I型单纯疱疹病毒衣壳蛋白UL25与细胞骨架微管蛋白的相互作用及其生物化学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅰ型单纯疱疹病毒(Herpes Simplex Virus 1,HSV-1)是一种常见的病原体,人是其唯一自然宿主。病毒通过受损皮肤及粘膜感染宿主,在上皮组织增殖,且能进一步从感染的上皮组织的神经末稍入侵神经元,并于初次感染后在三叉神经节、背根神经节等处建立伴随终生的潜伏性感染。
     HSV-1 UL25基因编码一个重要的病毒衣壳蛋白,位于衣壳外表面五邻体顶角附近。目前研究发现该蛋白参与了病毒感染过程中的许多重要生物学过程,包括病毒在细胞内的转运、增殖、装配等。利用酵母双杂交筛选技术,我们发现UL25与宿主细胞不同的结构性和功能性蛋白存在相互作用,其中之一为与细胞骨架微管蛋白的相互作用。半乳糖苷酶活性分析实验显示两者的相互作用具有特异性。
     将UL25重组到绿色荧光报告载体pEGFP-N2中,对构建的UL25-EGFP融合蛋白进行细胞内荧光分析,结果表明UL25分布于细胞质中,与经免疫荧光染色的细胞骨架微管蛋白共定位。进一步利用秋水仙碱破坏细胞骨架微管结构后,发现UL25的分布与紊乱的微管蛋白亦基本重合,表明两者在空间上具有明确的相互作用关系。由于HSV病毒在被感染细胞内沿细胞骨架微管移动,基于上述双杂交实验和荧光分析,推测UL25可能在病毒衣壳细胞内转运中具有重要的意义。
     实验进一步对UL25基因不同片段的缺失突变体进行荧光定位分析,结果发现UL25 135-353aa和其羧基端360-580aa与UL25蛋白定位相似,而UL25氨基端140aa除在胞质内与微管蛋白共定位外,还同时定位于细胞核中。结合酵母双杂交实验筛选到UL25与细胞内转录调控蛋白如转录延伸因子存在相互作用的事实,提示UL25蛋白在核内参与了某些未知的功能作用,氨基端可能是其与不同蛋白相互作用的重要区域。
Herpes Simplex Virus 1 (HSV-1) is a common pathogen, homo sapiens are its natural host. HSV-1 infects host through damaged skin or mucous membrane and proliferates in epithelial tissue. It even infects neurons from nerve terminal situated in epithelial tissue. After primary infection, the virus could establish latent infection at trige-minal ganglion and dorsal root ganglion etc.
     HSV-1 UL25 gene product is an essential capsid protein which locates on the external surface of virus capsid near the vertices. It is required for many crucial biological events during viral infection, including intracellular transport of virions、proliferation and assembling of virions in cell etc. Our research indicated UL25 gene product can interact with distinct structural and functional cell proteins by using yeast two-hybrid screening system. Cytoskeleton microtubule protein - tubulin was one of them.β-D-galactosidase activity assays demonstrated a specific interaction between UL25 and tubulin.
     UL25 was recombined into pEGFP-N2 to express UL25-EGFP fusion protein. Fluorescence experiment using the EGFP-UL25 fusion protein and an anti-cellular tubulin immunofluorescence antibody demonstrated that UL25 locates in cytoplasm and co-localizes with tubulin. Locations of UL25 were yet consistent with indiscriminate tubulins after treating cell with colchicine which can dissociate microtubule. These results indicate there are interactions between tubulin and UL25 in cell. Base on yeast two-hybrid screening and fluorescence analysis, it is possible that UL25 protein plays an essential role in transport of viral capsids owing to herpesviruses transport along microtubules in cell.
     Further fluorescence investigations with different fragment deletion mutants of the UL25 gene suggested that the locations of 135-353aa of UL25 and its carboxyl terminus 360-580aa were similar to UL25 protein, and the amino terminus 140aa of UL25 localized to cytoplasm(co-localized with tubulin), as well as to nucleus. Combining with results from yeast two-hybrid screening system that UL25 interacts with transcriptional and regulatory proteins such as eukaryotic translation elongation factor, we infer that UL25 involves in certain unknown functions in nucleus. It is possible the amino terminus is the significant domain of UL25 to interact with different cellular proteins.
引文
1 金奇主编.医学分子病毒学.北京:科学出版社.2001,第一版:712-732.
    2 Sodeik B.Mechanisms of viral transport in the cytoplasm.Trends Micro biol.2000,8:465-472.
    3 陈诗书,汤雪明.医学细胞与分子生物学.上海:上海医科大学出版社.2000,289.
    4 翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社.2000,328-334.
    5 Dohner K,Sodeik B.The role of the cytoskeleton during viral infection.Curr Top Microbiol Immunol.2005,285:67-108.
    6 Gamer J A.Herpes simplex virion entry into and intracellular transport within mammalian cells.Adv Drug Deliv Rev.2003,55:1497-1513.
    7 Smith G A,Enquist L W.Break ins and break outs:viral interactions with the cytoskeleton of Mammalian cells.Annu Rev Cell Dev Biol.2002,18:135-161.
    8 Dohner K,Nagel C H,Sodeik B.Viral stop-and-go along microtubules:taking a ride with dynein and kinesins.Trends Microbiol.2005,13:320-327.
    9 Radtke K,Dohner K,Sodeik B.Viral interactions with the cytoskeleton:a hitchhiker's guide to the cell.Cell Micro boil.2006,8:387-400.
    10 Greber UF,Way M.A superhighway to virus infection.Cell.2006,124:741-754.
    11 李琦涵,姜莉.病毒感染的分子生物学.北京:化学工业出版社.2004,第一版.1-26.
    12 Ye G J,Vaughan K T,Vallee R B et al.The herpes simplex virus 1 UL34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane.J Virol.2000,74:1355-1363.
    13 Roller R J,Zhou Y,Schnetzer R et al.Herpes simplex virus type 1 U(L)34 gene product is required for viral envelopment.J Virol.2000,74:117-129.
    14 Klupp B G,Granzow H,Mettenleiter T C.Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product.J Virol.2000,74:10063-10073.
    15 Fuchs W,Klupp B G,Granzow H et al.The interactingUL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions.J Virol.2002,76:364-378.
    16 Reynolds A E,Wills E G,Roller R J et al.Ultrastructural localization of the herpes simplex virus type 1 UL31,UL34,and US3 proteins suggests specific roles in primary envelopment and egress of nucleo capsids.J Virol.2002,76:8939-8952.
    17 Desai P,DeLuca N A,Person S.Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice.Virology.1998,247:115-124.
    18 Douglas M W, Diefenbach R J, Homa F L et al. Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1and plays a role in retrograde cellular transport. J Biol Chem. 2004,279: 28522-28530.
    
    19 Antinone S E, Shubeita G T, Coller K E et al. The herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus. J Virol. 2006, 80: 5494-5498.
    
    20 Dohner K, Radtke K, Schmidt S et al. Eclipse phase of herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26. J Virol. 2006, 80: 8211-8224.
    
    21 Tomishima M J, Smith G A, Enquist L W. Sorting and transport of alpha herpes viruses in axons. Traffic. 2001, 2: 429-436.
    
    22 Granzow G, Klupp B G, Mettenleiter T C. Entry of pseudorabies virus: an immunogold-labeling study. J Virol. 2005, 79: 3200-3205.
    
    23 Luxton G W, Haverlock S, Coller K E, et al. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci. 2005, 102: 5832-5837.
    
    24 Wolfstein A, Nagel C H, Radtke K, et al. The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic. 2006, 7: 227-237.
    
    25 AH M A, Forghani B, Cantin E M. Characterization of an essential HSV-1 protein encoded by the UL25 gene reported to be involved in virus penetration and capsid assembly. Virology. 1996,216:278-283.
    
    26 Ogasawara M, Suzutani T, Yoshida I, et al. Role of the UL25 gene product in packaging DNA into the herpes simplex virus capsid: Location of UL25 product in the capsid and demonstration that it binds DNA. J Virol. 2001, 75(3): 1427-1436.
    
    27 Newcomb W W, Homa F L, Brown J C. Herpes Simplex Virus Capsid Structure:DNA Packaging Protein UL25 Is Located on the External Surface of the Capsid near the Vertices. J Virol. 2006, 80 (13): 6286-6294.
    
    28 Trus B L, Newcomb W W, Cheng N Q et al. Allosteric Signalling and a Nuclear Exit Strategy: Binding of UL25/UL17 Heterodimers to DNA-filled HSV-1 Capsids. Mol Cell. 2007,26(4): 479-489.
    
    29 Bowman B R, Welschhans R L, Jayaram H et al. Structural Characterization of the UL25 DNA-Packaging Protein from Herpes Simplex Virus Type 1. J Virol.2005, 80(5): 2309-2317.
    
    30 Mcnab A R, Desai P, Person S et al. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol. 1998, 72(2): 1060-1070.
    
    31 Kaelin K, Dezelee S, Masse M J et al. The UL25 protein of pseudorabies virus associates with capsids and localizes to the nucleus and to microtubules. J Virol.2000, 74(1):474-482.
    
    32 Sheaffer A K, Newcomb W W, Gao M et al. Herpes Simplex Virus DNA Cleavage and Packaging Proteins Associate with the Procapsid prior to Its Maturation. J Virol. 2001, 75(2): 687-698.
    
    33 Stow N D. Packaging of genomic and amplicon DNA by the herpes simplex virus type 1 UL25-null mutant KUL25NS. J Virol. 2001, 75(22): 10755-10765.
    
    34 Klupp B G, Granzow H, Keil G M et al. The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids. J Virol. 2006, 80 (13): 6235-6246.
    
    35 Topp K S, Meade L B, LaVail J H. Microtubule polarity in the peripheral processes of trigeminal ganglion cells: relevance for the retrograde transport of herpes simplex virus. J Neurosci. 1994, 14: 318-325.
    
    36 Sodeik B, Ebersold M W, Helenius A. Microtubule mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. Cell Biol. 1997, 136:1007-1021.
    
    37 Bearer E L, Breakefield X O, Schuback D et al. Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument.Proc Natl Acad Sci. 2000, 97: 8146-8150.
    
    38 Dohner K, Wolfstein A, Prank U et al. Function of dynein and dynactin in herpes simplex virus capsid transport type 1. Mol Biol Cell. 2002,13: 2795-2809.
    
    39 Dohner K, Sodeik B. The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol. 2005,285: 67-108.
    
    40 Diefenbach R J, Miranda-Saksena M, Douglas M W et al. Transport and egress of herpes simplex virus in neurons. Rev Med Virol. 2007
    
    41 Diefenbach R J, Miranda-Saksena M, Diefenbach E et al. Herpes simplex virus tegument protein US 11 interacts with conventional kinesin heavy chain. J Virol.2002,76:3282-3291.
    
    42 Benboudjema L, Mulvey M, Gao Y et al. Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain related protein PAT1 results in the redistribution of both polypeptides. J Virol. 2003, 77: 9192-9203.
    
    43 Ch'ng T H, Enquist L W. Neuron-to-cell spread of pseudorabies virus in a compartmented neuronal culture system. J Virol. 2005, 79: 10875-10889.
    
    44 del Rio T, Ch'ng T H, Flood E A et al. Heterogeneity of a fluorescent tegument component in single pseudorabies virus virions and enveloped axonal assemblies.J Virol. 2005, 79: 3903-3919.
    
    45 Ohara P T, Chin M S, LaVail J H. The spread of herpes simplex virus type 1 from trigeminal neurons to the murine cornea: an immunoelectron microscopy study. J Virol. 2000, 74: 4776-4786.
    
    46 Ohara P T, Tauscher A N, LaVail J H. Two paths for dissemination of Herpes simplex virus from infected trigeminal ganglion to the murine cornea. Brain Res.2001,899:260-263.
    
    47 Tomishima M J, Enquist L W. In vivo egress of an alpha herpesvirus from axons.J Virol. 2002, 76:8310-8317.
    
    48 Enquist LW, Tomishima M J, Gross S et al. Directional spread of an alpha herp- esvirus in the nervous system. Vet Microbiol. 2002, 86: 5-16.
    
    49 LaVail J H, Tauscher A N, Aghaian E et al. Axonal transport and sorting of herpes simplex virus components in a mature mouse visual system. J Virol. 2003, 77:6117-6126.
    
    50 Saksena M M, Wakisaka H, Tijono B et al. Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in middistal regions of axons. J Virol. 2006, 80: 3592-3606.
    
    51 LaVail J H, Tauscher A N, Sucher A et al. Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid. Neuroscience. 2007, 146:974-985.
    
    52 Snyder A, Bruun B, Browne H M et al. A herpes simplex virus gD-YFP fusion glycoprotein is transported separately from viral capsids in neuronal axons. J Virol. 2007, 81: 8337-8340.
    
    53 Coller K E, Lee J I, Ueda A et al. The capsid and tegument of the alpha herpes-viruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol. 2007, 81(21): 11790-11797.
    
    54 Alber F, Dokudovskaya S, Veenhoff L M. The molecular architecture of the nuclear pore complex. 2007,450: 695-701.
    
    55 Pouton C W, Wagstuff K M, Roth D M et al. Targeted delivery to the nucleus.Adv Drug Deliv Rev. 2007, 59: 698-717.
    
    56 Ojala P M, Sodeik B, Ebersold M W et al. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol Cell Biol. 2000,20:4922-4931.
    
    57 Dasgupta A, Wilson D W. ATP depletion blocks herpes simplex virus DNA packaging and capsid maturation. J Virol. 1999, 73:2006-2015.
    
    58 Whittaker G R. Virus nuclear import. Adv Drug Deliv Rev. 2003, 55: 733-747.
    
    59 Greber U F, Fassati A. Nuclear import of viral DNA genomes. Traffic. 2003, 4:136-143.
    
    60 Giannakakou P, Sackett D L, Ward Y et al. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol. 2000, 2:709-717.
    
    61 Lam M H, Thomas R J, Loveland K L et al. Nuclear transport of parathyroid hormone (PTH)-related protein is dependent on microtubules. Mol Endocrinol.2002,16:390-401.
    
    62 Roth D M, Moseley G W, Glover D J. A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic. 2007, 8: 673-686.
    
    63 Sexton T, Schober H, Fraser P et al. Gene regulation through nuclear organization. Nature Struct Biol. 2007,14: 1049-1055.
    
    64 Pickersgill, H. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet. 2006, 38: 1005-1014.
    1 金奇主编.医学分子病毒学.北京:科学出版社.2001,第一版:712-732.
    2 Ali M A,Forghani B,Cantin E M.Characterization of an essential HSV-1protein encoded by the UL25 gene reported to be involved in virus penetration and capsid assembly.Virology.1996,216:278-283.
    3 Davison A J,Dargan D J,Stow N D.Fundamental and accessory systems in herpesviruses.Antiviral Res.2002,56:1-11.
    4 Mori I,Nishiyama Y.Accessory gene define the relationship between the herpes simplex virus and its host.Microbes Infect.2006,8:2556-2562.
    5 Kaelin K,Dezelee S,Masse M J et al.The UL25 protein of pseudorabies virus associates with capsids and localizes to the nucleus and to microtubules.J Virol.2000,74(1):474-482.
    6 Ogasawara M,Suzutani T,Yoshida I,et al.Role of the UL25 gene product in packaging DNA into the herpes simplex virus capsid:Location of UL25 product in the capsid and demonstration that it binds DNA.J Virol.2001,75(3):1427-1436.
    7 Newcomb W W,Homa F L,Brown J C.Herpes Simplex Virus Capsid Structure:DNA Packaging Protein UL25 Is Located on the External Surface of the Capsid near the Vertices.J Virol.2006,80(13):6286-6294.
    8 Trus B L,Newcomb W W,Cheng N Q et al.Allosteric Signalling and a Nuclear Exit Strategy:Binding of UL25/UL17 Heterodimers to DNA-filled HSV-1Capsids.Mol Cell.2007,26(4):479-489.
    9 Bowman B R,Welschhans R L,Jayaram H et al.Structural Characterization of the UL25 DNA-Packaging Protein from Herpes Simplex Virus Type 1.J Virol. 2005, 80(5): 2309-2317.
    
    10 Addison C, Rixon F J, Palfreyman J W et al. Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. Virology. 1984,138: 246-259.
    
    11 Mcnab A R, Desai P, Person S et al. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol. 1998, 72(2): 1060-1070.
    
    12 Yu D, Weller S K. Herpes simplex virus type 1 cleavage and packaging proteins UL15 and UL28 are associated with B but not C capsids during packaging. J Virol. 1998, 72: 7428-7439.
    
    13 Beard P M, Taus N S, Baines J D et al. DNA cleavage and packaging proteins encoded by genes U(L)28, U(L)15, and U(L)33 of herpes simplex virus type 1 form a complex in infected cells. J Virol. 2002, 76(10): 4785-91.
    
    14 Homa F L, Brown. J C. Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol. 1997, 7: 07-22.
    
    15 Baker M L, Jiang W, Rixon J et al. Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol. 2005, 9: 4967-4970.
    
    16 Homa, F. L., and J. C. Brown. Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol. 1997, 7:107-122.
    
    17 Mettenleiter T C. Herpesvirus assembly and egress. J Virol. 2002, 76: 1537-1547.
    
    18 Stow N D. Packaging of genomic and amplicon DNA by the herpes simplex virus type 1 UL25-null mutant KUL25NS. J Virol. 2001, 75(22): 10755-10765.
    
    19 Sheaffer A K, Newcomb W W, Gao M et al. Herpes Simplex Virus DNA Cleavage and Packaging Proteins Associate with the Procapsid prior to Its Maturation. J Virol. 2001, 75(2): 687-698.
    
    20 Klupp B G, Granzow H, Keil G M et al. The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids. J Virol. 2006, 80 (13): 6235-6246.
    
    21 Coller K E, Lee J I, Ueda A et al. The capsid and tegument of the alpha herpesviruses are linked by an interaction between the UL25 and VP1/2 proteins.J Virol. 2007, 81(21): 11790-11797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700