城市污水处理连续流一体化生物反应器工艺研究与能效分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国南方城市污水水质特征及污水处理工艺存在的问题,从简易污水处理思想出发,以倒置A2/O及经典SBR工艺过程及时空关系为基础,并在一体化氧化沟固液分离基础上,创造性的将三相分离器概念引入一体化同步脱氮除磷反应器,开发出新型连续流一体化生物反应器(CIBR)。CIBR通过三相分离器将反应区与沉淀区有机结合在一起,不仅实现了单池连续流恒水位进出水运行、节省污泥回流能耗,还从构造上解决一体化脱氮反应器固液分离不彻底等问题,提高了出水稳定性。研究表明:
     (1)CIBR兼性生化模式处理效果受水温影响较大,当水温低于12℃时,处理效果会明显下降且污泥流失严重。在低温条件下采用化学兼性生化模式,可改善污泥沉降性能,减少污泥流失,但无法改善系统硝化及脱氮效果。当水温偏低或进水NH3-N浓度较高时,单独采用兼性生化模式或化学辅助兼性生化难以满足处理要求,需要变换运行模式以提高系统硝化效果及出水稳定性。
     (2)CIBR间歇曝气模式最佳工艺参数为HRT为12h、MLSS为3000mg/L、SRT为15d。CIBR间歇曝气模式处理效果受到曝气/搅拌/静沉时间、曝气比、曝气功率、碳源、污泥负荷Ns及平均能耗等影响。虽然进水COD浓度较低,但由于采用连续进水方式运行,在保证充分的好氧硝化及缺氧反硝化时间条件下,控制各阶段合理的时间比例、提高平均能耗有利于获得较好的同步脱氮除磷效果。CIBR化学辅助间歇曝气模式在有机物去除上未表现出协同作用,但在脱氮除磷方面表现出一定的协同作用,并提高了出水稳定性;投加絮凝剂能在一定程度上促进了亚硝化反应,并在一定程度上提高NH3-N去除效果。
     (3)通过CIBR间歇曝气模式三种典型工况条件下氮形态、MLSS、COD/MLSS、COD/NOX-N及COD、NH3-N、NO3--N、NO2--N、TN、TP等时空分布规律研究表明,曝气及搅拌状态下反应器整体为完全混合状态,静沉阶段为推流流态;充分的好氧曝气与缺氧搅拌是高效脱氮的前提与保证;连续进出水不但有利于减少好氧阶段有机物异养菌对硝化自养菌的抑制作用,还可以为缺氧反硝化补充碳源,缓解进水C/N偏低对脱氮效果的不利影响;揭示了CIBR间歇曝气模式在碳源不足情况下获得高效同步脱氮除磷的理论根据。
     (4)受连续进水影响,CIBR间歇曝气与SBR脱氮除磷工艺在线参数变化规律有一定的区别,但CIBR间歇曝气模式有机物降解及同步脱氮除磷过程可以通过在线DO/ORP/pH曲线及dORP/dt及dpH/dt辅助曲线联合进行判断并可获得三个特征点,即易降解有机物完成点与硝化反应开始点(A点)、硝化反应完成点或停止点(B点)及反硝化反应完成点与厌氧释磷开始点(C点)。
     (5)多种模式交互过程易出现硝化效果下降、脱氮效率降低、释磷等现象及出水不稳定等问题,采用化学辅助间歇曝气模式可以加快系统TP去除效果恢复速度,但COD、NH3-N及TN去除效果几天内难以恢复。而采用CIBR间歇曝气模式变工况运行时,COD、NH3-N、TN及TP去除率平均值依次为76.40%、82.33%、66.24%、及70.18%,系统稳定性远远高于CIBR变模式运行。采用CIBR生物-波形潜流人工湿地生态处理组合工艺进行城市污水处理,根据季节性水质及生态单元处理功能变化调整CIBR生物单元运行工况,以进一步提高处理效果及稳定性,并降低运行能耗。CIBR生物单元四季分别采用工况II(2-1-1)、工况V(2-0-2)、工况VIII(3-1-2)及工况VII(3-2-1)运行,系统总体出水稳定达到GB18918-2002一级A排放标准。
     (6)为揭示CIBR生物处理工艺节能原理,建立了CIBR生物处理单元能量衡算黑箱模型和火用平衡分析灰箱模型,对CIBR生物单元用能结构和用能效率进行了研究。首次引入了火用分配系数λ概念,可以根据污水处理厂污泥处理单元需求灵活调整工艺运行参数来调节剩余污泥产量与耗散火用之间的比例,以达到降低总体运行能耗目标。在传统能量评价指标基础上,首次提出了比火用耗概念,节能的主要目的在于降低比火用耗,节省外界投入作为推动力的化学火用。通过CIBR生物单元四季比能耗、热效率、热力学效率及比火用耗指标对比分析可知,比火用耗较之比能耗、能量利用率及目的火用效率评价指标更为客观和严密。通过比火用耗及能耗折算分析表明,生物生态组合工艺节火用效率高,相比于A2/O工艺及Bardenpho工艺吨水处理电耗分别节省了37.59%及57.84%。由此可见,CIBR生物/波形潜流人工湿地生态组合处理工艺节能效率是建立在生态单元低耗脱氮除磷及CIBR生物单元变工况节能运行共同作用的基础上。
In order to solve the problems encountered in the treatment of in municipal wastewater in south China, this study developed a novel continuous-flow integrated biological reactor (CIBR). To simplify the wastewater treatment process, CITR utilized the spatiotemporal sequencing relation of A2/O and conventional SBR and firstly used three-phase separator to achieve the simultaneous removal of nitrogen and phosphate in a single tank. Since the reaction zone and settling zone were integrated in CITR, the continuous water flow can be maintained at constant level, the energy consumption for sludge return was reduced, the problem of incomplete separation of solid and liquid was solved and the discharged water quality was improved. The main conclusions are drawn as follows.
     (1) The removal efficiency by facultative treatment in CIBR was greatly influenced by water temperature. When water temperature was below 12 oC, the removal efficiency declined sharply and the flowing out of sludge was great. When CITB was run in chemical assistant facultative mode at low temperature, the sludge settling can be improved to some extent, but the nitrification and denitrification efficiency can not be increased. When the water temperature was low or the NH3-N concentration was high, it was difficult to run CIBR in facultative mode or in chemical assistant facultative mode to attain the requirement. So, it was necessary to change the running mode to improve treatment efficiency.
     (2) Optimal conditions in CIBR were obtained as HRT of 12 h, MLSS of 3000 mg/L and SRT of 15 d. The treatment efficiency was influenced by the ratio of aeration, agitation, and settling time, the aeration ratio, the aerating power, the carbon source, the sludge load (Ns) and the average energy consumption. Though the influent COD concentration was low, a good simultaneous removal of nitrogen and phosphate could be achieved by the continuous influent and sufficient nitrification and denitrification. Somewhat synergistic effect on the removal of nitrogen and phosphate was obtained when CIBR was assisted by chemical intermittent aeration. The addition of coagulant attributed to nitrification and NH3-N removal.
     (3) The spatiotemporal distribution of nitrogen species, MLSS, COD/MLSS, COD/NOx-N, COD, NH3-N, NO3--N, NO2--N, TN and TP under the three typical working conditions in the intermittent aeration working mode of CIBR indicated that the whole reactor was in completely mixed flow in aeration and agitation phases and in plug flow in the settling phase. The sufficient aerating and anoxic agitating ensured the efficient denitrification. The continuous influent not only decreased the restraint of heterotrophic bacteria to the nitrobacteria under the aerobic phase, but also eased the negative effect of low influent C/N ratio on denitrification by supplying the carbon source for denitrification inthe anoxic phase. Efficient simultaneous removal of nitrogen and phosphorus in CIBR could be achieved under the intermittent aeration working mode.
     (4) The variation of parameters in CIBR were different from that in SBR due to the continuous influent. Three points for organic compounds degradation and nitrogen and phosphate removal can be obtained from the curves of DO/ORP/pH, dORP/dt and dpH/dt. They are the complete of organic compound degradation and the start of nitrification (point A), the end or pause of nitrification (point B), and the end of denitrification and the start of anaerobic phosphorus release (point C).
     (5) During the alternation of intermittent aeration and facultative biochemical process, nitrification and denitrification efficiency decreased, phosphorus release increased and effluent quality was often unstable. The chemical assistant intermittent aeration could accelerate the resumption of the phosphorus removal, but could not resume the removal of COD, NH3-N and TN in a short time. In CIBR under different working conditions with intermittent aeration, the average removal of COD, NH3-N, TN and TP were 76.40%, 82.33% 66.24% and 70.18%, respectively. In order to improve the treatment efficiency and to reduce the running energy consumption, the combined process of CIBR and wavy flow subsurface constructed wetland was developed to treat municipal wastewater. According to the, High efficiency and low energy consumption can be attained by adjusting the working condition of CIBR according to the seasonal variation of influent quality and the removal efficiency of ecological units. The optimal working conditions of CIBR process in each season were condition II(2-1-1), condition V(2-0-2), condition VIII(3-1-2) and condition VII(3-2-1), respectively. The effluent quality can stably reach standards of municipal wastewater treatment (GB18918-2002).
     (6) In order to reveal the mechanism for energy reduction in CIBR process, the energy balance black box model and exergy balance grey box model were established. The structure of energy consumption and energy efficiency in CIBR process were investigated. The distributing coefficient (λ) of exergy was used for the first time. The ratio of excess sludge and dissipation exergy can be conditioned to reduce the energy consumption based on the the requirement of sludge treatment unit of the municipal wastewater treatment plant. The specific exergy consumption conception was proposed. The aim of saving energy was to reduce the specific exergy consumption and to decrease the outside devoted exergy. The specific exergy consumption was more accurate and precise than the specific energy consumption, thermal efficiency, enthalpy efficiency and aim exergy efficiency. By the analysis of the specific exergy consumption and energy consumption, it can be concluded that the exergy consumption of the combined process was much less. Compared with A2/O process and Bardenpho process, the combined process could reduce 37.59% and 57.84% energy consumption, respectively. The high energy efficiency of the combined process was stem from the low energy consumption for the removal of nitrogen and phosphorus in ecological unit and the run of varied working conditions in CIBR.
引文
[1]张增光.中国给水排水行业的现状与发展趋势[J].山西建筑, 2004, 30(12): 101-102
    [2]沈耀良,王宝贞.论我国城市污水厂建设和处理技术的发展方向[J].污染防治技术, 1996, 9(3): 129-133
    [3]许保玖.试论中国水工业[J].给水排水, 1996, 22(2): 55-57
    [4]中华人民共和国国家统计局.中国统计年鉴[M].中国统计出版社. 2000-2005
    [5]王涛,楼上游.中国城市污水处理工艺现状调查与技术经济指标评价[J].给水排水, 2004, 30(5): 1-4
    [6]刘鸿志.国外城市污水处理厂的建设及运行管理[J].世界环境, 2000, 20(1): 31-33
    [7] Thomas E M, Mark C R. Overinvestment when allocating costs of wastewater treatment plant[J]. Water Resour. Plng. and Mgmt., 2001, 127(5): 333-347
    [8] Jeppsson U, Alex J, Pons M N. Status and future trends of ICA in wastewater treatment-A European perspective[J]. Wat. Sci. Tech., 2002, 45(4): 485-494
    [9]王凯军.可持续发展的新型、高效城市污水处理技术探讨[J].给水排水, 2005, 31(2): 32-35
    [10]邵林广.南方城市污水处理厂实际运行水质远小于设计值的原因及其对策[J].给水排水, 1999, 25(2): 11-13
    [11]周克钊,周敉.城市污水处理厂设计进水水质确定和出水水质评价[J].给水排水, 2006, 32(9): 26-30
    [12]姜应和,张发根,叶舟等.武汉市城市污水水质特征及其处理对策[J].武汉理工大学学报, 2002, 24(5): 29-31
    [13]娄金生谢水波何少年等.生物脱氮除磷原理与应用[M].湖南长沙:国防科技大学出版社, 2002
    [14] Gupta A. B., Gupta S. K. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm[J]. Wat. Res., 2001, 35(7): 1714-1722
    [15] Mike O. Neil, Nigel J. Horan. Achieving simultaneous nitrification and denitrification wastewater satreduced cost[J]. Wat. Sci. Tech., 1995,32(9-10): 303-312
    [16] Guo H. Y., Zhou J. T., Su J., et al. Integration of nitrification and denitrification in airlift bioreactor[J]. Biochem. Engin. J., 2005, 23 (1): 57-62
    [17] Yoo H., Kyu-Hong A. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification(SND) vianitrite in an intermittently - aerated reactor[J], Wat. Res. 1999, 33(1): 145-154
    [18] Hopkins L. N., Lant P. A., Newell R. B. Using the flexibility index to compare batch and continuous activated sludge processes[J]. Wat. Sci. Tech., 2001,43(3): 35-43
    [19]王涛.单池分区优化及能量模型的研究[D].重庆大学, 2004
    [20] T. Kuba, M. C. M. V. Loosdrecht, et al. Occurrence of denitrifying phosphorus removal bacteria in modified UCT-type wastewater treatment plants. Wat. Res., 1997, 31(41): 777-786
    [21] Sorm R., Bortone G, Safarelli, R. et al. Phosphate uptake under anoxic conditions and fixed-film nitrification in nutrient removal activated sludge system. Wat. Res., 1996, 7(30):15731584
    [22] Bortone G., Marsili L. S., Tilche A., et al. Anoxic phosphate uptake in the dephanox process. Wat. Sci. Tech., 1999, 40(4-5):177-183
    [23] W J. Ng, S. L Ong, J. Y. Hu. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor. Wat. Sci. Tech., 2001, 43(3): 139-146
    [24] T. Mino., M. C. M. V. Loosdercht, J. J. Heijnen. Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res., 1998, 32(11): 3193-3207
    [25] Lee, D. S., Jeon, C. O., Park, J. M. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Wat. Res., 2001, 35(16): 3968-3976
    [26] Jesús R. A., Elías R. F., Jorge G. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification[J]. Wat Res., 2004, 38(14-15): 3313-3321
    [27] Münch E. V., Lant P., Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J].Wat. Res., 1996, 30(2): 277-284
    [28] T. Kuba, M. C. M. V. Loosdrecht, et al. Phosphorus and nitrogen removal with minimal COD requirement by integration of nitrification in a two-sludge system. Wat. Res., 1996, 42(12): 1702-1710
    [29] T. Kuba, M. C.M. V. Loosdrecht, et al. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale wastewater treatment plant. Wat. Sci. Tech., 1999, 36(12): 75-82
    [30] M. Merzouki, N. Bemet. Biological denitrifying phosphorus removal in SBR: Efect of added nitrate concentration and sludge retention time. Wat Sci. Tech., 2001, 3(43):191-194
    [31] J. Y. Hu., S. L. Ong. W. J. Ng., et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three diferent types of electron acceptors. Wat. Res., 2003, 37(14):3463-3471
    [32]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社, 1999
    [33] Berent N, Peng D C, Delgeniès J P, et al. Nitrification at low oxygen concentration in biofilm reactor[J]. J.Environ. Eng. ASCE., 2001, 127(3): 266-271
    [34] Fernando M. S., Allen D. G. Effects of temperature transient conditions on aerobic biological treatment of wastewater[J]. Wat Res., 2003, 37(15): 3590-3601
    [35] Lishman L. A., Legge R.L. and Farquhar, G. J. Temperature effects on wastewater treatment under aerobic and anoxic conditions[J]. Wat Res., 2000, 34(8), 2263-2276
    [36] Quera-Corral A, Gonz??lez F, Campos J. L, et al.Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds [J]. Process Biochem., 2005, 40(9): 3109-3118
    [37]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998
    [38] F. Kargi,A. Uygur. Nutrient removal performance of a sequencing batch reactor as a function of the sludge age[J]. Enzyme and Microbial Technology., 2002, 31(1): 842-847.
    [39]豆俊峰.螺旋升流式反应器处理城市污水的试验研究[D].重庆大学. 2004
    [40] Yu R. F., Liaw S. L., Cho, B. C., etal. Dynamic control of a continuous inflow SBR with the time varying influent loading[J]. Wat. Sci. Tech., 2001, 43(3), 107-114.
    [41] Kuba T, Wachameister A, VanLoosdrecht MCM. Effect of nitrate on phosphorus release in biological phosphorus removal system[J]. Wat. Sci. Tech., 1994, 30(6): 263-296
    [42] Meyer R. L., Zeng R. J., Giugliano, V. et al. Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: mass transfer limitation and nitrous oxide production[J]. FEMS Microbiol. Ecol., 2005, 52(3): 329-338
    [43] Y. Z. Peng, X. L. Wang, B. K. Li. Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process[J]. Desalination, 2006, 189(1-3): 155-164
    [44] Eugenia J. Olguín. Phycoremediation: key issues for cost-effective nutrient removal processes[J]. Biotechnology Advances, 2003, 22(1-2): 81-91
    [45] E. Vaiopoulou, P. Melidis, A. Aivasidis. An activated sludge treatment plant for integrated removal of carbon, nitrogen and phosphorus[J]. Desalination. 2007,211(1-3): 192-199
    [46] S. H. Chuang, C. F. Ouyang. The biomass fractions of heterotrophs and phosphate-accumulating organisms in a nitrogen and phosphorus removal system[J]. Wat. Res., 2000, 34(8): 2283-2290
    [47] M. Lamine, L. Bousselmi, A. Ghrabi. Biological treatment of grey water using sequencing batch reactor[J]. Desalination, 2007, 215(1-3): 127-132
    [48] N. R. Louzeiro, D. S. Mavinic, W. K. Oldham, et al. Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor[J]. Wat. Res., 2002, 36(11): 2721-2732
    [49] T. Y. Pai, Y. P. Tsai, Y. J. Chou, et al. Microbial kinetic analysis of three different types of EBNR process[J]. Chemosphere, 2004, 55(1): 109-118
    [50] C. F. Alves, L. F. Melo, M. J. Vieira. Influence of medium composition on the characteristics of a denitrifying biofilm formed by Alcaligenes denitrificans in a fluidised bed reactor[J]. Process Biochem., 2002, 37(8): 837-845
    [51] J. M. Gálvez, M. A. Gómez, E. Hontoria et al. Influence of hydraulic loading and air flowrate on urban wastewater nitrogen removal with a submerged fixed-film reactor[J]. Journal of Hazardous Materials, 2003, 101(2): 219-229
    [52] Naohiro K., Juhyun K., Satoshi T., et al. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate - accumulating organisms[J]. Wat. Res., 2006, 40(12): 2303-2310
    [53] Donkin M. J., Russell J. M. Treatment of a milk powder/butter wastewater using the AAO activated sludge configuration[J]. Wat. Sci. Tech., 1997, 36(10): 79-86
    [54] J. A. Baeza, D. Gabriel, J. Lafuente. Effect of internal recycle on the nitrogen removal effciency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP)[J]. Process Biochem., 2004, 39(2): 1615-1624.
    [55] M. L. Daumer, F. Béline, F. Guiziou, et al. Effect of nitrification on phosphorus dissolving in a piggery effluent treated by a sequencing batch reactor[J]. Biosystems Engin., 2007, 96(4): 551-557
    [56] Chin-Han Chan, Poh-Eng Lim. Evaluation of sequencing batch reactor performance with aerated and unaerated FILL periods in treating phenol-containing wastewater[J]. Bioresource Tech., 2007, 98(7): 1333-1338
    [57] Y. F. Tsang, F. L. Hua, H. Chua, et al. Optimization of biological treatment of paper mill effluent in a sequencing batch reactor[J]. Biochem. Eng. J., 2007, 34(3): 193-199
    [58] Satoshi T., Takashi O., Koichi, S. et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate?accumulating organisms in a sequencing batchreactor[J]. Biochem. Eng. J., 2006, 27(3): 191-196
    [59] C. F. Ouyang, C.T. Juan. A study of a modified process for the intermittent cycle extended aeration system[J]. Wat. Sci. Tech., 1995, 31(9): 173-180
    [60] P. Y. Yang, Z. Y. Wang. Integrating an intermittent aerator in a swine wastewater treatment system for land-limited conditions[J]. Bioresource Tech., 1999, 69(3): 191-198
    [61] G. Demoulin, M. C. Goronszy, K. Wutscher., et al. Co-current nitrification/ denitrification and biological P-removal in cyclic activated sludge plants by redox controlled cycle operation[J]. Wat. Sci. Tech., 1997, 35(1): 215-224
    [62] Goronszy M. C., Barker A. J. Application of the CASS sequencing batch reactorto meeting modern-day discharge consent limits[J]. Institution of Chemical Engineers Symposium Series, 1994, 4-6:147-149.
    [63] Claes J. E, Ryckaert V. G., Van Impe J. F. Mathematical modeling and identification of UNITANK wastewater treatment systems[J]. European Water Pollution Control, 1996, 6(6): 34-44.
    [64] F. G. Zhang, J. X. Liu, J. Sui. Sludge concentration dynamic distribution and its impact on the performance of UNITANK[J]. J. Environ. Sci., 2007, 19(2): 141-147
    [65] Sponza D. T., Atalay H. Simultaneous phosphorus, nitrogen and dinitrotoluene removals in batch anaerobic/anoxic/aerobic sequentials[J]. Process Biochem., 2005, 40(1): 25-34
    [66] Martinez J.M., Goitara A., Mendez R. Tannery wastewater treatment: Comparison between SBR and MSBR[J]. Wat. Sci. Tech., 2003, 3(5-6): 275-282
    [67] C. N. Chang, H. R. Chen. Using SBBR to treat ABS wastewater[J]. Wat. Sci. Tech., 2000, 41(4-5): 433-440
    [68] Suntud S., Suriyakit Y. Application of a new type of moving bio?film in aerobic sequencing batch reactor (aerobic?SBR)[J]. J. Environ. Manage., 2006,78(2): 149-156
    [69] S. Gillot, A. Héduit. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers[J]. Wat. Res., 2000, 34(5): 1756-1762
    [70] Insel Guclu, Artan Nazik, Orhon Derin. Effect of aeration on nutrient removal performance of oxidation ditch systems[J]. Environ. Eng. Sci., 2005, 22(6): 802-815
    [71] X. D. Hao, D. H. J, V. Groenestijn, etal. Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch[J]. Bioresource Tech., 1997, 59(2-3):207-215.
    [72] S. Y. Gao, Y. Z. Peng, S. Y. Wang. et al. Novel strategy of nitrogen removal fromdomestic wastewater using pilot Orbal oxidation ditch[J]. J. of Environ. Sci., 2006, 18(5): 833-839
    [73] M. O. Neill, N. J. Horan. Achieving simultaneous nitrification and denitrification of wastewaters at reduced cost[J]. Wat. Sci. Tech., 1995, 32(9-10): 303-312
    [74] X. S. Guo, J. X. Liu, Y. S. Wei., et al. Sludge reduction with tubificidae and the impact on the performance of the wastewater treatment process[J]. J. of Environ. Sci., 2007, 19(3): 257-263
    [75] Xia S. B., Liu J. X. An innovative integrated oxidation ditch with vertical circle for domestic wastewater treatment[J]. Process Biochem., 2004, 39: 1111-1117
    [76] S. C. Williams, J. Beresford. The effect of anaerobic zone mixing on the performance of a three-stage Bardenpho plant[J]. Wat. Sci. Tech.,1998, 38(1): 55-62
    [77] D. G. Wareham, D. S. Mavinic, K. J. Hall. Sludge digestion using ORP-regulated aerobic-anoxic cyclics[J]. Wat. Res., 1994, 28(2): 373-384
    [78] D. G. Wareham, K. J. Hall, D. S. Mavinic. An ORP screening protocol for biological phosphorus removal in sequencing batch reactors[J]. Can. J. Cil. Eng., 1995, 22: 260-269
    [79] C. K. Lo, C. W. Yu, N. F. Tam, et al. Enhanced nutrient removal by Oxidation-Reduction Potentional(ORP) controlled aeration in a laboratory scale extended aeration treatment system[J]. Wat. Res., 1994, 28(10): 2087-2094
    [80] P. Caulet, B. Bujon, J. P. Philippe, et al. Upgrading of wastewater treatment plant for nitrogen removal: Industrial application of an automated aeration management based on ORP evolution analysis[J]. Wat.Sci.Tech., 1998, 37(9): 41-47
    [81] C. C. Peddle, D. S. Mavinic, C. J. Jenkins. Use of ORP for monitoring and control of aerobic sludge digestion[J]. J. Env. Eng., 1990, 116(3): 461-471
    [82] D. G. Wareham, K. J. Hall, D. S. Mavinic. Real-time control of wastewater treatment systems using ORP[J]. Wat.Sci.Tech., 1993, 28(11-12):273-282
    [83] K. Wouters-Wasiak, A. Heduit, J. M. Audic, et al. Real-time control of nitrogen removal at full-Scale using oxidation reduction potential[J]. Wat.Sci.Tech., 1994, 30(4): 207-210
    [84] P. Caulet, B. Bujon, J. P. Philippe, et al. Upgrading of wastewater treatment plants for nitrogen removal:Industrial application of an automated aeration management based on ORP evolution analysis[J]. Wat. Sci.Tech., 1998, 37(9): 41-47
    [85] E. Paul,S. Plisson-Saune, M. Mauret et al. Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO[J]. Wat. Sci.Tech., 1998, 38(3): 299-306
    [86]彭永臻,周利,邵剑英.利用ORP作为SBR反应时间的计算机控制参数[J].中国给水排水, 1997, 13(6):6-9
    [87]姜慧勇. SBR法计算机自动控制理论的基础研究[D].哈尔滨建筑大学. 1996
    [88] J. Charpentier, G. Martin, H. Wacheux, et al. ORP regulation and activated sludge: 15 years of experience[J]. Wat. Sci.Tech., 1998, 38(3): 197-208
    [89] C. S. Ra, K. V. Lo, D. S. Mavinic. Control of a swine manure treatment process using a specific feature of Oxidation Reduction Potential[J]. Bioresource Tech., 1999, 70(2): 117-127
    [90] K. Sasaki, Y. Yamamoto, K. Tsumura, et al. Simulaneous removal of nitrogen and phosphorus in intermittently aerated 2-tank activated sludge process using DO and ORP-bending-point control[J]. Wat. Sci. Tech., 1993, 28(11-12): 513-521
    [91]高景峰. SBR法去除有机物和脱氮除磷在线模糊控制的基础研究[D].哈尔滨工业大学. 2001
    [92]彭永臻,王宝贞,王淑莹.活性污泥法的多变量最优化控制:基础理论与DO浓度对运行费用的影响[J].环境科学学报, 1998,18(l):11-19
    [93]曾微.两段SBR法去除有机物和脱氮除磷在线模糊控制的基础研究[D].哈尔滨工业大学. 2002
    [94] Georg Schon, Susanne Geywitz, Frank Mertens. Lnfuence of dissolved oxygen and Oxidation-Reduction Potential on phosphorus release and uptake by activated sludge from sewage plants with enhanced biological phosphorus removal[J]. Wat. Res., 1993,27(3): 349-354.
    [95] Chao H. Chang, Oliver J. Hao. Sequencing batch reactor system for nutrient removal: ORP and pH profiles[J]. J. of Chem. Tech. and Biotech., 1996, 67(1): 27-38
    [96] Ibrahim Al-Ghusain, Oliver J. Hao. Use of pH control parameter for aerobic/anoxic sludge digestion[J]. J. Env. Eng., 1995, 121(3): 225-235
    [97] Ingildsen P., Wendelboe H. Improved nutrient removal using in situ continuous on?line sensors with short response time[J]. Wat Sci. Tech., 2003, 48 (1): 95-102
    [98] A. Spagni, J. Buday, P. Ratini and G. Bortone. Experiment consideration on monitoring ORP, pH, conductivity and dissolved oxygen in nitrogen and phosphorus biological removal processes[J]. Wat. Sci. Tech., 2001, 43(11): 197-204
    [99] Oliver J. Hao, Jason Huang. Alternating aerobic-anoxic process for nitrigen removal: process evaluation[J]. Wat. Environ. Res., 1996, 68(1): 83-93
    [100] Paul E. Plisson, S. S. Mauret, Cantet J. Process state evaluation of alternating oxic?anoxic activated sludge using ORP, pH, and DO[J]. Wat. Sci. Tech., 1998, 38(3):299-306
    [101] Kim J. H., Chen M., and Kishida N., et al. Integrated real?time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors[J]. Wat. Res., 2004, 38(14-15): 3340-3348
    [102] Y. Z. Peng, J. F. Gao, S. Y. Wang and M. H. Sui. Use Ph and ORP as fuzzy control parameters of denitrification in SBR process[J].Wat. Sci. Tech., 2002, 46(4-5):131-137
    [103] Dockhorn T., Dichti N. and Kayser R. Comparative investigations on COD?removal in sequencing batch reactors and continuous flow plants[J]. Wat. Sci. Tech., 2001, 43(3): 45-52
    [104] John A. P. and Spyros G. P. Real-time monitoring and conrtol of sequencing batch reactors for secondary treatment of a poultyr processing[J]. Wat. Environ. Res., 2000, 72(5): 585-592
    [105] Andreottola G., Foladori P. and Ragazzi M. On?line control of a SBR system for nitrogen removal from industrial wastewater[J]. Wat. Sci. Tech. 2001, 43(3): 93-100
    [106] C. N. Chang and H. R. Chen. Using SBBR to treat ABS wsatewater[J]. Wat. Sci. Tech. 2000, 41(4-5): 433-440
    [107] Yu R. F., Liaw Sh. L.,Cho B. C and Yang S. J. Dynamic control of a continuous-inflow SBR with time-varying inlfuent loading[J].Wat. Sci. Tech., 2001, 43(3): 107-114
    [108] E. Paul, S. Plisson-Saune, M. Mauret and J. Cantet. Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO[J]. Wat. Sci. Tech., 1998, 38(3): 299-306
    [109] Baeza J. Ferreira E. C. and Lafuente J. Knowledge-based supervision and control of wastewater treatment plant: A real time implementation [J].Wat. Sci. Tech., 2000, 41(12): 129-137
    [110] D. S. Lee, C. O. Jeon, J. M. Park. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Wat. Res., 2001, 35(1): 3968-3976
    [111] J. Ferrer, M. A. Rodrigo, J. M. Penya-roja. Energy saving in the aeratian process by fuzzy logic control[J]. Wat. Sci. Tech., 1998, 38(3): 209-217
    [112] T. Ognean. Relationship between oxygen mass transfer rate and power consumption by vertical shaft aerators[J]. Wat. Res., 1997, 31(6): 1325-1332
    [113] Martin R. Wagner, H. Johannes Popel. Oxygen transfer and aeration efficiency - influence of diffuser submergence, diffuser density, and blower type[J]. Wat. Sci.Tech., 1998, 38(3): 1-6
    [114] B. Evans, P. Laughton. Emerging trends in electrical energy usage at Canadian (Ontario) municipal wastewater treatment facilities and strategies for improving energy efficiency[J]. Wat. Sci. Tech., 1994, 30(4): 17-23.
    [115] Ingemar Karlsson. Environmental and energy efficiency of different sewage treatment processes[J]. Wat. Sci. Tech., 1996, 34(3-4): 203-211
    [116] T. Jiang, M. D. Kennedy, C. K. Yoo, et al. Controlling submicron particle deposition in a side-stream membrane bioreactor: A theoretical hydrodynamic modelling approach incorporating energy consumption[J]. J. of Membrane Sci., 2007, 297(1-2): 141-151
    [117] A. Montangero and H. Belevi. Assessing nutrient flows in septic tanks by eliciting expert judgement: A promising method in the context of developing countries[J]. Wat. Res., 2007, 41(5): 1052-1064
    [118] W. F. Owen.章北平等译.污水处理能耗与能效[M].北京:能源出版社,1989
    [119] M. S. Lucas, A. A. Dias, A. Sampaio, et al. Degradation of a textile reactive azo dye by a combined chemical–biological process: Fenton's reagent-yeast[J]. Wat. Res., 2007, 41(5): 1103-1109
    [120]刘礼祥,章北平,周红燕等.一体化CIBR反应器的低温脱氮除磷中试[J].中国给水排水, 2006, 22(19): 21-24
    [121] W. J. Ng, T. S. Sim. Efficiency of sequencing batch reactor(SBR) in the removal of selected microorganisms from domestic sewage. Wat. Res., 1993, 27 (10): 1591-1600
    [122] Lemaire R., Meyer R., and Taske, A., et al. Identifying causes for N2O accumulation in a lab?scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal[J]. J. Biotechnol, 2006, 122(1): 62-72
    [123]侯红娟,周琪,邱兆富等.生物化学协同除磷研究[J].环境污染治理技术与设备, 2006, 7(2): 50-52
    [124]张波,陶明清,吴春笃等.化学强化生物除磷工艺及设计[J].水处理技术, 2006, 32(10): 87-89
    [125]杨殿海,卢峰,夏四清.化学生物絮凝工艺处理低浓度城市污水研究[J].中国给水排水, 2004, 20(4): 5-8
    [126]龙学军.隐吸双喷厌氧生化反应器两相混合流动特性[D].武汉城市建设学院. 1999
    [127]解清杰.隐吸双喷厌氧生化传质规律[D].武汉城市建设学院. 1999
    [128]吴晓晖.城市污水厌氧生化反应、絮凝沉降动力学模型及参数[D].武汉城市建设学院. 2000
    [129] Argaman Y. Single sludge nitrogen removal in an oxidation ditch[J]. Wat. Res., 1984, 18(12): 1493-1500
    [130]邓荣森,王涛,潘江浚.一体化氧化沟固液分离和回流机理探讨[J].环境科学学报, 1999, 19(3): 241-245
    [131]王涛,邓荣森,潘江浚等.一体化氧化沟侧沟固液分离器分离效果研究[J].中国给水排水, 1999, 15(3): 17-19
    [132]夏世斌.立体循环一体化氧化沟污水处理新技术研究[D].中国科学院研究生院. 2003
    [133] Andersen K. K. Seconday rsedimentation of activated sludge by a lamella separator placed in an oxidation ditch[J]. Journal of European Water Pollution Control, 1996, 6(4): 37-44
    [134] A. Yasar, N. Ahmad, M. N. Chaudhry, et al. Sludge granulation and efficiency of phase separator in UASB reactor treating combined industrial effluent[J]. J. of Environ. Sci., 2007, 19(5): 553-558
    [135] Souza M. E. Criteria for utilization design an perarion of UASB reactor[J]. Wat. Sci. Tech., 1986, 18(12): 55-69
    [136]胡纪萃. UASB反应器三相分离器的设计方法[J].中国沼气, 1992,10(3):5-9
    [137]郝晓刚,余华瑞,石炎福.废水厌氧生物处理装置中的三相分离器[J].化工装备技术, 1997, 18(2): 7-11
    [138]张忠祥,钱易主编.废水生物处理新技术[M].北京:清华大学出版社,2004
    [139]国家环保局等.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002
    [140]管向伟,章北平,李强等.生活污水兼性生化影响因素分析[J].华中科技大学学报(城市科学版), 2006, 23(3): 32-35
    [141]李敏,章北平,胡国云等.低温兼性生化处理生活污水[J].华中科技大学学报(城市科学版), 2006,23(1):49-51
    [142]魏琛,张晚凉.废水除磷工艺中聚磷菌及其缺氧态下吸磷现象[J].重庆环境科学, 2000, 22(4): 44-46
    [143]刘礼祥,章北平,颜岗等.污水处理中物化与兼性生化低温下的协同作用[J].水处理技术, 2007, 33(6): 41-44
    [144]刘礼祥,章北平,陆谢娟等. CIBR/波形潜流人工湿地工艺处理城市污水研究[J].中国给水排水, 2007, 23(15): 34-37
    [145] Q. H. Zhou, Z. B. Wu, S. P. Cheng, et al. Enzymatic activities in constructed wetlands and dinbuty phthalate (DBP) biodegradation[J]. Soil Biology and Biochemistry, 2005. 37(8): 1454-1459
    [146]章北平,章芳,任拥政等.递进布水缩变波形流湿地构建与降污动力学[J].华中科技大学学报(城市科学版), 2006,23(4): 23-26
    [147]曾祥英,章北平,孙高升.波形潜流湿地处理低浓度生活污水[J].环境工程, 2006, 24(5): 26-28
    [148]鲁铌,章北平,刘真等.人工湿地处理低浓度生活污水的填料优化级配[J].武汉理工大学学报, 2006,28(1): 81-84
    [149]章芳,章北平,陈哲等.四种填料对生活污水的吸附性能分析[J].水处理技术, 2006, 32(11): 37-40
    [150]刘斌,章北平,程伟等.人工景观生态湖滨净化带植物的遴选[J].城市环境与城市生态, 2006,19(2): 17-19
    [151]陈文威,李沪萍.热力学分析与节能[M].北京:科学出版社, 1999
    [152]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社, 2000
    [153]高旭.城市污水处理工艺能量平衡分析研究与应用[D].重庆大学, 2002
    [154]顾夏声.废水生物处理数学模式(第二版) [M].北京:清华大学出版社, 1993
    [155]朱明善,陈宏芳.热力学分析[M].北京:高等教育出版社, 1992
    [156] Liu Y. Bivenergetic interpretation in the SOIXO ratio in substrate-sufficient batch culture[J]. Wat. Res., 1996a, 30: 2766-2770
    [157] S. R. Guiot, E. J. Nyns. Quantitative method based on energy and mass balance for estimating substrate transient accumulation in activated sludge during wastewater treatment[J]. Biotechnology and Bioengineering, 1986. 28: 1637-1646
    [158]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社, 2000
    [159] M. Henze, P. Harremoes and J. C. Jansen, et al. Wastewater treantment - biological and chemical processes(Second Edition)[M]. SpringerVlerlag Berlin Heidelberg. 1997
    [160] C. Wang, Y. Z. Zeng, J. Lou, et al. Dynamic simulation of a WWTP operated at low dissolved oxygen condition by integrating activated sludge model and a floc model[J]. Biochemical Engineering Journal, 2007, 33(3): 217-227
    [161]张润霞,肖继昌.企业热平衡与节能技术[M].北京:石油工业出版社, 1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700