接枝聚阳离子磁性微球的合成及抗菌活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Fe2+/Fe3+盐及氨水为起始原料、油酸做稳定剂,采用共沉淀法合成了粒径约为20nm的Fe304磁性纳米颗粒。通过添加少量盐为诱导剂的方法将表面油酸稳定的Fe304磁性纳米颗粒由水相萃入甲苯相中,之后采用配基交换法以硅烷偶联剂3-(异丁烯酰氧)丙基三甲氧基硅烷(MPS)对其表面进行双键功能修饰,使其表面带上大量可聚合双键。
     分别以苄基溴(BB)、碘甲烷(MI)及溴己烷(BH)三种不同的卤代烃对甲基丙烯酸二甲基氨基乙酯(DMAEMA)所含叔胺基团进行季铵盐化,将得到的三种季铵盐单体分别与表面双键功能化的Fe304磁性纳米颗粒在乙醇体系中进行两种引发剂浓度的自由基聚合,最终成功得到了三种不同的聚阳离子接枝的Fe304磁性微球(PQAC-Fe3O4)。各步反应后颗粒形貌及表面性质通过X射线衍射(XRD)、傅立叶红外(FT-IR)、动态光散射粒径分析(DLS)、透射电镜(TEM)、热重分析(TGA)等表征确定。
     采用动态接触法测定所合成PQAC-Fe3O4样品的抗菌活性,结果发现样品对大肠杆菌、金黄色葡萄球菌及白色假丝酵母菌均有很好的杀菌效果,10min即可达到90%以上的杀菌率,属于快速杀菌型抗菌剂;其杀菌效率表现出明显的浓度正相关性,这可能与抗菌颗粒浓度的升高增加了测试菌与颗粒间的接触机会有关。抗菌实验还表明三种测试菌对样品的敏感性不同,敏感性顺序依次为白色假丝酵母菌>金黄色葡萄球菌>大肠杆菌,原因可能与聚季铵盐的杀菌机理及不同菌种细胞壁结构的差异有关。此外,比较三种不同PQAC-Fe3O4样品的杀菌率可以发现,杀菌效果不仅与正电荷密度及疏水性有关,还受其在水中的分散性及聚合物链长的影响。由于具有良好的外磁场响应性,所合成的PQAC-Fe3O4颗粒可以方便的回收利用,重复利用性实验表明其抗菌活性耐久性好,经10次循环利用后对大肠杆菌的杀菌率仍可达95%以上。
     综上所述,成功合成了具有外磁场响应性的PQAC-Fe3O4抗菌颗粒,颗粒杀菌效果不仅与所接枝季铵盐基团的多少有关还与季铵盐取代基团有关。作为一种具有高效广谱杀菌性和良好循环利用性的新型可循环水不溶性抗菌剂,PQAC-Fe3O4在水处理等方面有很好的应用前景。
magnetic nanoparticles with a diameter of 20nm were prepared by coprecipitation of Fe2+/Fe3+ in ammonia solutions and with oleic acid (OA) as the stabilizer. These magnetic nanoparticles were extracted into toluene from water by simply adding some salt as inducer, and then the Fe3O4 magnetic nanoparticles were functionalized with the silane coupling agent of 3-methacryloylpropyl trimethoxysilane (MPS) through ligand exchange method, which could provide double bonds on the surface of Fe3O4 nanoparticles.
     Three quaternary ammonium salt monomers were synthesized from dimethylaminoethyl methacrylate (DMAEMA) by quaternization with benzyl bromide (BB), methyl iodide (MI) and bromohexane(BH), respectively. And then, the monomers were copolymerized with MPS on the surface of Fe3O4 magnetic nanoparticles by free radical polymerization in ethanol at two different concentration of initiator. Finally, three kinds of polymeric quaternary ammonium salts grafted Fe3O4 nanoparticles (PQAC-Fe3O4) were obtained. The morphology and surface composition of nanoparticles was characterized by XRD, FT-IR, DLS, TEM and TGA.
     The in vitro antimicrobial activity of the PQAC-Fe3O4 nanoparticles was evaluated against E. coli, S. aureus and C. albicans by the the shake-flask method, it was found that PQAC-Fe3O4 nanoparticles showed a wide spectrum of high efficient antibacterial activity, and the biocidal efficiency coulde be achieved 90% witin 10 minutes. The biocidal efficiency increased with the increasing concentration of the PQAC-Fe3O4 nanoparticles used, possibly due to the more opportunities for contact between the nanoparticles and the microorganisms. Compared to the other two tested microorganisms, the PQAC-Fe3O4 nanoparticles were less toxic to the gram-negative bacterium E. coli, it possibly due to the mechanism which the PQAC-Fe3O4 nanoparticles operated. In addition, it was found that the different antibacterial efficiency of the three synthesized PQAC-Fe3O4 was influenced not only by their positive charge density and hydrophobicity but also their dispersibility in water and the length of the polymeric quaternary ammonium salts. The antimicrobial activity of the PQAC-Fe3O4 nanoparticles which exhibited a response to an external magnetic field retained 95% biocidal efficiency against E. coli after 10 cycles of repeated test.
     In conclusion, high antibacterial efficiency of the PQAC-Fe3O4 nanoparticles which exhibited a response to an external magnetic field was attributed to not only the quaternary group density but also the substitent chain of the quaternary group. As one kind of biocides with high microbial activity and be resuability in water, the PQAC-Fe3O4 nanoparticles would be advantageous as a new type of insoluble antimicrobial agent in water treatment.
引文
[1]Dhermendra K. Tiwari, J. Behari and Prasenjit Sen. Application of Nanoparticles in Waste Water Treatment [J]. World Applied Sciences Journal,2008,3(3):417-433.
    [2]郭一飞,朱新锋,田艳兵.饮用水消毒技术发展现状[J].中国消毒学杂志,2005,22(2):215-216.
    [3]Baojiao Gao, Sanxiong He, Jianfeng Guo, et al. Preparation and antibacterial character of a water-insoluble antibacterial material of grafting polyvinylpyridinium on silica gel [J]. Materials Letters,2007,61:877-883.
    [4]Yoon Seok Kim, Hyung Woo Kim, Sun Hee Lee, et al. Preparation of alginate-quaternary ammonium complex beads and evaluation of their antimicrobial activity [J]. International Journal of Biological Macromolecules,2007,41:36-41.
    [5]Yuyun Zhao, Yue Tian, Yan Cui, et al. Small Molecule-Capped Gold Nanoparticles as Potent Antibacterial Agents That Target Gram-Negative Bacteria [J]. J. Am. Chem. Soc.,2010,132(35):12349-12356.
    [6]Sophie Laurent, Delphine Forge, Marc Port, et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications [J]. Chem. Rev.2008,108:2064-2110.
    [7]Hongchen Dong, Jinyu Huang, Richard R. Koepsel, et al. Recyclable Antibacterial Magnetic Nanoparticles Grafted with Quaternized Poly(2-(dimethylamino)ethyl methacrylate) Brushes [J]. Biomacromolecules,2011,12(4):1305-1311.
    [8]沈萍.微生物学[M].北京:高等教育出版社,2000.
    [9]童忠良等.无机抗菌新材料与技术[M].北京:化学工业出版社,2006.
    [10]季君晖,史维明.抗菌材料[M].北京:化学工业出版社,2002.
    [11]John S. Chapman. Biocide resistance mechanisms [J]. International Biodeterioration & Biodegradation,2003,51:133-138.
    [12]许莹.无机抗菌剂和抗菌功能材料的现状和发展[J].河北理工学院学报,2001,23(4):77-82.
    [13]贺岚,杨武斌,陈常明.无机抗菌剂应用现状及发展趋势研究[J].湖南科技学院学报.2007,28(4):113-116.
    [14]T. E. Cloete. Resistance mechanisms of bacteria to antimicrobial compounds [J]. International Biodeterioration & Biodegradation,2003,51:277-282.
    [15]刘慧.壳聚糖及其表面活性剂复合物的抗菌性与抗菌机理的研究[D].武汉:武汉大学,2004.
    [16]EI-Refaie Kenawy, S. D. Worley, Roy Broughton. The Chemistry and Applications of A ntimicrobial Polymers:A State-of-the-Art Review [J]. Biomacromolecules,2007,8(5): 1359-1384.
    [17]刘耀斌,李彦锋,拜永孝.抗菌聚合物合成及其抑菌性能的研究进展[J].化学通报,2010,2:118-125.
    [18]Chris Zhisheng Chen, Nora C. Beck-Tan, Prasad Dhurjati, et al. Quaternary Ammonium Functionalized Poly(propyleneimine) Dendrimers as Effective Antimicrobials: Structure-Activity Studies [J]. Biomacromolecules,2000,1:473-480.
    [19]Guiqian Lu, Dingcai Wu, Ruowen Fu. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate [J]. Reactive & Functional Polymers,2007,67:355-366.
    [20]Akihiko Kanazawa, Tomiki Ikeda, Takeshi Endo. Polymeric phosphonium salts as a novel class of cationic biocides. Ⅲ. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films [J]. J. Polym. Sci., Part A:Polym. Chem.,1993,31:1467-1472.
    [21]Panarin, E. F., Solovaskii, M. V., Zaikina, N. A., et al. Biological activity of cationic polyelectrolytes [J]. Chem. Suppl.,1985,9:25-33.
    [22]Edmund F., Palermo and Kenichi Kuroda. Chemical Structure of Cationic Groups in Amphiphilic Polymethacrylates Modulates the Antimicrobial and Hemolytic Activities [J]. Biomacromolecules,2009,10:1416-1428.
    [23]J. Liang R., Wu. J. W. Wang, K. Barnes, et al. N-halamine biocidal coatings [J]. J Ind Microbiol Biotechnol,2007,34:157-163.
    [24]刘伦杰,吴大洋,汪涛.壳聚糖的抗菌性研究进展与抗菌纺织品开发[J].纺织学报,2010,31(7):145-150.
    [25]李柱来,王津,陈莉敏等.头孢曲松壳聚糖-海藻酸钠(钙)微球制备及性能研究[J].中国抗生素杂志,2008,33(6):355-358.
    [26]Zhenping Cheng, Xinlin Zhu, Z. L. Shi, et al. Polymer Microspheres with Permanent Antibacterial Surface from Surface-Initiated Atom Transfer Radical Polymerization [J]. Ind. Eng. Chem. Res.,2005,44:7098-7104.
    [27]夏英,孙洪,董晓丽等.季铵盐高分子抗菌剂的制备及其在PP中的应用[J].塑料工业,2008,36(4):55-58.
    [28]S. G. Hu, C. H. Jou, M. C. Yang. Surface Grafting of Polyester Fiber with Chitosan and the Antibacterial Activity of Pathogenic Bacteria [J]. Journal of Applied Polymer Science,2002,86:2977-2983.
    [29]Mohammad Reza, Badrossamay, Gang Sun. A Study on Melt Grafting of N-Halamine Moieties onto Polyethylene and Their Antibacterial Activities [J]. Macromolecules, 2009,42:1948-1954.
    [30]张昕,乌学东,高保娇.硅胶接枝新型长链季铵盐抗菌材料制备及其抗菌性能[J].应用化学,2008,25(12):1455-1459.
    [31]Jooyoung Song, Hyeyoung Kong, J yongsik Jang. Enhanced antibacterial performance of cationic polymer modified silica nanoparticles [J]. Chem. Commun.,2009,5418-5420.
    [32]李凤艳,汪燮卿,陈拥军等.以硅胶为载体合成水不溶性季铵盐类杀菌剂[J].应用化 学,2001,18(6):496-497.
    [33]吴远根,邱树毅,汤瑜等.高分子季铵盐型抗菌材料的制备[J].应用化工,2007,36(12):1157-1161.
    [34]Brian G. Trewyn, Chad M. Whitman, Victor S.-Y. Lin. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents [J]. NANO LETTERS,2004,4(11):2139-2143.
    [35]S. J. Yuan, S.0. Pehkonen, Y. P. Ting, et al. Inorganic-Organic Hybrid Coatings on Stainless Steel by Layer-by-Layer Depositionand Surface-Initiated Atom-Transfer-Radical Polymerization for Combating Biocorrosion [J]. Applied Mterials & interfaces,2009,1(3):640-652.
    [36]Satoshi Imazato, Noboru Ebi, Yusuke Takahashi, et al. Antibacterial activity of ba ctericide-immobilized filler for resin-based restoratives [J]. Biomaterials,2003, 24:3605-3609.
    [37]Plascencia-Jatomea M., Viniegra G., Olaya R., et al. Effect of Chitosan and Temperature on Spore Germination of Aspergillus niger [J]. Biosci.,2003,3:582-586.
    [38]Son, Y.-A., Sun, G. Durable antimicrobial nylon 66 fabrics:Ionic interactions with quaternary ammonium salts [J]. J. Appl. Polym. Sci.,2003,90:2194-2199.
    [39]崔陇兰.单分散Fe3O4/PS复合微球的制备研究[D].上海:上海交通大学,2008.
    [40]Zhijun Chen, Kai Peng, Yongli Mi. Preparation and Properties of Magnetic Polystyrene Microspheres [J]. Journal of Applied Polymer Science,2007,103:3660-3666.
    [41]Feixiong Hu, Koon Gee Neoh, Lian Cen, et al. Cellular Response to Magnetic Nanoparticles "PEGylated" via Surface-Initiated Atom Transfer Radical Polymerization [J]. Biomacromolecules,2006,7:809-816.
    [42]陈志军,彭凯,方少明等.Fe3O4表面原位引发可控“活性”聚合制备磁性聚苯乙烯纳米粒子[J].物理化学学报,2007,23(3):349-354.
    [43]Esben K. U. Larsen, Thomas Nielsen, Thomas Wittenborn, et al. Size-Dependent Accumulation of PEGylated Silane-CoatedMagnetic Iron Oxide Nanoparticles inMurine Tumors [J]. ACS NANO,2009,3(7):1947-1951.
    [44]Bifeng Pan, Daxiang Cui, Yuan Sheng, et al. Dendrimer-Modified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System [J]. Cancer Res.,2007,67(17):8156-8163.
    [45]F. H. Chen, Q. Gao, J Z Ni. The grafting and release behavior of doxorubincin from Fe3O4@SiO2 core-shell structure nanoparticles via an acid cleaving amide bond:the potential for magnetic targeting drug delivery [J]. Nanotechnology,2008,19:165103.1-165103.9.
    [46]Tae-Jong Yoon, Kyeong Nam Yu, Eunha Kim, et al. Specific Targeting, Cell Sorting, and Bioimaging with Smart Magnetic Silica Core-Shell Nanomaterials [J]. Small,2006, 2(2):209-215.
    [47]Jie Cai, Jia Guo, Minglei Ji, et al. Preparation and characterization of multiresponsive polymer composite microspheres with core-shell structure [J]. Colloid Polym Sci,2007,285:1607-1615.
    [48]Li-Hua Fan, Yan-Ling Luo, Ya-Shao Chen, et al. Preparation and characterization of Fe304 magnetic composite microspheres covered by a P(MAH-co-MAA) copolymer [J]. J. Nanopart. Res.,2009,11:449-458.
    [49]Reynolds A Frimpong, J Zach Hilt. Poly (n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization [J]. Nanotechnology,2008,19:175101.1-175101.7.
    [50]Marco Lattuada, T. Alan Hatton. Functionalization of Monodisperse Magnetic Nanoparticles [J]. Langmuir,2007,23:2158-2168.
    [51]J. Zhang, R. D. K. Misra. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer:Core-shell nanoparticle carrier [J]. Acta Biomaterialia,2007,3:838-850.
    [52]Hongwei Chen, Xinying Wu, Hongwei Duan, et al. Biocompatible Polysiloxane-Containing Diblock Copolymer PEO-b-PγMPS for Coating Magnetic Nanoparticles [J]. Applied Materials & Interfaces,2009,1(10):2134-2140.
    [53]Guangyu Liu, Hui Wang, Xinlin Yang, et al. Synthesis of tri-layer hybrid microspheres with magnetic core and functional polymer shell [J]. European Polymer Journal,2009,45: 2023-2032.
    [54]Xianwen Kan, Zhirong Geng, Yao Zhao, et al. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release [J]. Nanotechnology,2009,20:165601. 1-165601.7.
    [55]Shunchao Gu, Toshiaki Shiratori, Mikio Konno. Synthesis of monodisperse, magnetic latex particles with polystyrene core [J]. Colloid Polym Sci,2003,281:1076-1081.
    [56]Guangyu Liu, Hui Wang, Xinlin Yang. Synthesis of pH-sensitive hollow polymer microspheres with movable magnetic core [J]. Polymer,2009,50:2578-2586.
    [57]Jia Guo, Wuli Yang, Yonghui Deng, et al. Organic-Dye-Coupled Magnetic Nanoparticles Encaged Inside Thermoresponsive PNIPAM Microcapsules [J]. Small,2005,1(7):737-743.
    [58]答鸿,朱以华.核-壳式单分散二氧化硅磁性微球的制备[J].无机材料学报,2002,17(4):867-871.
    [59]Happy Tan, Jun Min Xue, Borys Shuter, et al. Synthesis of PEOlated Fe3O4@SiO2 Nanoparticles via Bioinspired Silification for Magnetic Resonance Imaging [J]. Adv. Funct. Mater.,2010,20:722-731.
    [60]Andre Ditsch, Paul E. Laibinis, Daniel I. C. Wang, et al. Controlled Clustering and Enhanced Stability of Polymer-Coated Magnetic Nanoparticles [J]. Langmuir,2005,21: 6006-6018.
    [61]Shourong Wan, Yuee Zheng, Yuanqin Liu, et al. Fe3O4 Nanoparticles coated with homopolymers of glycerol mono (meth) acrylate and their block copolymers [J]. J. Mater. Chem.,2005,15:3424-3430.
    [62]A. Aqil, S. Vasseur, E. Duguet, et al. PEO coated magnetic nanoparticles for biomedical application [J]. European Polymer Journal,2008,44:3191-3199.
    [63]An-Hui Lu, E. L. Salabas, Ferdi Schuth. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application [J]. Angew. Chem. Int. Ed.,2007,46:1222-1244.
    [64]Ajay Kumar Guptaa, Mona Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26:3995-4021.
    [65]Pedro Tartaj, Maria del Puerto Morales, Sabino Veintemillas-Verdaguer, et al. The preparation of magnetic nanoparticles for applications in biomedicine [J]. J. Phys. D:Appl. Phys.,2003,36:182-197.
    [66]Rockenberger J, Scher E. C., Aliviatos P. A. A new nonhydrolylic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides [J]. J. Am. Chem. Soc.,1999,121:11595-11596.
    [67]Arturo M., Lopez Q., Jose R. Magnetic iron oxide nanoparticles sythesized via microemulsions [J]. Journal of Colloid and Interface Science,1993,158:446-451.
    [68]张玲.四氧化三铁纳米颗粒及其复合物的制备和研究[D].上海:上海交通大学,2007.
    [69]韦勇强,赖琼钰.磁性液体的合成及生物医学应用.化学研究与应用[J],2003,15(3):307-310.
    [70]蒋庆哲.表面活性剂科学与应用[M].中国石化出版社,北京:2006.
    [71]冯拉俊,刘毅辉,雷阿利.纳米颗粒团聚的控制[J].微纳电子技术,2007,7(8):536-542.
    [72]Motoyuki Iijima, Hidehiro Kamiya. Surface Modification for Improving the Stability of Nanoparticles in Liquid Media [J]. KONA Powder and Particle Journal,2009,27:119-129.
    [73]Z. B. Huang, F. Q. Tang. Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles [J]. Journal of Colloid and interface Science,2004,275:142-147.
    [74]Natalia Frickel, Renate Messing, Thorsten Gelbrich, et al. Functional Silanes as Surface Modifying Primers for the Preparation of Highly Stable and Well-Defined Magnetic Polymer Hybrids [J]. Langmuir,2010,26(4):2839-2846.
    [75]Frank Caruso. Nanoengineering of Particle Surfaces [J]. Advanced Materials, 2001,13(1):11-22.
    [76]Zhiya Ma, Huizhou Liu. Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine [J]. China Particuology,2007,5:1-10.
    [77]Stuart C McBain, Humphrey HP Yiu, Jon Dobson. Magnetic nanoparticles for gene and drug delivery [J]. International of Nanomedicine,2008,3(2):169-180.
    [78]Conroy Sun, Jerry S. H. Lee, Miqin Zhang. Magnetic nanoparticles in MR imaging and drug delivery [J]. Advanced Drug Delivery Reviews,2008,60:1252-1265.
    [79]Yabin Sun, Xiaobin Ding, Zhaohui Zheng, et al. Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles [J]. European Polymer Journal,2007,43:762-772.
    [80]Yabin Sun, Xiaobin Ding, Zhaohui Zheng, et al. A Novel Approach to Magnetic Nanoadsorbents with High Binding Capacity for Bovine Serum Albumin [J]. Macromol. Rapid Commun,2007,28:346-351.
    [81]Randy De Palma, Sara Peeters, Margriet J. Van Bael, et al. Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible [J]. Chem. Mater. 2007,19 (7):1821-1831.
    [82]Weijun Ye, Man Fai Leung, John Xin, et al. Novel core-shell particles with poly (n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles [J]. Polymer,2005,46:10538-10543.
    [83]Tiller J C, Liao C J, Lewis K, et al. Designing surfaces that kill bacteria on contact [J]. Proc. Natl. Acad. Sci. U. S. A,2001,98:5981-5985.
    [84]S. P. Denyer. Mechanisms of Action of Antibacterial Biocides [J]. International Biodeterioration & Biodegradation,1995,36(3-4):227-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700