锂渣复合渣混凝土研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺加活性矿物掺合料是制备高性能混凝土的必要条件之一。在混凝土中掺加矿物微粉,不仅具有较好的经济效益,而且还能够改善混凝土的工作性能、力学性能和耐久性。矿物掺合料是高性能混凝土中不可缺少的组分,粉煤灰、粒化高炉矿渣和硅灰是我国常用的矿物细掺料,其在混凝土中的研究应用已经很多。研究如何在混凝土中充分利用这些废渣、废料以扩大矿物掺料的来源成为当前亟待解决的问题。
     本课题以超磨细锂渣为主要矿物掺合料,采用“双掺”的技术,研究单掺锂渣的混凝土(LC)、复掺锂渣与硅灰的混凝土(LSC)、复掺锂渣与粉煤灰的混凝土(LFC)、复掺锂渣与矿渣的混凝土(LSC)的工作性能、力学性能及耐久性(抗Cl~-渗透性、抗碳化性)。
     通过上述工作得到如下结果:
     ①锂渣是一种具有较高潜在火山灰活性的矿物掺合料,具有良好的易磨性,可以通过粉磨对其粉体粒子的表面进行改性,增大其活性。原状锂渣经34min磨细后,可制成比表面积可达14000 cm~2/g超磨细锂渣。将其掺入混凝土中对其工作性改善越明显。但锂渣粉磨后期,比表面积增长较慢,单纯的增加粉磨时间并不可取,因此在制备混凝土时,选择掺入磨细34min的锂渣。混凝土中胶结材掺量以600kg/m~3到650 kg/m~3之间为宜;
     ②掺入超磨细锂渣可以配制出工作性能优良的混凝土。锂渣在混凝土中的最佳单掺量为15%。固定锂渣掺量15%后,硅灰最佳复掺量为5%,粉煤灰最佳复掺量为30%,矿渣最佳复掺量为25%;
     ③单掺入锂渣,混凝土3d强度随其掺量的增加逐渐降低,但降幅不明显。掺量小于15%时,混凝土初期和后期强度均优于空白混凝土。综合各龄期混凝土抗压强度,锂渣在配制混凝土中的最优掺量为15%,此掺量下除初期3d强度外,各龄期强度均优于空白混凝土;
     ④硅灰具有明显的增强效应,其与锂渣复掺复合效应良好。在固定掺入15%超磨细锂渣后,硅灰的最佳复掺量为5%。早期3d、28d以及后期的90d强度,复掺硅灰组抗压强度较对比单掺组增长都比较明显。超磨细锂渣与粉煤灰及矿渣同样具有良好的复合效应。固定超磨细锂渣掺量15%后,粉煤灰的最佳复掺量为20%,矿渣的最佳复掺量为15%。在混凝土后期强度方面,复掺组均优于单掺锂渣组;
     ⑤由扫描电镜实验和X射线衍射实验可知,掺入超磨细锂渣等掺合料,混凝土中的水化产物C-S-H凝胶增多,Ca(OH)_2含量减少,且晶粒细化,同时由于磨细锂渣以及其它矿物细掺料的紧密堆积作用,可以很好的改善混凝土密实性,从而提高其强度;
     ⑥混凝土中单掺入超磨细锂渣可以有效地改善其抗氯离子渗透性能,复掺入锂渣和硅灰,可以大幅的改善混凝土抗氯离子渗透性能,其氯离子扩散系数降幅达60%以上,分别复掺入粉煤灰和矿渣在56d时仍能有效地改善混凝土抗氯离子渗透性能;
     ⑦单掺入超磨细锂渣混凝土56d内基本无碳化,胶结材掺量对混凝土碳化影响不大。固定锂渣掺量为15%的前提下,复掺入硅灰组混凝土56d基本无碳化。
It is one of the requirements of preparing the high-performance concrete to mix with active mineral admixture.To mix in the concrete with the mineral powder does not only have better economic benefits,but also can improve the workability,mechanical properties and durability of the concrete.Mineral admixture is indispensable component of the high-performance concrete.Fly ash,granulated blast furnace slay and silica fume are commonly used as the mineral admixture in China,and have been already widely applied in concrete.How to fully utilize the waste residue,waste material has become the problem to be solved urgently at present in order to expand source of mineral admixture in the concrete.
     This subject regards super fine lithium slag as the main mineral and adopt the technology of "double-mixing" to study the workability,mechanical properties and durability(anti-Cl~--permeability,anti-carbonization) of the concrete mixing lithium slag only(LC),mixing lithium slag and silica fume(LSC),mixing lithium slag and fly ash (LFC),mixing lithium slag and slag.
     Results and conclusion of this thesis are as follows:
     ①The lithium slag is a kind of mineral admixture with higher potential pozzolanic activity and has good grindability.Modifying the surface of the powder through fine-grinding can increase its activity.Original state lithium slag can be made to super fine powder with specific surface area up to 14000 cm~2/g after grinding for 34min. Mixing it into concrete can obviously improve the workability of the concrete.But the specific surface area of the lithium slag increases slowly at the later stage of grinding, so it is inadvisable to simplely increase grinding time and mixing the lithium slag ground for 34min is advised while preparing concrete.The mixing amount of glued material is between 650 kg/m~3 with 600kg/m~3 in the concrete;
     ②Mixing super fine lithium slag can produce the concrete with good workability. The optimum single-mix amount in the concrete is 15%.With fixing the mix amount of lithium slag to 15%,the optimum double-mix amount of microsilica,fly ash and slag are 5%,30%and 25%respectly.
     ③With mixing lithium slag only,the 3d strenth of concrete reduces with increase of mix amount gradually,but decreasing amplitude is not obvious.When the mix amount is less than 15%,the initial strength and later strength are superior than that of the blank concrete.From the compressive strengths of the concrete in different age,the optimum mix amount of lithium slag in concrete is 15%.With the optimum mix amount, the strength at every age is superior than that of the blank concrete besides initial 3d strength.
     ④Microsilica has obvious enhancement effect,and mixing it with the lithium slag can get good compound effect.With fixing the amount of super fine lithium slag to 15%, the optimum double-mix amount of microsilica is 5%.The increase of compressive strength in 3d,28d and 90d of the concrete double-mixing with microsilaca is more abvious than that of the concrete single-mixing with lithium slag.Mixing lithium slag with fly ash or slag can also get good compound effect.When fixing the amount of super-fine lithium slag to 15%,the optimum double-mix amounts of fly ash and slag are 20%and 15%respectly.In the respect of later strength,the concrete doubel-mixing is superior than the concrete single-mixing lithium slag;
     ⑤From the results of SEM and XRD,it was found that after mixing mineral admixtures such as lithium slag,etc.,the amount of C-S-H gel increased in the concrete, the amount of Ca(OH)_2 reduced,and grain refinement took place.Meanwhile,because of the compact stacking interaction of the lithium slag and other mineral admixtures,the density of the concrete can be improved and the strength of the conrete can increase;
     ⑥The ability to resist chloride ion penetration of concrete can be improved effectively by mixing super-fine lithium slag powder.Double-mixing lithium slag and microsilica can improve the ability to resist chloride ion penetration of the concrete by a wide margin,and the amplitude of the chloride diffusion coeddicient is more than 60%. The ability to resist chloride ion penetration of the concrete double-mixing with fly ash and slag respectly can also be improved effectively in 56d;
     ⑦No carbonization took place in 56d concrete single-mixing with super-fine lithium slag.The amount of glued material has little effect on carbonization of concrete. With the amount of lithium slag fixed to 15%,no carbonization took place in the 56d concrete double-mixing with microsilica.
引文
[1]姜涵.胡海波等.重庆地区高炉矿渣建材资源化现状调查研究[J].矿渣微粉研究和应用论文集,2003.1:73-75.
    [2]张雄.吴科如.矿渣微粉作用机理及其关键技术[J].矿渣微粉研究和应用论文集.2003.1:1-8.
    [3]陈慧娟.碱激发矿渣水泥混凝土的试验研究[J].建筑技术开发,1997.2(24):21-22.
    [4]朱稚石.高炉矿渣微粉混凝土研究、配置和应用的小结[J].矿渣微粉[1]周新刚编著.混凝土结构的耐久性与损伤防治,中国建材出版社,1999年9月.第一版.
    [5]洪定海.大掺量矿渣微粉高性能混凝土国外应用范例[J].矿渣微粉研究和应用论文集,2003.1:270-274.
    [6]董金道.碱渣胶结材和碱渣混凝土[J].混凝土1991(5):41-43.
    [7]吕晓姝.贺凤伟.碱矿渣水泥的理论基础[J].本溪冶金高等专科学校学报.2002.12,Vol.3No 4:7-9
    [8]Alkaline Cements And Concrete[J].Vol No.1.Vol No.2.First international conference.1994.
    [9]常彦博.李勉正.关于混凝土耐久性问题的探讨[J].西部探矿工程.1999年5月.第11卷:17-18.
    [10]王嫒俐.姚燕.重点工程混凝土耐久性的研究与工程应用.中国建材工业出版社.2001.1.
    [11]刘秉京.混凝土技术.北京.人民交通出版社.1998.
    [12]George Somerville.Residual Service Life of Concrete Structure[J].IABSE Reports,Vol.671993,Copenhagen.
    [13]邢林生.坝工混凝土工程碳化机理及实例分析[J].大坝与安全.2003.2:11-15.
    [14]卢安琪.黄国平.单国良.港工硅粉混凝土耐久性研究[J].水利水运科学研究.1993.12(4):355-362.
    [15]颜承越.混凝土的碳化腐蚀与验评[J].粉煤灰综合利用.1996(3):69-74.
    [16]Fischer KP.Corrosion of steel in concrete some fundamental aspect of concrete with added silica[J].Corrosion,1984.40(7).
    [17]Ⅰ.Skalny.Materials Science of Concrete Ⅱ.The American Ceramic Society.USA.1991.
    [18]蒋林华.M.H.Zhang.V.M.Malhotra.水泥基材料氯离子渗透扩散性测试技术[J].建筑材料学报,2002.6,Vol.5 No.2:147-154.
    [19]陈更新.李纹纹.王培铭.氯离子在水泥砂浆中的渗透深度和浓度分布[J].同济大学学报.1996.6,Vol.24 No.3:33-38.
    [20]朱雅仙.罗德宽.电化学脱盐对钢筋混凝土性能的影响[J].水运工程.2002.5(5):8-12.
    [21]Donald Hudson.The Norcuretm Method[J].Construction Repair.1995(7/8):24-27.
    [22]E.E.Velivasakis et al.Halting Corrosion by Chloride Extraction and Real- kalization[J].Concrete International,1997(12).
    [23]K.Armstrong et al.Desalination of Victoria Pier.Jersey[J].Construction Repair,1996(7/8):10-13.
    [24]冯乃谦.氯离子渗透与高性能混凝土[J].施工技术.1995(8):44-45.
    [25][美]环境科学动态.余锡荪编译.《美国对酸雨的研究动向》[J].1982(19).译自EPA Jan.7.1981 No.10:6-7.
    [26]吴建成.低水泥用量配制高性能混凝土的研究[J].重庆大学硕士研究生毕业论文.2001.
    [27]Proceeding of the Second International Symposium on the Deterioration of Building Stone[J].Athens.Greece.September 27-October 1,1977.
    [28]International Meeting on the Restoration of the Erechthion[J].Athens.Greece,December 8-9,1977.
    [29]Yocom.J.E.Air Pollution Damage to Buildings on the Acropolis[J].Air Poll.Control.Assoc.29,333-338.
    [30]Long L A.G D Henderson,F R Montgomery.Why assess the properties of near-surface concrete?[J].Construction and Building Materials,2001,15:156-161.
    [31][苏]巴布什金等编著.蒲心诚.曹建华译.硅酸盐热力学[J].中国建筑工业出版社,1983.4.
    [32]#12
    [33]吴中伟,廉慧珍著.高性能混凝土[J].中国铁道出版社1999.9,第一版.
    [34][加]E.Douglas等著.高平译.碱激活磨细粒化高炉矿渣混凝土的初步研究[J].cement and Concrete Research.1991,Vol.21,No.1:101-108.
    [35]陈翠红.王元.郭佩玲.高性能碱矿渣混凝土的研究[J].辽宁省建设科学研究院学报:24-26.
    [36]张玉敏.王铁成.人工海水对混凝土侵蚀性的研究[J].混凝土,2001.11:48-50.
    [37]建筑材料试验手册[Z].建材出版社.1999.5.
    [38]蒋家奋.矿渣微粉在水泥混凝土中应用的概述[C].矿渣微粉研究和应用论文集.2003.1:21-26.
    [39]张雄.吴科如.应用复合胶凝效应数据库网络模型设计开发粉煤灰复合胶凝材料[C].粉煤灰混凝土现代技术论文集.1992.80.
    [40]徐楚韶等.高钛型高炉渣的活性研究[J].重庆大学学报.1988(13):70-75.
    [4l]王冲.蒲心诚.超细矿物掺和料对新拌混凝土的增塑减水机理分析.矿渣微粉研究和应用论文集.2003.1:95-99.
    [42]吴达华.吴永革.林蓉.高炉水淬矿渣结构特性及水化机理[J].石油钻探技术,1997.3Vol.25 No.1:31-34.
    [43]陈友治.蒲心诚.张华.新型碱矿渣混凝土技术[J].建筑技术,1998(30)1:44-46.
    [44]Glukhovskii.V.D.et al.Slag-alkaline Cements and Concrete Structure[J].Properties,Technological and Economical aspects of use.Silic.Ind,1983.48(10):197-200.
    [45]Roy.D.M.,Advanced Cements Systems[J].including CBC.DSP.MDF.Proc.9~(th)ICCC,India,1992.Vol.2:357-380.
    [46]蒲心诚.陈友治.新一代(中性钠盐)碱矿渣水泥研究鉴定资料(一-六)[J].重庆建筑大学材料科学与工程系硅酸盐研究室科学技术报告,1998.5.
    [47]庞强特.混凝土制品工艺学[J].武汉工业大学出版社.1995.
    [48]徐清.刘育成.碱矿渣加气混凝土适宜的养护方式及养护制度研究[J].云南建材.1999(4):12-14.
    [49]石宁.碱-矿渣-锂渣胶凝材料研究[D].重庆大学.2005.
    [50]Long L.A.G.D.Henderson,E R.Montgomery.Why assess the properties of near-surface concrete?[J].Construction and Building Materials.2001,15:65-79.
    [51]Mehta P.K.Concrete technology at the cross roads-problem sand opportunities,concrete technology--past,present and future[A].In:Kumar.P.Editor:Mehta Proc.V.Mohan.Malhotra Symposium[C].March.ACI,SP144,1994:1-30.
    [52]张丽.混凝土硫酸盐侵蚀的机理及影响因素[J].东北公路.1998年.第21卷,第4期.
    [53]陈友治,徐瑛等.酸性介质对钢筋混凝土腐蚀机理研究[J].武汉理工大学学报.2001.8Vol.23(8):4-6.
    [54]Taylor.The Chemistry of Cement[J].London.Academic Press,1990:386-388.
    [55]吴礼贤.蒲心诚.甘昌成.陈剑雄.碱矿渣(JK)高强混凝土微观结构研究[J].重庆建筑工程学院建材系硅酸盐制品研究室.1990.7.
    [56]蒲心诚.吴礼贤.甘昌成.陈剑雄.碱矿渣(JK)混凝土的耐久性[J].重庆建筑工程学院建材系硅酸盐制品研究室.1990.7.
    [57]国家建材局苏州混凝土水泥制品研究院.混凝土水泥制品行业常用技术标准汇编(一)[S].北京:中国建筑工业出版社.1987,196-199.219-235.
    [58]EL-Sayed H.A.,EL-Wahed ABD M G et al.Some Aspects of the Corrosion of Reinforcing Steelin Concretein Marine Atmospheres[J].Durability of Building Materials,1987,5(1):13.
    [59]冯乃谦.氯离子渗透与高性能混凝土[J].施工技术1995.No.8:44-45.
    [60]田俊峰.潘德强.赵尚传.海工高性能混凝土抗氯离子侵蚀耐久性寿命预测[J].中国港湾建设.2002.4(2):1-6.
    [61]Service Life model for concrete structures exposed to marine environment -initiation period [R].SINTEF Structures and concrete.Norway:lighten DP2-7 Report.1995.
    [62]Hillier S.R.Sangha C.M.Plunkett B.A.Welden P.J.Effect of concrete curing on chloride ion ingress[J].Magazine of Concrete Research.02000(5):321-327.
    [63]Ervin Poulsen.Chloride profiles.Analysis and interpretation of observation[R].Denmark:AEC Laboratory.
    [64]罗睿.蔡跃波.王昌义.黄晓明.磨细矿渣抗氯离子侵蚀性能的机理研究.土木工程学报[N].2002.12(6):100-104.
    [65]B.B.Hope,J.A.Page and J.S.Poland.The determination of the chloride concrete[J].1985,Cement and concrete Research:15.
    [66]祝战奎.锂渣复合渣高强高性能自密实混凝土研究[D].重庆大学.2007.
    [67]Rasheeduzzafar,S.E.Hussain and S.S.Al-saaclpoun.Effect of tricalcium content of cement on chloride blinding and corrosion of reinforcing steel in concrete[J].ACI,1992,89-MI.
    [68]S.Diamond.A study of a new liquid phase to obtain low-energy cement[J].Cement and Concrete Research.1986.8.
    [69]C.L.Page.N.R.Short and A.E.Tarras.Diffusion of chloride ions in hardened cement pastes [J].Cement and Concrete Research 1981.11.
    [70]F.M.李著.水泥混凝土化学[M].唐明述.杨南如.胡道和.闵盘荣译.第三版.北京:中国建筑工业出版社.1980.
    [71]D.W.Bilderbeek.Durability of structures in marine environment recent Dutch research[A].第26届国际航运会议论文集[C].1986.
    [72]潘今垡.洪定海.矿渣水泥抗氯离子渗透的效果初探[J].水运工程,1995.3:5-9.
    [73]P B.Bamforth,D.C.Pocook.以选择混凝土配置材料尽量减少氯化物引起的钢筋腐蚀的危险[J].Taywood Engineering Ltd.UK.
    [74]罗睿.磨细矿渣(GGSB)高性能混凝土抗氯离子扩散的机理研究[D].南京:河海大学.2000.
    [75]卢安琪.黄国平.单国良.港工硅粉混凝土耐久性研究.水利水运科学研究.1993.12(4):355-362.
    [76]余红发.孙伟.麻海燕等.混凝土使用寿命预测方法的研究Ⅱ--模型验证与应用[J].硅酸盐学报.2002.12.Vol.30(6):691-695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700