机器人型钢切割离线编程技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内造船行业用的型钢多是手工切割,切割效率低,产品一致性难以保证,工作环境恶劣。机器人柔性程度高,适合于组建型钢自动切割生产线,能够提高生产效率和切割质量,已经成为型钢切割的发展趋势。机器人型钢切割系统的核心是离线编程技术,能够实现CAD/CAM/Robot一体化。本文针对目前型钢机器人切割离线编程中的特征建模复杂,型钢型面之间过棱处切割质量差以及坡口形式单一等问题,对离线编程技术进行研究。
     首先,从实用化的角度建立了机器人型钢切割离线编程技术的总体框架,重点对切割特征建模、切割特征编程、型钢切割标定等关键技术进行研究。开发了特征建模软件,通过导入DXF文件或绘图的方式获得基本的特征图形。切割特征以系列化的路径存储,开发了参数化绘图算法,提高了特征建模效率。
     其次,对切割的特征编程进行了研究。采用有向无环图完成了型钢切割的场景设计,建立了可维护的型钢类型库,并且进行了切割的路径规划。根据切割路径在型钢上的坡口特征以及切割路径连续的特点,开发了轮廓偏置求交算法,实现了切割路径变坡口的机器人位置姿态的规划。在偏置求交算法的基础上结合球扁钢和角钢的在过棱处的特点,提出了过棱处理算法,从而保证了在过棱处机器人等离子枪的平稳切割。
     最后,用MotomanUP20机器人和等离子切割的方式完成了机器人型钢切割离线编程的试验。在扁钢上实现了各种复杂图形的切割,验证了参数化编程算法的可行性,在扁钢上完成了变坡口切割路径的切割,切割坡口角度满足工况条件的切割要求。在角钢上进行了过棱切割试验,过棱处机器人及等离子割枪切运动平稳,转角过渡平滑,型钢断面处没有错位。
Currently, the shape-steel is cut mostly by hand in the domestic shipbuilding industry, thus, the efficiency is low, the consistency of product is difficult to be guaranteed and the working environment is bad. The robot with highly flexible, is suitable for forming automatic product line of shape-steel cutting, so that product efficiency and cutting quality is improved, which is the trend of shape-steel cutting. The core of robot shape-steel cutting system is the off-line programming technology that can achieve the integration of CAD/CAM/Robot. The study of this thesis is off-line programming technology, aiming to solve such problems as the complexity of feature modeling, the bad quality when crossing the edge between steel surfaces, the simple bevel style and so on.
     Firstly, the overall frame of off-line programming technology in robot shape-steel cutting has been established from the utilization point of view. The focus of this study is the key technology of cutting feature modeling, cutting feature programming, and shape-steel cutting calibration. A feature modeling software has been developed, and the basic features are obtained by importing the DXF file or the mode of drawing. The cutting feature is stored by serial paths, and parametric drawing algorithm has been developed, so that the efficiency of feature has been improved.
     Secondly, the feature programming is studied. The scene design has been finished by directed acyclic graph, the library of shape-steel which can be maintained is established and the path planning of cutting is carried out. Contour offset intersection algorithm has been developed based on the feature of the groove style of the shape-steel and the consecutive trait of cutting path, realizing the planning of the robot position and pose while cutting the shape-steel with changing groove. On the basis of the offset intersection algorithm, combined with the edge characteristic of the bulb steel and the angle steel, crossing the edge algorithm has been put forward, guaranteeing the smooth cutting of the robot plasma gun cross the edge.
     Finally, the off-line programming experiments for robotic shape-steel cutting using Motoman UP20 by the way of plasma cutting have been finished. The cutting of various complex graphics has been realized in the flat steel, which proved the feasibility of the parametric programming algorithm. The cutting path with changing bevel has been finished and the groove angle meets the cutting requirements in working conditions. The edge cutting experiment in the angle steel has been carried out, and the move of the robot and plasma gun is smooth. The edge transition is flat, and the shape-steel profile has no mismatch.
引文
1.殷浩澍.中国造船现代化进程中的自动化热切割解决方案.专题综述. 2007, 2: 13-16
    2.姚尧.浅谈机器人在现代工业空间切割上的应用.应用能源技术. 2007, (11): 46-47
    3.何广忠.机器人弧焊离线编程系统及其自动编程技术的研究.哈尔滨工业大学博士学位论文. 2006: 9-19
    4.邱涛.弧焊机器人柔性加工单元系统集成及优化技术研究.哈尔滨工业大学博士论文. 2001: 54-55
    5. Shaneen Ahmad, Shengwu Luo.Coordinated Motion Control of Multiple Robotic Devices for Welding and Redundancy Coordination Through Constrained Optimization in Cartesian Space. IEEE Transactions on Robotics and Automation. 1989, 5(4): 409-417
    6. Yonglun Cheng, Shiqiang Zhu and Lijian Luo. Kinematics Analysis and Simulation of QJ26R Welding Robot Based on Matlab. Mechanical and Electrical Engineering Magazine. 2007, 24(11): 107-110.
    7. Guangcai Tian, Jinyou Xu. The Kinematic Simulation of High Speed Reduction Reducer Based on Pro/E and ADAMS. Precise Manufacturing and Automation. 2008, (2): 39-41
    8.杨光远.多层多道路径自动规划及双机器人协调研究.哈尔滨工业大学博士学位论文. 2008: 2-3
    9. Maria Gini. The Future of Robot Programming. Robotica. 1987, 5(2): 235-246
    10. G.C. Carvalho, et al. Off-Line Programming of Flexible Welding Manufacturing Cells. Journal of Materials Processing Technology. 1998, 78(1): 24-28
    11. Ju-Hsien Kao, et al. Collision Avoidance Using Asynchronous Teams. Proceeding of the 1996 IEEE International Conference on Robotics and Automations, Minneapolis, Minnesota, USA, 1996, (4): 1093-1100
    12. Ole Madsen, Carsten Bro Sorensen, Rune Larsen, Lars Overgaard Niels J. Jacobsen. A System for Complex Welding Robots. 2002, 29(2): 127-131
    13.张延松.汽车制造中焊接新技术的应用与总体发展趋势.机械工人. 2002,(5): 12-15
    14.魏延辉,李瑞峰.HHRB100搬运机器人码垛程序的离线编程.制造业自动化. 2005, 10(25): 27-29
    15. Phil Howie. Graphic Simulation for Off-line Robot Programming. Robotics Today. 1984, 6(2): 63-65
    16. John Owens. Microcomputer-Based Industrial Robot Simulatiot and Off-line Programming System. Robotics Today. 1995, 18(7): 1-3
    17.张继禹等.一个大型机器人仿真系统—ROBCAD.哈尔滨工业大学学报. 1993, 25(3): 108-113
    18. RobotStudio-Industrial IT Software, Introduction, ABB Robotics. 2001: 1-3
    19. MotoSim, Introduction, MotoMan INC. 2001: 1-2
    20. S. Padmanabhan and M. S. Devgun. Representation of Weld Features and Attibutes in Solid Models to Support Automatic Programming of Arc Welding Robots. Int. J. Prod. Res. 1993, 31(4): 977-1000
    21. Dong-won Kim, Takeshi Kishinami, Young-june Kang, and Katsumasa Saito. A Feature Based Modelling of a Welded Plate Construction. Journal of Materials Processing Technology. 1994, 44(3): 257-264
    22.林三宝.焊接变位机方案设计CAD技术的研究.哈尔滨工业大学博士学位论文. 2000: 15-42
    23. Hitoshi Maekawa. Motion Generation in an Off-line Programming System for an Arc-welding Robot. Sensors and Control Systems in Arc Welding. 1994, (5): 333-341
    24.冯胜强,胡绳荪.基于UG的弧焊机器人离线编程系统的设备建模.焊接学报. 2008, 29(4): 89-92
    25. J.P. Harrison and Rakesh Mahajan. The IGRIP Approach to Off-line Programming and Workcell Design. Robotics Today. 1986, 8(4): 25-26
    26. R.O. Buchal, et al. Simulated Off-Line Programming of Weld Robots. The International Journal of Robotics Research. 1989, 8(3): 31-43
    27. Shaheen Ahmad and Shengwu Luo. Coordinated Motion Control of Multiple Robotic Devices for Welding and Redundancy Coordination through Constrained Optimization in Cartesian Space. IEEE Trans. on Robotics and Automation. 1989, 5(4): 409-418
    28. S. Padmanabhan and M. S. Devgun. Representation of Weld Features andAttibutes in Solid Models to Support Automatic Programming of Arc Welding Robots. Int. J. Prod. Res. 1993, 31(4): 977-1000
    29.唐新华, Paul Drews等.机器人三维可视化离线编程和仿真系统.焊接学报. 2005, 26(2): 64-68
    30.武传松,许磊.基于ROTSY的弧焊机器人离线编程.电焊机,材料科学与工程学院. 2009, 39(1): 45-48
    31.陈新会.现代切割技术在数控切割中的应用.机械管理开发. 2006, (3): 50-52
    32.张华.我国切割技术的应用现状及发展趋势.机械工人. 2004, (5): 22-25
    33.陈洁,郑鹏.数控等离子切割技术及应用.新技术新工艺. 2009, (2): 80-82
    34.王连仲,崔永元.国内外数控等离子切割技术的发展趋势.机械工人. 2002, (5): 15-21
    35.李浩.浅谈全新数控切割技术方法.现代焊接. 2007, (1); 21-23
    36. Kim Cheol Soon, Kim Myeong Hoon, Lee Soo Jun, Se-Han Lee, Jong-Keun Park. Development of OLP based Automation Program for Cutting Process Improve of Shape Steel Cutting Robot. 2008, (10): 2374-2378
    37.李鹏.基于Agent的机器人切割系统.上海交大硕士学位论文. 2009: 1-5
    38.范玉顺等编著.复杂系统的面向对象建模、分析与设计.清华大学出版社, 2000: 11-75
    39.张海藩.软件工程导论.第3版.清华大学出版社, 1998: 176-230
    40.蒋秀凤.面向对象的软件开发.软件世界, 1997, (3): 9-12
    41.董高云,郭海英,赵锡芳. VC6.0绘图时映射模式转换及其坐标偏差的消除.计算机与应用研究. 2000, (6): 149-150
    42.姜蓓.机器人等离子切割离线编程技术.上海交通大学硕士学位论文. 2008:
    9-12
    43.肖南峰,赵洁.数据结构与算法(C++语言版).电子工业出版社. 2009:
    167-170
    44. Xu-Zheng Liu, Jun-Hai Yong, Guo-Qin Zheng, Jia-Guang Sun. An Offset Algorithm for PolylineCurves. Computers in Industry. 2007,(58): 240–254
    45.蔡自兴.机器人学.清华大学出版社. 2000: 54-60
    46. John J.Craig.机器人学导论.贠超.第3版.机械工业出版社. 2006: 13-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700