碱激发矿渣胶凝材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱激发矿渣胶凝材料跟传统水泥相比,具有较高的强度,较低的水化热,以及较好的快硬性、抗腐蚀性、抗冻性、护筋性等优异的性能,并且生产工艺简单、投资少、能耗低、污染小、矿渣的利用率高,目前成为胶凝材料研究领域的热点。
     本论文研究利用高炉矿渣制备胶凝材料,选取了氢氧化钠、碳酸钠、硫酸钠、硅酸钠以及氢氧化钠和硅酸钠的混合物作为激发剂,并研究了激发剂的掺入量、水固比、养护时间和养护温度、矿渣微粉的粒度等试验参数对胶凝材料的水化率、密度、抗压强度、抗折强度、凝结时间、安定性和抗硫酸腐蚀性等性能的影响。
     使用XRD、XRF、SEM和TEM等检测手段对矿渣的相成分、化学成分、微观形貌进行了表征。对矿渣的密度、粒度、粉磨性能进行了检测。依照国标文件对矿渣的碱性系数、质量系数、活性系数、水硬系数及放射性进行了分析。结果表明,矿渣的主晶相为玻璃体,并含有少量钙铝黄长石结晶相,能够满足制备胶凝材料的要求。
     使用比表面积为663.40 m2/kg的矿渣,以掺入量为6 wt.%的硅酸钠为激发剂,0.25的水固比制备出胶凝材料浆体,在温度为20±1℃,相对湿度为75±5%,压力为1atm的养护箱中进行养护,制得的胶凝材料3天、28天抗压强度和抗折强度分别为37.43MPa、57.22MPa,6.10MPa、7.59MPa,密度为2.31g/cm3,初凝时间和终凝时间分别为52分钟和111分钟,安定性及抗硫酸腐蚀性均较好。
     激发剂的种类及其掺入量对胶凝材料的性能有很大影响。硅酸钠作为激发剂,与氢氧化钠、碳酸钠和硫酸钠等作为激发剂相比,能够获得较高的28天抗压强度和抗折强度,较高的水化率、密度、抗硫酸腐蚀性和安定性。氢氧化钠作为激发剂能够获得较短的凝结时间,和较高的3天抗压、抗折强度。碱激发矿渣胶凝材料的水化反应并不完全,产物的主晶相为水化硅酸钙凝胶和未水化的玻璃态矿渣。
     水固比越大,硅酸钠激发矿渣胶凝材料的密度越小,凝结时间越长,抗压强度和抗折强度越低。
     随着养护时间的增长,硅酸钠激发矿渣胶凝材料的水化率、密度、抗压强度和抗折强度均提高;提高养护温度有利于3天抗压强度和密度的提高。
     矿渣的粒度越小,硅酸钠激发矿渣胶凝材料的凝结时间越短;矿渣粒度为0.05mm~0.074mm时,有利于提高胶凝材料的抗压强度和密度。
Alkali-activated slag cementitious material has become a research hotspot of cementitious materials field at present, due to its excellent performances compared with cement, such as higher intensity, lower hydration heat, and higher performances of rapid hardening, corrosion resistance, frost resistance and reinforcing steel bar protection, coupled with its production of simple process, low investment, low energy consumption, little pollution, high utilization of slag and so on.
     Cementitious material was prepared by using blast-furnace slag as raw material, as well as sodium hydroxide, sodium carbonate, sodium sulfate, sodium silicate, and a mixture of sodium hydroxide and sodium silicate as activators. Effects of activator content, water-solid ratio, curing time, temperature, and granularity of slag powder on the properties of cementitious material such as hydration degree, density, compressive and flexural strength, setting time, stability and sulfuric acid corrosion resistance, etc. were studied.
     Phase composition, chemical composition and microstructure of blast-furnace slag were characterized by using XRD, XRF, SEM and TEM. Density, granularity and grinding performance of slag were studied. Also basicity factor, quality coefficient, activity coefficient, hydraulic coefficient and radiation of slag were analyzed according to the Chinese national standard documents. The results showed that the slag was mainly composed of glassy materials with a small amount of Gehlenite, which could meet the requirement of preparation of cementitious material.
     When sodium silicate content was 8 wt.%and water-solid ratio was 0.25, cementitious material prepared from slag specific surface area of 663.40 m2/kg, cured at a atmospheric cabinet of temperature 20±1℃and relative humidity 5±5%, developed 37.43MPa and 6.10MPa compressive and flexural strength at 3 days, 57.22MPa and 7.59MPa at 28 days. Moreover, the density was 2.31g/cm3, the initial and final setting time was 52 minutes 111 minutes respectively, the stability and sulfur resistant was relatively good.
     The type and content of activators affected the performance of cementitious material obviously. Cementitious material using sodium silicate as activator obtained higher 28 days compressive and flexural strength, as well as higher hydration degree, density, sulfuric acid corrosion resistance and stability compared with sodium hydroxide, sodium carbonate and sodium sulfate. Using sodium hydroxide as activator obtained a relatively shorter setting time and higher 3 days compressive and flexural strength. XRD patterns showed that the produced cementitious material was mainly calcium silicate hydrates gel (CSH gel) mixed with un-hydrated slag, which indicated that the hydration reaction of the slag was not fully completed.
     To the sodium silicate-activated slag cementitious material, the higher the water-solid ratio, the smaller the density, and, the longer the setting time, the lower the compressive and flexural strength.
     With the increase of curing time, the hydration degree, density, compressive and flexural strength of sodium silicate-activated slag cementitious material all represented enhancement respectively.
     High curing temperature was proved to be effective in improving the 3 days compressive strength and density of sodium silicate-activated slag cementitious material.
     The results also showed that, the smaller the granularity of the slag, the shorter the setting time of the sodium silicate-activated slag cementitious material. Granularity of 0.05mm-0.074mm was found to be more suitable for the compressive strength and density of cementitious materials when compared to any other chosen granularity.
引文
[1]汤鹏.浅谈胶凝材料的发展和应用[J].工会博览.2009,(7):180
    [2]窦林萍.高掺量碱激发矿渣水泥的研究[J].山西建筑.2003,(08):102-103
    [3]高飞.碱矿渣胶凝材料的研究与发展[J].丹东纺专学报.2005,(01):25-27
    [4]杨南如.何谓一类新的胶凝材料[J].中国水泥.2005,(10):18-21
    [5]王恩,倪文,刘凤梅.几种工业废渣的碱激发效果研究[J].矿产综合利用.2006,(5):35-39
    [6]王聪.碱激发胶凝材料的性能研究[D].哈尔滨:哈尔滨工业大学,2006:
    [7]杨建军,徐小彬,殷素红等.粉煤灰综合利用新途径的探讨[J].材料研究与应用.2008,2(4):75-77
    [8]王鸿灵,李海红,冯治中等.偏高岭石基土聚水泥的研究[J].硅酸盐通报.2005,24(2):113-116
    [9]柯昌君.粉煤灰蒸压制品中长石的激发机理[J].硅酸盐学报.2006,34(8):1011-1016
    [10]黄文巧.碱矿渣的复合活性激发剂试验研究[J].混凝士.2006,(2):66-69
    [11]代奎,艾池.矿渣-粉煤灰混合胶凝材料的水化及硬化实验[J].大庆石油学院学报.2008,32(3):43-45
    [12]贺效一.碱矿渣-偏高岭土复合胶凝材料初步研究[D].[硕士学位论文].浙江:浙江大学,2006
    [13]罗时政.用于水泥和混凝土中的高炉矿渣微粉[J].山东建材.2004,25(1):36-37
    [14]孙铭海.改造高产高细矿渣磨要注意的有关问题[J].江苏建材.2008,(4):6-8
    [15]史才军,Krivenko P V, Roy D.碱-激发水泥和混凝土[M].北京:化学工业出版社,2008:1-3
    [16]Glukhovsky V D, Rostovskaja G S, Rumyna G V. High strength slag-alkaline cement[C]. In: Communication of the 7th International Congress on the Chemistry of Cement.1980:1-3
    [17]吴其胜.碱矿渣水泥的研究与发展[J].中国建材科技.1999,(01):1-4
    [18]Jian-xiong C, Han-bin C, Pei X, et al. A study on complex alkali-slag environmental concerte[J]. International Workshop on Sustainable Development and Concrete Technology.299-306
    [19]Antonio A,Melo Neto, Maria A Cincotto, et al. Drying and autogenous shrinkage of pastes and mortars with activated slag cement [J]. Cement and Concrete Research.2008,38(4):565-574
    [20]Vladimir zivica. Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Construction and Building Materials.2007, (21):1463-1469
    [21]闫文涛,郑雯.碱矿渣水泥的热激发研究[J].水泥技术.2008,(01):27-30
    [22]J. Toman, R. Cerny. Alkali Activated Slag as Cement Replacement in High-Temperature Applications [EB/OL].:http://workshop. cvut. cz/2007/download. php?id=MTI009,2007-2-5
    [23]潘庆林.粒化高炉矿渣的水化机理探讨[J].水泥.2004,(09):6-10
    [24]张耀君,赵永林,李海宏等.水玻璃激发矿渣制备纳米地质聚合物研究[J].非金属矿.2009,(01):39-44
    [25]Roy DM. Alkali-activated cements Opportunities and challenges[J]. Cement and Concrete Research.1999,29(2):249-254
    [26]杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J].硅酸盐学报.1996,(02):209-215
    [27]杨南如.碱胶凝材料形成的物理化学基础(Ⅱ)[J].硅酸盐学报.1996,(04):459-465
    [28]李卫国,孙生霞,王伟权.矿渣微粉的生产工艺及利用[J].水泥科技.2006,(3):29-71
    [29]李宇,孙恒虎,赵永宏等.水淬渣的胶凝活性及其形成机理[J].过程工程学报.2007,(01):79-84
    [30]蔡雪军,王崇英,周启胜等.冶金渣综合利用与节能环保[J].节能与环保.2009,(4):56-57
    [31]沈燕华,张树青.宝钢高炉水淬矿渣水硬性的分析[J].宝钢技术.2007,(06):39-42
    [32]江建民,胡红燕,孙勤梧.矿渣和废旧混凝土的再生利用[J].建筑工人.2008,(11):14-15
    [33]刘晨,颜碧兰,江丽珍等.矿渣硅酸盐水泥按矿渣掺量分类的研究[J].建材发展导向.2006,06(4):45-48
    [34]纵振海,肖其中,张卫平.碱矿渣水泥在道路工程中的应用[J].水泥科技.2005,(4):40-41
    [35]李迁.磨细矿渣在高性能混凝土中的应用研究[J].辽宁大学学报(自然科学版).2009,(04):322-325
    [36]任素梅,徐洪胜,薛文华等.碱矿渣粉煤灰免烧砖的试制[J].硅酸盐建筑制品.1995,(03):36-38
    [37]胡俊鸽,赵小燕,张东丽.高炉渣资源化新技术的发展[J].鞍钢技术.2009,(04):11-15+21
    [38]冰三.石膏板和矿渣石膏板[J].混凝土.1984,(01):35-42
    [39]张洋.矿渣刨花板和矿渣纤维板的制造工艺应用前景[J].林产工业.1992,(4):20-21
    [40]杜念娟,徐美君.浅谈矿渣微晶玻璃[J].玻璃.2009,(02):43-49
    [41]H. Y. Liu. H. X. Lu, D. L. Chen, et al. Preparation and properties of glass-ceramics derived from blast-furnace slag by a ceramic-sintering process[J]. Ceramics International,2009,35(8):3181-3184
    [42]吴宏富.我国矿渣微粉加工利用新进展[J].硫磷设计与粉体工程.2009,(04):39-41+52
    [43]佚名.中国2010年钢产量或将温和增长至6.08亿t[J].金属世界.2009,(06):14
    [44]B. Das, S. Prakash, P. S. R.Reddy, V. N. Misra. An overview of utilization of slag and sludge from steel industries Resources[J]. Conservation and Recycling.2007,50(01):40-57
    [45]Richard L. Humphrey. The inspection and testing of cements[J]. Journal of the Franklin Institute.1901, 152(06):441-461
    [46]Weiguo S, Mingkai Z, Liqi X, et al. Morphology Difference between the Alkali Activated Cement and Portland Cement Paste on Multi-scale[J]. Journal of Wuhan University of Technology.2008,23(6):923-926
    [47]彭毅,孙欣林.水泥厂主要有害气体及其防治[J].水泥工程.2008,(05):6-10
    [48]GB 4915-2004.水泥工业大气污染物排放标准[S].北京:中国标准出版社,2004:
    [49]苏达根,林少敏.水泥窑铅镉等重金属的污染及防治[J].硅酸盐学报.2007,35(5):558-562
    [50]2009年全国水泥产量[EB/OL].:中国数字水泥网.2010-1-11
    [51]汪澜.水泥生产企业CO2排放量的计算[J].中国水泥.2009,(11):21-22
    [52]丁奇生,王亚丽,崔素萍等.水泥的原料与燃料.北京:化学工业出版社,2009:1-31
    [53]佚名.我国石灰石资源只有30a可采年限[J].矿业快报.2008,(05):9
    [54]张人为.用循环经济理念大力推广水泥窑纯低温余热发电走资源节约型产业发展道路[EB/OL].http://www. bmlink. com/newslist/55951/,2006-5-21
    [55]许雯.国家节能减排下的建材行业分析[EB/OL].:http://www.topcj.com/html/3/HYYJ/20080513/76954 2008.
    [56]高长明.加快发展循环经济构建节约型水泥工业体系——兼析我国水泥工业的“三高”问题[J].中国建材.2005,(12):33-35
    [57]潘庆林,孙恒虎,吴绍军.粒化高炉矿渣的微观结构和物相分析[J].水泥.2004,(5):4-7
    [58]张西玲,姚爱玲.矿渣的活性激发技术及机理的研究进展[J].萍乡高等专科学校学报.2007,(3): 12-16
    [59]GB/T 203-2008.用于水泥中的粒化高炉矿渣[S].北京:中国标准出版社,2008:
    [60]GB 566-2001.建筑材料放射性核素限量[S].北京:中国标准出版社,2002:
    [61]GB/T 17671—1985.水泥胶砂强度检验方法[S].北京:中国标准出版社,1985:
    [62]GB/T 1346-2001.水泥标准稠度用水量、凝结时间、安定性检测方法[S].北京:中国标准出版社,2001:
    [63]周焕海,唐明述.碱矿渣水泥的抗硫酸盐腐蚀性[J].混凝土与水泥制品.1992,(03):11-14
    [64]GBT 208-1994.水泥密度测定方法[s].北京:中国标准出版社,1994:
    [65]吴其胜,李玉寿,徐风广等.固体碱激发制备525号碱矿渣水泥的研究[J],新世纪水泥导报.1999,(5):14-16
    [66]郭夫超,潘钢华,刘丽娟.碱激发胶凝材料基稻壳粉复合材料制备技术研究[J].散装水泥.2006,(3):65-67
    [67]王峰,张耀君,宋强等.NaOH碱激发矿渣地质聚合物的研究[J].非金属矿.2008,31(03):9-12
    [68]陈冀渝.用高效增强剂改善矿渣水泥强度特性[J].四川水泥.2008,(06):39-40
    [69]朱洪波,王培铭,矿渣粉.高钙灰及其改性材料对水泥早期水化进程的影响[J].硅酸盐学报.2008,36(04):470-475
    [70]王红喜,张高展,丁庆军.碱激发-工业废渣双液注浆材料性能研究[J].建筑材料学报.2007,10(03):374-378
    [71]陆平.水泥材料科学导论.上海:同济大学出版社,1991:12-35
    [72]孙家瑛,诸培南,吴初航.矿渣在碱性溶液激发下的水化机理探讨[J].硅酸盐通报1988,(6):16-24
    [73]孔祥文,王丹,隋智通.矿渣胶凝材料的活化机理及高效激发剂[J].中国资源综合利用.2004,(6):22-29
    [74]Kondo R,Ohsawa S. Studies on a method to determine the amount of granulated blast furnace slag and a rate of hydration of slag in cements[C],5th ICCC,1968.225-262
    [75]I. V. Belitsky, A. Sakata, T. Kado, et al. KINETICS OF THE HYDRATION OF SLAG IN THE SLAG-ALKALINE CEMENT[C]. Proceedings of the 3rd Beijing International Symposium on Cement and Concrete,1993.1028-1031
    [76]沈威.水泥工艺学[M].北京:中国建筑工业出版社,]986:127-129
    [77]马保国,肖君,王凯.矿渣水泥混凝士抗酸雨性能的研究[J].混凝土.2009,(04):5-7+13
    [78]徐迅,卢忠远.超细碳酸钙对水泥强度性能和微观结构的影响研究[J].山东建材.2008,(4):39-42
    [79]Cengiz Duran Atis, Cahit Bilim, Ozlem Celik, et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar [J]. Construction and Building Materials.2009,(23):548-555
    [80]周焕海,唐明述,吴学权等.碱—矿渣水泥浆体的孔结构和强度[J].硅酸盐通报.1994,(3):15-19
    [81]封孝信,冯乃谦.碱在C-S-H凝胶中的存在形式[J].建筑材料学报.2004,7(4):1-7
    [82]沈威.水泥工艺学[M].北京:中国建筑工业出版社,1986:124-129
    [83]郑娟荣,姚振亚,刘丽娜.碱激发胶凝材料化学收缩或膨胀的试验研究[J].硅酸盐通报,2009,28(1):49-53
    [84]张树青,燕华.粒化水淬高炉矿渣自身水硬性研究[J].粉煤灰综合利用.2008,(2):30-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700