [46]马晓飞等.淀粉/聚酯体系生物可降解材料[J].高分子通报,2003,4(2):15-22.
    [47]Catia B. properties and applications of Mater-Bi Starch-based materials [J]. Polymer Degradation and Stability,1998,59 (12):267-272.
    [48]Fujimaki T. Processinbility and properties of alipatic polyesters,'BIONOLIE', synthesized by polycondensa reaction[J]. Polym Degrad Stab,1998(59):209-214.
    [49]Jo Ann Ratto, Margaret Auerbach, John Mitchell, Richard Farrell. Processing,Performance and biodegradability of a thermoplastic aliphatic polyester/starch system[J]. polymer,1999(40): 6777-6788.
    [50]李陶,李辉章等.热塑性淀粉/PBS共混物的微生物降解性能研究[J].化学研究与应用,2009.21(7):995-997.
    [51]王连才,孙勇,冯增国.可生物降解脂肪-芳香族共聚聚酯的研究进展[J].中国塑料,2003,17(8):1-8.
    [52]吴晓峰,赵京波等.可降解高分子量聚(己二酸二乙二醇酯)的合成[J].北京化工大学学报,2001,28(4):23-26.
    [53]MuLLER R J, KLEEBERG I, et al. Biodegradation of Polyesters Containing Aromatic Constituents [J]. J.Biotechnology,2001(86):87-95.
    [54]WITT U, YAMAMOTO M, et al. Beodegradation of Aliphaticaromatic Copolyesters:Evaluation of the Final Biodegradability and Eecotoxicogical Impact of Degradation Intermediates[J]. Chemosphere,2001(44):289-299.
    [55]张贞浴,秦川江,张艳红等.生物可降解聚丁二酸丁二醇酯的合成及扩链改性[J].黑龙江大学自然科学学报,2005,22(5):642-645.
    [56]许国志,高利斌,杨彪.全生物降解PBS的扩链改性研究[J].现代塑料加工应用,2007,19(1):22-25.
    [57]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003:133-138.
    [58]Schmidt G, Malwitz MM. Properties of polymer-nanoparticle composites[J].Current Opinion in Colloid and Interface Science,2003(8):103-108.
    [59]Dufresne A, Cavaille'J Y, Helbert W. Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers.Part I:Processing and Mechanical Behavior[J].Polymer Composites,1996,17(4):604-611.
    [60]Angellier H, Molina-Boisseau S, Dufresne A. Mechanical Proerties of Waxy Maize Starch Nanocrystal Reinforced Natural Rubber[J]. Macromolecules,2005,38(22):9161-9170.
    [61]Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R. Preparation and characterization of a-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment[J]. Carbohydrate Polymers,2005(62):130-136.
    [62]Nara S, Komiya T. Studies on the relationship between water saturated state and crystallinity by the diffraction method for moistened potato starch [J]. Starch/Starke,1983(35):407-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700