江苏大丰潮滩沉积动力过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据现场观测资料,本文从底质粒径组成、潮流边界层、悬沙剖面、悬沙级配特征、沉积物输运等方面探讨了江苏大丰潮滩的沉积动力特征。
     大丰潮滩的底质粒径组成具有明显的空间差异,由海向陆底质的砂含量减小、粉砂含量和粘土含量增加。盐蒿滩和互花米草滩沉积物主要来源于悬沙沉降,悬沙粒径组成和沉降特点决定了表层底质的粒径组成。在泥砂混合滩、粉砂细砂滩和细砂滩上,推移质物质是影响表层底质粒径组成的重要因素。
     低潮位附近的细砂滩滩面的涨潮流以逆时针方向旋转为主,落潮流以顺时针方向旋转为主,涨潮流的流向范围和潮流旋转幅度均大于落潮。落潮历时一般大于涨潮历时,而落潮流速明显大于涨潮;落潮单宽净输水量明显大于涨潮,涨潮净输水方向以平行海岸为主,落潮以垂直海岸向海为主,全潮单宽净输水量主要受落潮流控制。这种水文特征是潮沟和/或平面环流(涨、落潮流路不一致)的影响所造成的。在低潮位附近,涨、落潮周期中只出现一个明显的流速高峰,出现在落潮中期,高水位时不存在明显的憩流。
     一个潮周期内,符合对数分布的流速剖面一般占总数的42-96%,各潮周期差别较大。影响流速剖面非对数分布的因素主要有风、波浪、流速的非恒定性、悬沙浓度等。受悬沙浓度和流速垂向变化的影响,水体密度层化参数R_f具有明显的时间变化和垂向变化。悬沙浓度能够减弱水体垂向上的动能量交换,使摩阻流速或剪切力减小。根据对摩阻流速与推移质输运率关系的分析,Hardisty(1983)的推移质输运率公式可导致较大的误差。
     悬沙浓度在潮周期内的变化很大,涨潮平均悬沙浓度大于落潮,悬沙浓度及其垂向梯度具有明显的空间差异。从流速与悬沙浓度的关系以及悬沙粒径组成来看,位于细砂滩的测站处没有发生明显的再悬浮和悬沙沉降,悬沙浓度的变化主要与悬沙平流输运和悬沙浓度的空间梯度有关。在有明显再悬浮和沉降的情况下,悬沙粒径组成在潮周期内具有明显的时间变化和垂向变化,再悬浮量越大,悬沙粒径越粗,悬沙沉降量越大,悬沙粒径越细,底层悬沙粒径明显粗于上层悬沙粒径。在没有明显再悬浮和沉降的情况下,悬沙粒径组成在潮周期内的时间变化和垂向变化都很小,随潮周期的变化也很小。
The thesis deals with the sediment dynamic processes of intertidal flats at Dafeng, northern Jiangsu, in terms of. sediment grain-size variability, benthic boundary layer properties and suspended sediment concentration profiles, sediment transport rate, on the basis of in situ measurements and laboratory analyses.
    Grain size distributions of the seabed sediment have marked spatial variations on the intertidal flat, with the sand content decreasing and silt and clay contents increasing from the lower part towards the upper part of the intertidal zone. On the Sueada salsa and Spartina alterniflora flats, materials from settling of suspended sediment are the main source for seabed sediment; hence, the grain size distribution of seabed sediment is determined by the characteristics of suspended sediment. On other parts of the flat, the seabed sediment originates largely from bedload transport.
    Near the lower part of the fine sandy flat, the tidal current rotates in an anticlockwise manner during the flood phase of the tide, whereas during the ebb the current rotates in a clockwise pattern; the range and rotation during the flood is larger than during the ebb. Ebb duration is longer than flood duration, but the ebb current velocity is stronger than the flood. Net water transport during the ebb is stronger than during the flood; net water transport direction during the flood is parallel to the shoreline, but it is towards the sea during ebb (perpendicular to the shoreline). Such hydrodynamic patterns result from the influences of the presence of tidal creek systems and/or the residual circulation over the intertidal zone. During the entire tidal cycle, there is only one current velocity peak that occurs at the middle ebb, and there is almost no slack water (i.e. zero current velocity) during the high water periods.
    On the intertidal flat, suspended sediment concentrations (SSCs) vary considerably during the tidal cycle; time averaged SSCs during the flood are higher than during the ebb, with remarked temporal and spatial variations in the SSC and its vertical gradient. Based upon the information on current velocity, SSC and variations of grain size distribution of suspended sediment, there is no intensive resuspension and settling at the measurement station during the survey period. Advection and spatial gradient of SSC is the main reason of CCS changes in the tidal cycle; in this case, the temporal variation in the SSC is a reflection of the spatial variation. Resuspension and settling
引文
Adams, C.E. and Weatherly, GL., 1981 (a). Some effects of suspended sediment stratification on an oceanic bottom boundary layer. J. Geophys. Res., 86: 4161-4172.
    Adams, C.E. and Weatherly, GL., 1981 (b). suspended-sediment transport and benthic boundary layer dynamics. Marine Geology, 42: 1-18.
    Adams, C.E., Wells, J.J.T. and Park, Y.A., 1990. Internal hydraulics of a sediment-stratified channel flow. Marine Geology, 95: 131-145.
    Agrawal, Y.C. and Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168: 89-114.
    Allen, J.R.L., 1982. Mud drapes in sand-wave deposits: a physical model with application to the Folkestone Beds (Early Cretaceous, Southeast England). Roy. Soc. London, Phil. Trans., Ser. A, 306, 291-345.
    Amos, C.L., 1980. Physical processes and sedimentation in the Bay of Fundy. In: McCann, S.B. (ed.), Sedimentary Process and Animal-Sediment Relationships in Tidal Environments. Geol. Assoc. Canada, Short Course Notes, 1: 95-132.
    Amos, C.L. and Mosher, D.C., 1985. Erosion and deposition of fine-grained sediments from the Bay of Fundy. Sedimentology, 32: 815-832.
    Amos, C.L., Van Wanoner, N.A. and Daborn, GR., 1988. The influence of subaerial exposure on the bulk properties of fine-grained intertidal sediment from Minas Basin, Bay of Fundy. Estuarine and Coastal Shelf Science, 27: 1-13.
    Amos, C.L., Daborn, GR., Christian, H.A., Atkinson, A. and Roberton, A., 1992. In situ erosion measurement of fine-grained sediments from the Bay of Fundy. Marine Geology, 108: 175-196.
    Amos, C.L., 1995. Siliciclastic tidal flats. In: Perillo, GM.E. (ed.) Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology 53. Elsevier Science, Amsterdam, 273-856.
    Amos, C.L., Feeney, T., Sutherland, T.F. and Luternauer, J.L., 1997. The stability of fine-grained sediments from the Fraser River delta. Estuarine, Coastal Shelf Science, 45: 507-524.
    Andersen, T.J. and Pejrup, M., 2001. Suspended sediment transport on a temperate, microtidal mudflats, the Danish Wadden Sea. Marine Geology 173: 69-85.
    Augustinus, P.GE.R., 2000. Biochemical factors influencing deposition and erosion of fine grained sediment. Marine Geology (Special Issue).
    
    Bagnold, R.A., 1956. Flow of cohesionless grains in fluids. Phil. Trans. R. Soc. London, A294: 235-297.
    Bassoullet, P., Hir, P.L., Gouleau, D. and Robert, S., 2000. Sediment transport over an intertidal mudflat: field investigations and estimation of fluxes within the "Baie de Marennes-Oleron" ( France ). Continental Shelf Research, 20: 1635-1653.
    Best, J.L. and Leeder, M.R., 1993. Drag reduction in turbulent muddy seawater flows and some sedimentary consequences. Sedimentology, 40: 1129-1137.
    Black, K.P. and Healy, T.R., 1986. The sediment threshold over tidally induced megaripples. Marine Geology, 69: 219-234.
    Blanton, J.O., Lin, G and Elston, S.A., 2002. Tidal current asymmetry in shallow estuaries and tidal creeks. Continental Shelf Research, 22:1731-1743.
    Cacchione, D.A. , Drake, D.E., Losada, M.A. and Medina, R., 1990. Bottom-boundary-layermeasurements on the continental shelf off the Ebro River, Spain. Marine Geology, 95: 179-192.
    Cacchione, D.A. and Drake, D.E., 1990. Shelf sediment transport: an overview with applications to the northern California continental shelf. In: B. LeMehaute and D.M. Hanes (Editors), The Sea: Ocean Engineering Science, Volume Nine. John Wiley and Sons, New York, pp. 729-773.
    Cacchione, D.A., Drake, D.E., Kayen, R.W., Sternberg, R.W., Kineke, G.C., Tate, GB., 1995. Measurements in the bottom boundary layer on the Amazon subaqueous delta. Marine Geology, 125: 235-257.
    Carling, P.A., 1982. Temporal and spatial variation in intertidal sedimentation rates. Sedimentology, 29: 17- 23.
    Christie, M.C., Dyer, K.R., Blanchard, G, Cramp, A., Mitchener, H.J. and Paterson, D.M., 2000. Temporal and spatial distributions of moisture and organic contents across a macro-tidal mudflat. Continental Shelf Research, 20: 1219-1241.
    Clarke, S. and Elliott, A.J., 1998. Modelling suspended sediment concentrations in the Firth of Forth. Estuarine, Coastal and Shelf Science, 47: 235-250.
    Collins, M.B., Amos, C.L. and Evans, G, 1981. Observations of some sediment-transport processes over intertidal flats, the Wash, U.K. Spec. Publs int. Ass. Sediment. 5: 81-98.
    Collins, M.B., Ke, X. and Gao, S., 1998. Tidally-induced flow structure over intertidal flats. Estuarine, Coastal and Shelf Science, 46: 233-250.
    Cottan, J.C., Guillou, S. and Li, Z.H., 2000. Behaviour of a puff of resuspended sediment: a conceptual model. Marine Geology, 167: 355-373.
    Davidson, M.A., Russell, P.E., Huntley, D.A. and Hardisty, J., 1993. Tidal asymmetry in suspended sand transport on a macrotidal intermediate beach. Marine Geology, 110: 333-353.
    Davis, R.A., 1985. Coastal sedimentary environments. New York. 187-219.
    Drake, D.E. and Cacchione, D.A., 1985. Seasonal variation in sediment transport on the Russian River shelf, California. Continental Shelf Research, 4(5): 195-514.
    Drake, D.E. & Cacchione, D.A., 1986. Field observations of bed shear stress and sediment resuspension on continental shelves, Alaska and California. Continental Shelf Research, 6: 415-429.
    Dronkers, J., 1986. Tidal asymmetry and estuarine morphology. Netherlands Journal of Sea Research, 20(2/3): 117-131.
    Dyer K R., 1970. Current velocity profiles in a tidal channel. Geophysical Journal of the Royal Astro Society, 22: 153-161
    Dyer K R, 1980. Velocity profiles over a rippled bed and the threshold of movement of sand. Estuarine, Coastal and Marine Science, 10: 181-199.
    
    Dyer K R., 1986. Coastal and Estuarine Sediment Dynamics. Chichester, 55-81.
    Dyer, K.R., 1994. Estuarine sediment transport and deposition. In: Pye, K. (ed.) Sediment Transport and Depositional Processes. Blackwell, Oxford, 193-218.
    Dyer, K.R. and Manning, A.J., 1999. Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions. Journal of Sea Research, 41: 87-95.
    Eisma, D., 1997. Intertidal Deposits: River Months, Tidal Flats and Coastal Lagoons. Marine Science Series, CRC Press, Boca Raton, 507p.
    Elliott, T, 1986. Siliciclastic shorelines. In: Reading, H.G (ed.) Sedimentary Environments and Facies. Blackwell, Oxford, 155-188.
    Elliott, A.J., 2002. The boundary layer charcter of tidal current in the Eastern Irish Sea. Esturaine, Coastal and Shelf Science, 55(3): 465-480.
    
    Fan, D., Li, C, Archer, A.W. and Wang, P., 2002. Temporal distribution of diastems in deposits of an open-coast tidal flat with high suspended sediment concentrations. Sedimentary Geology, 152: 173-181.
    Fettweis, M., Sas, M. and Monbaliu, J., 1998. Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium. Estuarine, Coastal and Shelf Science, 47: 21-36.
    Flemming, B.W. and Nyandwi, N., 1994. Land reclamation as a cause of fine-grained sediment depletion in backbarrier tidal flats (southern North Sea). Neth. J. Aquat. Ecol. 28: 299-307.
    Fray, R.W. and Basan, P.B., 1985. Coastal salt marshes. In: Davis, R.A. Jr. (ed.) Coastal Sedimentary Environments. Springer, New York, 225-301.
    French, J.R. and Spencer, T., 1993. Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, UK. Marine Geology, 110: 315-331.
    French, C.E., French, J.R., Clifford, N.J. and Watson, C.J., 2000. Sedimentation-erosion dynamics of abandoned reclamations: the role of waves and tides. Continental Shelf Research, 20: 1711-1733.
    Friedrichs, C.T., Wright, L.D., Hepworth, D.A. and Kim, S.C., 2000. Bottom-boundary-layer processes associated with fine sediment accumulation in coastal seas and bays. Continental Shelf Research, 20: 807-841.
    Frostick, L.E. and McCave, I.N., 1979. Seasonal shifts of sediment within an estuary mediated by algal growth. Estuarine Coastal Marine Science, 9: 569-576.
    Grant, W.D. and Madsen, O.S., 1979. Combined wave and current interaction with a rough bottom. Journal of Geophys. Res., 84: 1797-1808.
    Grant, W.D. and Madsen, O.S., 1982. Movable bed roughness in unsteady oscillatory flow. J. Geophys. Res., 87:469-481.
    
    Grant, W.D., 1986. The continental-shelf bottom boundary layer. Ann. Rev. Fluid Mech., 18: 265-305.
    Grant, W.D. and Madsen, O.S., 1986. The continental shelf bottom boundary layer. Ann. Rev. Fluid Mech., 18:265-305.
    Gross, T.F., Isley, A.E. and Sherwood, C.R., 1992. Estimation of stress and bed roughness during storms on the Northern California Shelf. Cont. Shelf Res., 12: 389-414.
    Gust, G, 1976. Observations on turbulent-drag reduction in a dilute suspension of clay in sea-water. J. Fluid Mech., 75:29-74.
    Gust, G and Walger, E., 1976. The influence of suspended cohesive sediments on boundary-layer structure and erosive activity of turbulent seawater flow. Marine Geology, 22: 189-206.
    Hardisty, J., 1983. An assessment and calibration of formulations for Bagnold's Bedload Equation. Journal of Sedimentary Petrology, 53(3): 1007-1010.
    Harris, P.T. and Collins, M., 1988. Estimation of annual bedload flux in a macrotidal estuary: Bristol Channel, U.K. Marine Geology, 83: 237-252.
    Harvey, J.G and Vincent, C.E., 1977. Observations of shear in near-bed currents in the southern North Sea. Estuarine, Coastal and Marine Science, 5: 715-731.
    Heathershaw, A.D., 1976. Measurements of turbulence in the Irish Sea benthic boundary layer. In The Benthic Boundary Layer, ed. I.N. McCave, pp. 11-31. Plenum Press, New York.
    Hill, P.S., Syvitski, J.P., Cowan, E.A. and Powell, R.D., 1998. In situ observation of floc settling velocities in Glacier Bay, Alaska. Maine Geology, 145: 85-94.
    Hill, D.C., Jones, S.E. and Prandle, D., 2003. Derivation of sediment resuspension rates from acoustic backscatter time-series in tidal waters. Continental Shelf Research, 23: 19-40.
    Hir, P.L., Roberts, W., Cazaillet, O., Christie, M., Bassoullet, P. and Bacher, C, 2000. Characterization of intertidal flat hydrodynamics. Continental Shelf Research, 20: 1433-1459.
    Houwing, E.J., 2000. Morphodynamic development of intertidal mudflats: consequences for the extension of the pioneer zone. Continental Shelf Research, 20: 1735-1748.
    Huntley, D.A., 1988. A modified inertial dissipation method for estimating seabed stresses at low Reynolds numbers, with application to wave/current boundary layer measurements. Journal of Physical Oceanography, 18: 339-346.
    Huntley, D.A. and Hazen, D.G, 1988. Seabed stresses in combined wave and steady flow conditions on the Nova Scotia continental shelf: field measurements and predictions. Journal of Physical Oceanography, 18: 347-362.
    Huntley, D.A., Nicholls, R.J., Liu, C. and Dyer, K.R., 1994. Measurements of the semi-diurnal drag coefficient over sand waves. Continental Shelf Research, 14(5): 437-456.
    Huthnance, J.M., 1973. Tidal current Asymmetries over the Norfolk Sandbanks. Estuarine and Coastal Marine Science, 1: 89-99.
    
    Isla, F.I., 1993. Overpassing and armouring phenomena on gravel beaches. Marine Geology, 110: 369-376.
    Jackson, P.S. 1981. On the displacement height in the logarithmic velocity profile. J. Fluid Mech., 11: 15-25.
    
    Kamphuis, J.W., 1974. Determination of sand roughness for fixed beds. J. Hydraul. Res., 12: 193-203.
    Kawanisi, K. and Yokosi, S., 1997. Characteristics of suspended sediment and turbulence in a tidal boundary layer. Continental Shelf Research, 17: 859-875.
    Ke, X.K., Collins, M.B. and Poulos, S.E., 1994. Velocity structure and sea bed roughness associated with intertidal (sand and mud ) flats and saltmarshes of the Wash, U.K. Journal of Coastal Research, 10: 702-715.
    Ke, X,K., 1995. Sediment dynamics of saltmarshes and intertidal flats, Southern and Eastern England. Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Oceanography, University of Southampton.
    Ke, X. and Collins, M., 2000. Tidal characteristics of an accretional tidal flat (the Wash, U.K.). Muddy Coast Dynamics and Resource Management, Flemming, B.W., Delafontaine, M.T. and Liebezeit, G (eds.).
    Kineke, GC. and Sternberg, R.W., 1989. The effect of particle settling velocity on computed suspended sediment concentration profiles. Marine Geology, 90: 159-174.
    Klein, GV., 1977. Tidal circulation model for deposition of classic sediments in epeiric and mioclinal shelf seas. Sed. Geol, 19: 1-12.
    Lavelle, J.W. and Mofjeld, H.O., 1983. Effects of time-varying viscosity on oscillatory turbulent channel flow. J. Geophys. Res., 88: 7607-7616.
    Lawless, M. and Robert, A., 2001. Scales of boundary resistance in coarse-grained channels: turbulent velocity profiles and implications. Geomorphology, 39: 221-238.
    Lee, H.J., Chu, Y.S. and Park, Y.A., 1999. Sedimentary processes of fine-grained material and the effect of seawall construction in the Daeho macrotidal flat-nearshore area, northern west coast of Korea. Marine Geology, 157: 171-184.
    Li, M.Z., Wright, L.D. and Amos, C.L., 1996. Predicting ripple roughness and sand resuspension under combined flow in a shoreface environment. Marine Geology, 130: 139-161.
    Li, M.Z., Amos, C.L., and Heffler, D.E., 1997. Boundary layer dynamics and sediment transport under storm and non-storm conditions on the Scotian shelf. Marine Geology, 141:157-181.
    Li, M.Z. and Amos, C.L., 1998. Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environment. Continental shelf research, 18: 941-970.
    Li, M.Z. and Amos, C.L., 1999. Field observations of bedforms and sediment transport thresholds of fine sand under combined waves and currents. Marine Geology, 158: 147-160.
    Li, M.Z. and Gust, G, 2000. Boundary layer dynamics and drag reduction in flows of high cohesive sediment suspension. Sedimentology, 47: 71-86.
    
    Link, A.G, 1966. Textural classification of sediments. Sedimentology, 7, 249-254.
    Lueck, R.G and Lu, Y., 1997. The logarithmic layer in a tidal channel. Continental Shelf Research, 17: 1785-1801.
    Lynch, J.F., Irish, J.D., Gross, T.F., Wiberg, P.L., Newhall, A.E., Traykovski, P.A. and Warren, J.D., 1997.
    
    Acoustic measurements of the spatial and temporal structure of the near-bottom boundary layer in the 1990-1991 STRESS experiment. Continental Shelf Research, 17: 1271-1295.
    Maa, J.P.Y., Sanford, L. and Halka, J.P., 1998. Sediment resuspension characteristics in Baltimore Harbor, Maryland. Marine Geology, 146: 137-145.
    McManus, J., 1988. Grain size determination and interpretation. In: Tucker, M. ( editor ), Techniques in Sedimentology, Backwell, Oxford, 63-85.
    Mellor, GL. and Yamada, T, 1974. A hierarchy of turbulence closure models for planetary boundary layers. J.Atmos. Sci, 31: 1791-1806.
    Miller, M.C., McMave, I.N. and Komar, P.D., 1977. Threshold of sediment motion under unidirectional currents. Sedimentology, 24: 507-527.
    Morris, A.W. and Howarth, M.J., 1998. Bed stress induced sediment resuspension (SERE 88/89), Marine Geology, 18: 1203-1213.
    Myrhaug, D. and Slaattelid, O.H., 1998. Bottom shear stresses and velocity profiles in stratified tidal planetary boundary layer flow from similarity theory. Journal of Marine Systems, 14: 167-180.
    Nielson, P., 1981. Dynamics and geometry of wave-generated ripples. Journal of Geophysical Research, 86: 6467-6472.
    
    Nielsen P., 1992. Coastal bottom boundary layers and sediment transport. Singapore: World Scientific. O'Brien, D.J., Whitehouse, R.J.S. and Cramp, A., 2000. The cyclic development of a macrotidal mudflat on varying timescales. Continental Shelf Research, 20: 1593-1619.
    Orton, P.M. and Kineke, GC, 2001. Comparing calculation and observed vertical suspended-sediment distributions from a Hudson River estuary turbidity maximum. Estuarine, Coastal and Shelf Science, 52: 401-410.
    Osborne, P.D. and Vincent, C.E., 1996. Vertical and horizontal structure in suspended sand concentrations and wave-induced fluxes over bedforms. Marine Geology, 131: 195-208.
    Paterson, D.M., Tolhurst, T.J., Kelly, J.A., Honeywill, C. et al., 2000. Variations in sediment properties, Skeffling mudflat, Humbr Estuary, UK. Continental Shelf Research, 20: 1373-1396.
    Perters, H., 1997. Observations of stratified turbulent mixing in an estuary: neap-to-spring variations during high river flow. Estuarine, Coastal and Shelf Science, 45: 69-88.
    Pestrong, R., 1972. Tidal flat sedimentation at Colley Landing, southwest San Francisco Bay. Sed. Geol., 8, 251-288.
    Pethick, J.S., 1980. Velocity surges and asymmetry in tidal channels. Estuarine Coastal Shelf Science, 11: 331-345.
    Pillay, S., Gardner, L.R. and Kjerfve, B., 1992. The effect of cross-sectional velocity and concentration variations on suspended sediment transport rates in tidal creeks. Estuarine, Coastal and Shelf Science, 35: 331-345.
    Pohlmann, T. and Puls, W., 1994. Currents and transport in waters. In: Suendermana, J. (Ed.), Circulation and contaminant fluxes in the North Sea, Springer-Verlag, Berlin, 345-402.
    Postma, H., 1967. Sediment transport and sedimentation in the estuarine environment. In: Lauff, G.H. (ed.), Estuaries. Amer. Assoc. Advan. Sci. Publ. 83, Washington, DC, 158-179.
    Raaphorst, W.V., Malschaert, H. and Haren, H.V., 1998. Tidal resuspension and deposition of particulate matter in the Oyster Grounds, North Sea. Journal of Marine Research, 56: 257-291.
    Ranasinghe, R. and Pattiaratchi, C, 2000. Tidal inlet velocity asymmetry in diurnal regimes. Continental Shelf Research, 20: 2347-2366.
    Reed, C.W., Niedoroda, A.W. and Swift, J.P., 1999. Modeling sediment entrainment and transport processes limited by bed armoring. Marine Geology, 154: 143-154.
    Reineck, H.E., 1972. Tidal flats. In: Rigby, J.K., and Hamblin, W.K., (eds.), Recognition of ancient sedimentary environments. Soc. Econ. Paleont. Mineral. Spec. Publ. 16, 146-159.
    Ribbe, J. and Holloway, P.E., 2001. A model of suspended sediment transport by intertidal tides. Continental Shelf Research, 21: 395-422.
    Ridderinkhof, H., Ham, R.V.D. and Lee, W.V.d., 2000. Temporal variations in concentration and transport of suspended sediments in a channel-flat system in the Ems-Dollard estuary. Continental Shelf Research, 20: 1479-1493.
    Roberts, W., Hir, P.L. and Whitehouse, R.J.S., 2000. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats. Continental Shelf Research, 20: 1079-1097.
    Sanford, L.P. and Maa, J.P.Y., 2001. A unified erosion formulation for fine sediments. Marine Geology, 179: 9-23.
    Schubel, J.R. and Hirschberg, D.J., 1978. Estuarine graveyards, climatic change and the importance of the estuarine environment. In Wiley, M. (Ed.), Estuarine interactions, Academic Press, New York, 285-303.
    Self, F.L., Nowell, R.M. and Jumars, P.A., 1989. Factors controlling critical shears for deposition and erosion of individual grains. 86: 181-199.
    Sheng, Y.P. and Villaret, C, 1989. Modeling the effect of suspended sediment stratification on bottom exchange processes. J. Geophys. Res., 94: 14429-14444.
    Shi, N.C., Larsen, L.H. and Downing, J.P., 1985. Predicting suspended sediment concentration on continental shelves. Marine Geology, 62:255-275.
    Smith, J.D. and McLean, S.R., 1977. Spatially averaged flow over a wavy surface. J. Geophys. Re., 82: 1735-1746.
    Soulsby, R.L. and Dyer, K.R., 1981. The form of the near-bed velocity profile in a tidally accelerating flow. J. Geophys. Res., 86: 8067-8074.
    Soulsby, R.L., 1983. The bottom boundary layer of shelf seas. In Johns, B. (ed.), Physical Oceanography ofCoastal and Shelf Seas. Elsevier Science Publishers, Amsterdam, Chapter 5.
    
    Soulsby, R.L. and Wainwright, B.L.S.A., 1987. A criterion for the effect of suspended sediment on near- bottom velocity profiles. J. Hydraul. Res., 25: 341-355.
    Stelder, B.J., 2000. The effect of different hydrodynamic conditions on the morphodynamics of a tidal mudflat in the Dutch Wadden Sea. Continental Shelf Research, 20: 1461-1478.
    Sternberg, R.W., Larsen, L.H. and Miao, Y.T., 1985. Tidally driven sediment transport on the East China Sea. Continental Shelf Research, 4: 105-120.
    Sternberg, R.W., Berhane, I. and Ogston, A.S., 1999. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf. Marine Geology, 154: 43-53.
    Taylor, P.A. and Dyer, K.R., 1977. Theoretical models of flow near the bed and their implications for sediment transport. In Goldberg, E.D., McCave, I.N., O'Brien, J.J. and Steele, J.H. (ed.), The Sea, vol. 6, Wiley-Interscience, New York, 579-601.
    Tolhurst, T.J., Riethmuller, R. and Paterson D.M., 2000. In situ versus laboratory analysis of sediment stability from intertidal mudflats. Continental Shelf Research, 20: 1317-1334.
    Tolhurst, T.J., Black, K.S., Paterson, D.M., Mitchener, H.J., Termaat, GR. and Shayler, S.A., 2000. A comparation and measurement standardisation of four in situ devices for determining the erosion shear stress of intertidal sediments. Continental Shelf Research, 20: 1397-1418.
    Trowbridge, J.H. and Kineke, G.C., 1994. Structure and dynamics of fluid muds on the Amazon continental shelf. J. Geophys. Res., 99: 865-874.
    Uncles, R.J. and Stephens, J.A., 1993. Nature of the turbidity maximum in the Tamar Estuary, U.K. Estuarine, Coastal and Shelf Science, 36: 413-431.
    Uncles, R.J. and Stephens, J.A., 2000. Obervations of currents, salinity, trubidity and intertidal mudflat characteristics and properties in the Tavy Estuary, UK. Continental Shelf Research, 20: 1531-1549.
    van Straaten, L.M.J.U., and Kuenen, PH., 1958. Tidal action as a cause for clay accumulation. J. Sediment. Petrol, 28: 406-413.
    Velegrakis, A.F., Gao, S., Lafite, R., Dupont, J.P., Huault, M.F., Nash, L.A. and Collins, M.B., 1997. Resuspension and advection processes affecting suspended particulate matter concentrations in the central English Channel. Journal of Sea Research, 38: 17-34.
    Villard, P. and Kostaschuk, R., 1998. The relation between shear velocity and suspended sediment concentration over dunes: Fraser Estuary, Canada. Marine Geology, 148: 71-81.
    Vincent, C.E. and Green, M.O., 1990. Field measurements of the suspended sand concentration profiles and fluxes and of the resuspension coefficient γ_0 over a rippled bed. Journal of Geophysical Research, 95: 11591-11601.
    Voulgaris, G. and Collins, M.B., 2000. Sediment resuspension on beaches: response to breaking waves. Marine Geology, 167: 167-187.
    Wang, Y.P., Zhang, R.S. and Gao, Shu, 1999. Velocity variations in salt marsh creeks, Jiangsu, China. Journal of Coastal Research, 15(2): 471-477.
    Wang, Y.P., Gao, S., 2001. Modification to the Hardisty Equation, regarding the relationship between sediment transport rate and particle size. Journal of Sedimentary Research, 70(1): 118-121.
    Wang Yaping, Gao Shu, Ke Xiankun. Observations of boundary layer parameters and suspended sediment transport over the intertidal flats of northern Jiangsu, China. Acta Oceanologica Sinica, 2004,23(3): 437-448.
    Ward, L.G, 1981. Suspended-material transport in marsh tidal channels, Klawah Island, South Carolina. Marine Geology, 40: 139-154.
    Webb, M.P. and Vincent, C.E., 1999. Comparison of time-averaged acoustic backscatter concentration profile measurements with existing predictive models. Marine Geology, 162: 71-90
    Whitehouse, R., 1995. Observations of the boundary layer characteristics and the suspension of sand at a tidal site. Continental Shelf Research, 15(13): 1549-1567.
    Whitehouse, R.J.S., Bassoullet, P., Dyer, K.R., Mitchener, H.J. and Roberts, W., 2000. The influence if bedforms on flow and sediment transport over intertidal mudflats. Continental Shelf Research, 20: 1099-1124.
    Wiberg, P.L. and Harris, C.K., 1994. Ripple Geometry in Wave-dominated environments. Journal of Geophysical Research, 99: 775-789.
    Wiberg, P.L., Drake, D.E. and Cacchione, D.A., 1994. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions. Continental Shelf Research, 14: 1191-1219.
    Widdows, J., Brown, S., Brinsley, M.D., Salkeld, P.N. and Elliot, M., 2000. Temporal changes in intertidal sediment erodability: influence of biological and climatic factors. Continental Shelf Research, 20: 1275- 1289.
    Wilkinson, R H, 1984. A method for evaluating statistical errors associated with logarithmic velocity profiles. Geo-Marine Letters, 3: 49-52.
    Wilkinson, R.H, 1986. Variation of roughness length of a mobile sand bed in a tidal flow. Geo-Marine Letters, 5: 231-239.
    Williamson, H.J. and Ockenden, M.C., 1996. ISIS: an instrument for measuring erosion shear stress in situ. Estuarine, Coastal and Shelf Science, 42: 1-18.
    Wooding, R.A., Bradley, E.F. and Marshall, J.K., 1973. Dray due to regular arrays of roughness elements of varying geometry. Boundary Layer Meteorology, 5: 285-308.
    
    Wright, L.D., Gammisch, R.A. and Byrne, R.J., 1990. Hydraulic roughness and mobility of three oyster- bed artificial substrate materials. Journal of Coastal Research, 6: 867-878.
    Wright, L.D., Boon, J.D., Xu, PJ. and Kin, S.C., 1992. The bottom boundary layer of the bay stem plains environment of lower Chesapeake Bay. Estuarine, Coastal and Shelf Science, 35: 17-36.
    Wright, L.D., Sherwood, C.R. and Sternberg, R.W., 1997. Field measurements of fair-weather bottom boundary layer processes and sediment suspension on the Louisiana inner continental shelf. Marine Geology, 140: 329-345.
    Xu, J.P, Wright, L.D. and Boon, J.D., 1994. Estimation of bottom stress and roughness in Lower Chesapeake Bay by the Inertial Dissipation Method. Journal of Coastal Research, 10: 329-338.
    Xu, J.P. and Wright, L.D., 1995. Tests of bed roughness models using field data from the Middle Atlantic Bight. Continental ShelfResearch, 15: 1409-1434.
    Zhang, R.S., 1992. Suspended sediment transport processes on tidal mud flat in Jiangsu Province, China. Estuarine, Coastal and Shelf Science, 35: 225-233.
    
    陈才俊,1990.围滩造田与淤泥质潮滩的发育.海洋通报,9:3-7.
    
    陈才俊,1991.江苏淤长型淤泥质潮滩的剖面发育.海洋与湖沼,22(4):360-367.
    陈才俊,1994.江苏滩涂大米草促淤护岸效果.海洋通报,13(4):55-61.
    曹祖德,王运洪,1994.水动力泥沙数值模拟.天津:天津大学出版社,11.
    陈吉余,王宝灿,刘苍宇,1980.海岸地貌,中国自然地理(地貌).北京,科学出版社,313-349.
    陈沈良,谷国传,张国安.长江口南汇近岸水域悬沙沉降速度估算.泥沙研究,2003,6:45-51.
    陈卫跃,1991.潮滩泥沙输移及沉积动力环境.海洋学报,13(6):813-821.
    丁贤荣,1983.潮滩上潮水沟问题及如东海岸发育.南京大学研究生毕业论文.
    范代读,李从先,2000.长江三角洲泥质潮坪沉积的韵律性及保存率.海洋通报,19(6):34-41.
    范代读,李从先,陈美发,王德杰,丁平兴,2001.长江三角洲泥质潮坪沉积间断的定量分析.海洋地质与第四纪地质,21(4):1-6.
    范代读,2001.潮坪韵律沉积的形成和保存及沉积间断地定量分析.同济大学博士学位论文.
    范代读,李从先,邓兵,陈美发,2002.潮汐周期在潮坪沉积中的记录.同济大学学报,30(3):281-285.
    符文侠,李光天,刘国贤,1994.锦州湾滩地动力特征及其冲淤变化.地理研究,13(2):11-19.
    高抒,1985.江苏粉砂淤泥质海岸剖面塑造与动态.南京大学研究生毕业论文.
    高抒,朱大奎,1988.江苏淤泥质海岸剖面的初步研究.南京大学学报(自然科学),24(1):75-84.
    高抒,Collins,M.1998.沉积物粒径趋势与海洋沉积动力学.中国科学基金,4:241-246.
    黄海军,2002.苏北陆岸岸滩主要潮沟近期变迁的遥感解译.海岸工程,3:24-28.
    胡明毅,贺萍,2002.潮坪风暴潮沉积特征及其研究意义.地球科学进展,17(3):391-395.
    季子修,朱季文,杨桂山,1994.海平面上升对长江三角洲附近沿海潮滩和湿地的影响.海洋与湖沼,25(6):582-590.
    江苏省地方志编纂委员会,江苏省志·海涂开发志.南京:江苏科学技术出版社,1995,14-30.
    江苏省海岸带和海涂资源综合调查报告.北京:海洋出版社,1986,40~43,224~225.
    江苏省海岛资源综合调查领导小组办公室.江苏省海岛资源综合调查报告.南京:科学技术文献出版社,1996,61-111.
    贾建军,高抒,薛允传,2002.图解法与矩法沉积物粒度参数的对比.海洋与湖沼,33(6):576-582.
    蒋国俊,1995.潮滩悬沙粒度参数的动力沉积学意义.海洋与湖沼,26(1):90-97.
    蒋国俊,陈吉余,姚炎明,1998.舟山群岛峡道潮滩动力沉积特性.海洋学报,20(2):139-147.
    柯贤坤,1985.江苏滨海平原全新世环境变迁.南京大学研究生毕业论文.
    李从先,张桂甲,李铁松,1995.潮坪沉积的韵律性与作用因素的周期性.沉积学报,13:71-78.
    李从先,王平,范代读,李铁松,1999.潮汐沉积率与沉积间断.海洋地质与第四纪地质,19(2):11-18.
    李伯根,谢饮春,夏小明,李炎,1994.瓯江口南岸潮滩沉积动力过程的探讨.海洋学报,16(2):86-94.
    李恒鹏,杨桂山,2001.基于GIS的淤泥质潮滩侵蚀堆积空间分析.地理学报,56(3):278-286.
    李铁松,李从先,1995.潮坪沉积韵律与沉积间断。同济大学学报,23(1):53-58.
    李炎,谢钦春,1993.杭州湾庵东浅滩地貌演变规律.东海海洋,11(2):25-33.
    樊社军,虞志英,金谬,1997(a).淤泥质岸滩侵蚀堆积动力机制及剖面模式—以连云港地区淤泥质海岸为例Ⅰ.海洋学报,19(3):66-76.
    樊社军,虞志英,金谬,1997(b).淤泥质岸滩侵蚀堆积动力机制及剖面模式—以连云港地区淤泥质海岸为例Ⅱ.海洋学报,19(3):77-85.
    任美锷,张忍顺,杨巨海,章大初,1983.风暴潮对淤泥质海岸的影响—以江苏省淤泥质海岸为例.海洋地质与第四纪地质,3(4):1-24.
    任美锷,张忍顺,杨巨海,1984.江苏王港地区淤泥质潮滩的沉积作用.海洋通报,1984,3(1):40-51.
    邵虚生,严钦尚,1982.上海潮坪沉积.地理学报,37(3):241-251.
    邵虚生,1988.潮沟成因类型及其影响因素的探讨.地理学报,43(1):35-43.
    沈焕庭,潘定安.长江河口最大浑浊带.海洋出版社,北京,2001,62-90.
    时钟,陈吉余,1995.盐沼的侵蚀、堆积和沉积动力.地理学报,50(6):562-567.
    时钟,陈吉余,虞志英,1996.中国淤泥质潮滩沉积研究的进展.地球科学进展,11(6):555-562.
    时钟,1997.海岸盐沼植被单向恒定水流流速剖面.泥沙研究,3:82-88.
    时钟,杨世伦,缪莘,1998.海岸盐沼泥沙过程现场试验研究.泥沙研究,4:28-35.
    孙效功,赵海虹,崔承琦,2001.黄河三角洲潮滩潮沟体系的分维特征.海洋与湖沼,32(1):74-80.
    王建,肖家仪,伯春广,朱小华,汪阳,孙爱梅,2000.江苏中部潮滩沉积的季节性判别.海洋地质与第四纪地质,20(1):31-34.
    汪亚平,陈君,陈涛,1997.潮沟流速与潮位变化率的回归分析.南京师大学报(自然科学版),20(3):85-89.
    汪亚平,张忍顺,高抒,1998.论盐沼-潮沟系统的地貌动力响应.科学通报,43(21):2315-2320.
    王颖,1963.渤海湾西南部岸滩特征.1963年海洋湖沼学术会议论文摘要汇编.
    王颖,朱大奎,1994.海岸地貌学.高等教育出版社,北京.
    吴绍镇,彭培相,1994.互花米草试种及其在江堤闸浦护岸防塌中的应用.东海海洋,12(3):70-72.
    夏小明,谢钦春,李炎,李伯根,1997.港湾淤泥质潮滩的周期变化.海洋学报,19(4):99-108.
    谢钦春,李伯根,夏小明,李炎,Weering,T.C.E.V and Berger,G.W.,1994.浙江瓯江口南岸潮滩相带的时空变化.地理学报,49(6):509-515.
    徐元,王宝灿,章可奇,1994.上海淤泥质潮滩潮锋作用及其形成机制初步探讨.地理研究,13(3):60-68
    徐元,王宝灿,1995.淤泥质潮滩季节性冲淤状态的探讨—以杭州湾北岸张家库潮滩为例.华东师范大学学报(自然科学版),4:88-96.
    徐元,王宝灿,1996.淤泥质潮滩表层沉积物稳定性时空变化的探讨.海洋学报,18(6):50-60.
    徐元,王宝灿,1998.淤泥质潮滩潮锋的形成机制及其作用.海洋与湖沼,29(2):148-155.
    徐志明,1985.崇明岛东部潮滩沉积.海洋与湖沼,16(3):231-238.
    于东生,天淳,严以新,2004.长江口悬沙含量垂向分布数值模拟.水利水运工程学报,1:35-40.
    杨桂山,施雅风,季子修,2002.江苏淤泥质潮滩对海平面变化的形态响应.地理学报,57(1):76-84.
    杨巨海,1982.江苏省大丰县王港附近淤泥质海滩的沉积规律.南京大学研究生毕业论文.
    杨世伦,1991.风浪在开敞潮滩短期冲淤演变中的作用—以南汇东滩为例.海洋科学,2:59-63.
    杨世伦,徐海根,1992.长兴、横沙两岛潮滩沉积物德粒度概率及其分析.海洋科学,1:60-63.
    杨世伦,徐海根,1994(a).长江口长兴、横沙岛潮滩沉积特征及其影响机制.地理学报,49(5):449-456.
    杨世伦,陈吉余,1994(b).试论植物在潮滩发育演变中的作用.海洋与湖沼,25(6):631-635.
    杨世伦,1997.长江三角洲潮滩季节性冲淤循环的多因子分析.地理学报,52(2):123-130.
    杨世伦,谢文辉,朱骏,赵庆英,2001(a).大河口潮滩地貌动力过程的研究—以长江口为例.地理学与国土研究,17(3):44-48.
    杨世伦,时钟,赵庆英,2001(b).长江口潮沼植物对动力沉积过程的影响.海洋学报,23(4):75-80.
    虞志英,张勇,金谬,1994.江苏北部开敞淤泥质海岸的侵蚀过程及防护.地理学报,49(2):149-157.
    张国栋,王益友,朱静昌,董荣鑫,吴萍,1984.苏北弶港现代潮坪沉积.沉积学报,2(2):39-51.
    张忍顺,1986.江苏省淤泥质潮滩的潮流特征及悬移质沉积过程.海洋与湖沼,17(3):235-245.
    张忍顺,1987.潮滩沉积动力学研究概况.黄渤海海洋,5(2):71-79.
    张忍顺,1995.渤海湾淤泥质海岸潮汐汊道的发育过程.地理学报,50(6):506-513.
    张忍顺,王雪瑜,1991.江苏省淤泥质海岸潮沟系统.地理学报,46(2):195-206.
    章可奇,金庆祥,王宝灿,1994.杭州湾北岸张家库潮滩动态系统的频谱分析.海洋与湖沼,25(4):446-451.
    朱俊,杨世伦,谢文辉,赵庆英,2001.潮间带短期冲淤过程的横向差异及其定量表达.地理研究,423-430.
    朱大奎,许廷冠,1982.江苏中部海岸发育和开发利用问题.南京大学学报(自然科学版),3:779-818.
    朱大奎,高抒,1985.潮滩地貌与沉积的数学模型.海洋通报,4(5):15-21.
    朱大奎,1986.中国海涂资源的开发利用问题.地理科学,6(1):34-39.
    朱大奎,柯贤坤,高抒,1987.江苏潮滩沉积研究.黄渤海海洋,4(3):19-28.
    庄武艺,J.谢佩尔,1991.海草对潮滩沉积作用的影响.海洋学报,13(2):230-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700