基于ARM&FPGA的数控裁切机控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动刀数控裁切机是应用于柔性产品加工场合的自动化裁切设备,是机电一体化技术的典型应用,在服装、鞋业、箱包、手袋、航空、船舶、汽车、工艺美术等领域有着广泛的应用前景。本文基于ARM7&FPGA嵌入式控制器及数控技术原理,对一种四轴数控振动刀裁切系统进行了设计。该系统利用微机作为上位机,进行图形数据格式转换处理和裁切文件管理;下位机采用基于ARM7&FPGA的嵌入式双核控制平台,通过基于FPGA大规模门阵列电路开发的DSP内核实现对裁切机械X、Y、Z、U四轴的运动控制。系统既可作为教学实验系统,又可进一步应用到数控裁切、切割、雕刻、绘图、喷绘系统领域。
     本文主要对数控振动刀裁切机控制电路、控制软件的设计和程序实现,以及系统采用的算法、运动控制处理、指令解析以及通信处理方式等进行了研究。主要完成了如下工作:
     (1)研究和比较国内外同类产品的功能,提出控制系统的功能需求,构建了其总体框架,对OSM860运动控制系统的工作原理进行了探讨,并设计调试程序,深入研究了该系统实现运动控制的方法。
     (2)对数控加减速曲线、插补算法和数控指令进行了探讨,并建立各种加减速曲线的数学模型。分析轻工行业在数控速度控制方面的特殊要求,构建了新的直线、曲线和圆弧加工时的速度控制方法,实现了微小直线段的高速平稳加工。
     (3)基于面向对象的软件开发方法,开发了通信与数据转换软件,实现了上位机与下位机控制系统的通信与批量数据管理。
     (4)基于面向过程的软件开发方法,编程实现了裁切机各控制功能模块。
     控制系统采用ARM7&FPGA双核设计方案,充分利用ARM7嵌入式系统丰富的资源,提高系统处理能力。并利用运动控制系统提供的功能和丰富的库函数能方便地实现多种数控功能,能大幅度提高开发效率,缩短开发周期。
Numerically-controlled Vibrating Knife Cutting Machine is a kind of automatic equipment applied in processing of flexible products. And as a typical application of electromechanical integration technology, it has wide application prospect in clothing, shoes, luggage industry, handbags, aircrafts, ships, automobiles, etc. In this paper, based on ARM7 & FPGA embedded controllers and NC technology, a 4-axis numerically-controlled vibrating knife cutting machine is designed. The system uses microcomputer as the host computer for processing of graphics data format conversion and cutting documents management. On the other hand, the embedded dual-core control platform basing on ARM7 & FPGA is applied as the lower computer. Then we can control the motion of X axis, Y axis, Z axis, and U axis in the cutting machine by DSP core (DSP core has been designed based on FPGA large-scale gate array circuit). The system can be used as a teaching experimental system and it also can be used in NC cutting, cutting, carving, drawing, and the field of inkjet system.
     In this paper, Control circuits, design and program implementation of control software of numerically-controlled vibrating knife cutting machine, and algorithms, motion control processing, command parsing, and communications processing methods of the system were studied. The main research works are as follows:
     (1)Based on studies and feature comparisons of similar products at home and abroad, functional requirements of control system was proposed and its overall framework was built. The working principle of OSM860 motion control system was discussed and its debugging program was designed. And methods for realization of motion control were also studied.
     (2)NC acceleration and deceleration curves, interpolation algorithms and NC instructions were discussed, and the mathematical model of acceleration and deceleration curves were established. Based on analysis of specific speed control requirements of light industry, a new speed control method on processing of line, curve and arc was proposed to realize a smooth micro-line segment of high-speed machining.
     (3)ased on object-oriented software development methodology, a communication and data conversion software was designed to realize communication and batch data management of control system between the host computer and the lower computer. (4)Based on process-oriented software development methodology, control function modules of the cutting machine was implemented by programs.
     The control system applied the dual-core design scheme of ARM7 & FPGA, which takes full advantage of rich resources in ARM7 embedded system and system processing capabilities have been improved greatly. And we can use the functionalities and rich library functions provided by motion control system to fulfill a variety of NC functions to improve development efficiency and shorten the development cycle.
引文
[1]周祖德,龙毅宏,刘泉等.嵌入式网络数控与系统[J].机械工程学报,2007,5(5):1-7
    [2]陈雪梅.基于嵌入式系统的服装CAD绘图机的开发[D].天津:天津工业大学,2003
    [3]周立功.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2005
    [4]Raj Kamal,陈曙晖,王继进编著.嵌入式系统-体系结构、编程与设计[M].北京:清华大学出版社,2005
    [5]宁波经纬数控设备有限公司[EB/OL]. http://www.jingwei.com.cn
    [6]中国工控网.数控论坛[EB/OL]. http://www.gkong.com
    [7]聂延崇.数控机床的抗干扰技术[J].组合机床与自动化加工技术,2001:34-35
    [8]李本忍,李家雯.对我国数控系统可靠性的一些看法[J].中国机械工程,1998,9 (5):11-15
    [9]孟玲霞,徐小力,王小川.基于WindowsCE.NET的串行通信的实现[J].北京机械工业学院学报, 2004,19(3):31-36
    [10]王小芳.基于WinCE的I2C驱动程序设计[J].单片机与嵌入式系统应用,2006,(4):28-30
    [11]刘小龙.基于WINDOWS CE. NET的数控系统中断体系的研究[J].现代机械,2005,(5):60-62
    [12]王宏颖.抗干扰在数控系统中的设计[J].机床电器,2006,(5):21-23
    [13]王子涵.控平板式高精度数控切绘机的设计[D].湘潭:湘潭大学,2004
    [14]Samsung Electronic Co. LDT. S3C2410A– 200MHz & 266MHz 32-Bit RISC Microprocessor User's Manual,Revision1.0[EB/OL] http://www.samsung.com/products/semiconductor/MobileSoC/ApplicationProcessor/ARM9Series/S3C2410/S3C2410.htm, March 2004
    [15]傅光宁,葛思擘,王燕飞等.基于ARM+FPGA的可重构控制器设计及其在加载系统中的应用[J].微电子学与计算机,2006,(7)
    [16]张玉立,马立云,张贺艳.基于ARM和FPGA的LED显示屏控制系统的设计[J].计算机测量与控制,2009,(12):2429-2431
    [17]曾金芳,杨恢先,李正义.基于USB20C模块的单片机系统与PC机快速通信的实现[J].电子器件,2005,28(4):925-929
    [18]沈连丰等编著.嵌入式系统及其开发应用[M].北京:电子工业出版社,2005
    [19]金晟.基于ARM的嵌入式数控系统的研究[D].杭州:浙江大学,2005
    [20]王田苗.嵌入式系统设计及实例开发——ARM与μCOS-Ⅱ[M].北京:清华大学出版社,2002
    [21]王田苗,陈友东,孙恺等.基于UC/OS-2嵌入式数控系统研制[J].北京航空航天大学学报,2006,32(4):471—480
    [22]张伟,贺赛先.基于WinCE.Net的USB Camera驱动开发[J].计算机工程,2006,32(13):274-276.
    [23]刘雄伟编著.数控加工理论与编程技术[M].北京:机械工业出版社,1994
    [24]叶佩青,汪劲松.MCX314运动控制芯片与数控系统设计[M].北京:北京航空航天大学出版社,2002:1-4
    [25]Erkorkmaz K. Altintas Y. High speed CNC system design.Part II : modeling and identification of feed drives[J] . Inter2 national Journal of Machine Tools and Manufacture , 200141 (8) :1487– 1509
    [26]高山.数控系统遥控器及人机界面的研究与设计[D].合肥工业大学,2000
    [27]黄涛,白创,徐靖.嵌入式无线互联系统开发[M].北京:中国电力出版社,2007
    [28]张晓林,崔迎炜等.嵌入式系统设计与实践[M].北京:北京航天航空大学出版社,2006
    [29]步进电机调速曲线参数说明,哓奇工作室[EB/OL]. http://www.xiao-qi.com
    [30]曾金芳.基于运动控制卡的数控切绘机控制系统[D].湘潭:湘潭大学,2007
    [31]彭丹丹.高速高精度数控雕刻机控制技术的研究[D].合肥:合肥工业大学,2005
    [32]范圣一.ARM原理与嵌入式系统实战[M].北京:机械工业出版社,2007
    [33]《SMP86x:高性能嵌入式的通用运动控制平台手册》深圳市斯迈迪科技发展有限公司
    [34]黄才能.利用VB从字库中提取汉字字模代码[J].工业控制计算机,2002(8):63~64
    [35]深圳潮丰公司,图形点阵液晶显示模块FM12232C使用手册
    [36]王宇晗等.小线段高速加工速度衔接数学模型[J].上海交通大学学报,2004,38(6): 901-904
    [37]钟庆等.快速成型中的微线段连续高速高精度插补[J].华中理工大学学报,2000,28(3): 39-41
    [38]丛爽,尚伟伟.运动控制中点到点控制曲线的性能研究[J].机械与电子,2005,(7): 16-19
    [39]李恩林.插补原理[M].北京:机械工业出版社,1984
    [40]王太勇.快速最小偏差插补算法[J].组合机床与自动化加工技术,2003,(6)
    [41]郭新贵,李从心.S曲线加减速算法研究[J].机床与液压,2002,(5):60-62
    [42]王飞.三次B样条反算的一种简便算法[J].北京邮电大学学报, 1996, 19(3): 82-88
    [43]陈昌明.数值分析[M].厦门:厦门大学出版社, 1998: 142-148
    [44]张红.三次B-spline曲线反求的实现[J].广东石油化工专科学校学报, 1995, 8(1): 27-31
    [45]陈金成,徐志明等.基于分段三次样条曲线的高速加工平滑运动轮廓自适应算法研究[J].机械工程学报,2002,38(5):61-65
    [46]肖轶军,丁明跃,彭嘉雄.基于B样条的空间自由曲线三维重建[J].自动化学报, 2000, 26(4): 572-576
    [47]胡建华,廖文和等.CNC系统中几种升降速控制曲线的研究与比较[J].南京航空航天大学学报,1999,31(6):706-711
    [48]徐建方.CNC加减速控制算法及其数控加工误差的研究[J].机械设计与制造, 2001,(4):38-39
    [49]许良元等.高速加工中加减速控制的研究[J].中国制造业信息化,2005,34(2): 124-126
    [50]许良元等.加速度连续可变的加减速控制规律研究[J].组合机床与自动化加工技术,2005,(3): 12-13
    [51]沈立,张晨曦.黑白图像的矢量化[J].计算机辅助设计与图形学学报, 2000, 12(3):170-173
    [52]王德英,李新友,唐泽圣.图纸图像上线条的交互拾取,计算机学报[J]. 1997, 20(10): 925-932
    [53]郭炳炎,朱建新,周济.工程图形扫描图像的智能识别[J].计算机应用研究, 1998, 15(3): 13-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700