氧化石墨烯负载金属硫化物(CdS,ZnS)的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫化物纳米材料因其独特的物理化学性质显示出在光学、传感、催化和电学等领域广泛的应用前景。氧化石墨(GO)具有准二维层状结构,层面上含有大量-OH、-COOH、-C=O、环氧基等极性官能团,具有丰富的嵌入化学特性。通过原位生长将氧化石墨与金属硫化物结合形成复合材料,不仅可解决金属硫化物团聚问题,而且由于复合效应,以期获得良好的电化学性能。
     本文首先以乙二胺为溶剂,采用溶剂热法成功制备了氧化石墨烯负载三臂叉状纳米硫化镉复合物(tetrapods-CdS/GO),并考察了硫源、加水量等反应条件对复合物的形貌影响。研究表明以醋酸镉为镉盐,硫化钠为流源,无水乙二胺为溶剂,120℃时反应12h时能获得形貌比较完整的三臂叉状CdS/GO复合物。
     在此基础上,考虑到溶剂对复合物微观结构的显著影响,以乙醇、乙二醇、N,N-二甲基甲酰胺(DMF)等作为溶剂制备了不同微结构的氧化石墨烯-纳米硫化镉复合材料(CdS/GO),考察了硫源、分散剂等反应条件影响规律。初步研究了不同微结构CdS纳米晶的生长过程以及氧化石墨作为载体与硫化镉的作用机理。
     在制备CdS/GO的基础上,以乙醇和DMF为溶剂成功制备了氧化石墨烯负载纳米硫化锌复合物(ZnS/GO),考察了溶剂、分散剂等反应条件对复合物形貌的影响。结果表明以醋酸锌为锌盐,硫化钠为硫源,乙醇为溶剂,并添加乙二胺四乙酸(EDTA)为分散剂,140℃时反应24h时能获得负载均匀的ZnS/GO复合物。
     通过循环伏安法对制备的产物进行了电化学性能测试。根据循环伏安曲线,复合物CdS/GO及ZnS/GO的电容和循环性能都较单纯的CdS及ZnS大幅提高。负载于GO表面硫化物的粒径及其分散性对复合物的电容影响较大。
Owing to unique physical properties, nanostructual metal sulfides have exhibited promising applications in many fields such as optics, sensors, catalysis and electrics. Graphite oxide(GO) is a typical two-dimensional layered nanomaterial with plenty of functional groups (such as hydroxyl, carboxyl, carbonyl, epoxy groups) on its sruface, bestowing it with rich intercalation properties. The combination of GO with metal sulfide nanocrystals may result in improved electrochemical properties.
     In this work, a composite of GO decorated with tetrapods-CdS nanoparticles (tetrapods-CdS/GO) was firstly fabricated via a solvothermal method using ethylenediamine (en) as the solvent. The effects of reaction parameters (sulfide precursors and the addition of De-ioned water) on the morphology and texture of as-obtained products were considered. It showed that tetrapods-CdS/GO was synthesized solvothermally at 120℃for 12h, by using Cd(CH3COO)2-2H2O and Na2S·9H2O as raw materials, pure en as solvent.
     Taking into account of the facts that solvent exerts a great influnce on the microsturctue of as-synthesized products. Different solvents, like ethonal、ethylene glycol and DMF, were considered as the compensatory system for preparing GO-CdS nanocomposites. Some reaction parameters, like sulfur sources and dispersant was also discussed. The possible mechanism was discussed.
     On the basis of above experiments, the GO-zinc sulfide nanocomposites (ZnS/GO) were fabricated in the ethanol and DMF system, with the influence of sulfur source and dispersant into consideration. It showed that the well dispersed ZnS/GO was synthesized solvothermally at 140℃for 24h, by using Zn(CH3COO)2·2H2O and Na2S·9H2O as raw materials, EDTA as surfactant, ethanol as solvent.
     The electrochemical properties of the samples were studied with cyclic voltammetris (CV). The results indicat that the as-obtained composites (CdS/GO and ZnS/GO) have a superor specific-capacitance as well as electeochemcial stabilities than their individual components (CdS, ZnS, and GO). The dispersibility and microstructrue of metal sulfide on GO play a vital role in their electrochemical activities.
引文
[1]Wang Y, Herron N. Nanometer-sized semiconductor clusters:materials synthesis size effects and photophysical properties[J]. J. PhyS. Chem,1991,95(2):525-532.
    [2]徐力,江林,李铁津.水相中两种不同荧光CdS纳米粒子的合成[J].吉林大学学报(理学版),2003,41(2):241-244.
    [3]Y. H. Li, K. L. Huang, Z. F. Yao. RuO2/CO3O4 thin films prepared by spray pyrolysis technique for supercapacitors[J]. J Solid State Electrochem,2010,14:1205-1211.
    [4]Wu N L, Wang S Y, Han C Y. Electrochemical capacitor of magnetite in aqueous electrolytes. J. Power Sources,2003,113(1):173-178.
    [5]Wang Y, Herron N. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties[J]. J. Phys. Chem.,1991,95(2): 525-532.
    [6]Li L S, Hu J T, Yang W D, et al. Band gap variation of size-and shape-controlled colloidal CdSe quantum rods[J]. Nano. Lett.2001,1:349-351.
    [7]Gudiksen M S, Lauhon L J, Wang J. Growth of nanowire super lattice structures for nanoscale photonics and electronies[J]. Nature,2002,415:617-620.
    [8]Quan Z, Wang Z, Fang J. Synthesis and characterization of high-quality ZnS, ZnS:Mn2+,and ZnS:Mn2+/ZnS(core/shell) Luminescent nanocrystals[J]. Inorganic Chemistry,2007,46(4):1354-1360.
    [9]C. M. Lieber. One-dimensional nanostructures:chemistry, physics and applications[J]. Solid State Commun.,1998,107:607-616.
    [10]M. Chen, Y. Xie, J. Lu. Snythesis of rod-, twinrod-and tetrapod-shaped CdS nanocrystals using a highly oriented solvothemral recryrstallization technique[J]. J. Mater. Chem.,2002,12:748-753.
    [11]Wu Y, Xiang J, Yang C, W Lu, et al. Single-crystal metallic nanowires and metal/ semiconductor nanowire hetrostructures[J]. Nature,2004,430:61-65.
    [12]Milliron D J, Hughes S M, Cul Y, et al. Colloidal nanocrystal heterostructures with linear and branched topology[J]. Nature,2004,430:190-195.
    [13]Kazes M, Lewis DY, EbensteinY, et al. Lasing from semiconductor quantum rods in a cylindrical microcavity[J]. Adv. Mater.2002,14:317-321.
    [14]Bruehez M, Moronne M, Gin P, et al. Semiconductor nanocrytals as fluorescent biological labels[J]. Science,1998,281:2013-2016.
    [15]张辉.Ⅱ-Ⅵ族半导体材料ZnS纳米粒子研究进展[J].黄山学院学报,2006, 8(5):25-27.
    [16]Herron N, Calabrese J C, Farneth W E, et al. Crystal structure and optical properties of Cd32S14(SC6H5)36. DMF4 a cluster with a 15 angstrom cadium sulfide core[J]. Science., 1993,259:1426-1428.
    [17]丁优仙,王迎春,刘建军等.不同晶型纳米CdS的合成及其光催化活性[J].化学研究,2009,20(2):12-16.
    [18]Dimitrova V, Tate J. Synthesis and characterization of some ZnS-based thin film phosphors for electroluminescent device applications[J]. Thin Solid Films.2000,365:134-138.
    [19]王文忠,谭琳.低温固相合成形貌和晶相可控的CdS纳米晶[J].中央民族大学学报(自然科学版),2008,17(1):5-9.
    [20]B. P. Zhang, W. X.Wang, T. Yasuda. Self-assembled very long Ⅱ-Ⅵ semiconductor quantum wires[J]. Materials Science and Engineering B,1998,51:224-228.
    [21]刘辉,李文友,尹洪宗,CdS纳米粒子制备的影响因素及CdS纳米粒子的酚藏红花体系的光谱特性[J].化学学报,2005,63(4):301-306.
    [22]苏凌浩,张校刚,脲酶诱发均匀沉淀法室温制备纳米CdS[J].功能材料与器件学报,2005,11(3):273-276.
    [23]Antony A, Murali K V, Manoj R, et al. The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films[J]. Materials Chemistry and Physics, 2005,90:106-110.
    [24]Amitabha Chattopadhyay, Soumi Mukherjee, H. Raghuraman. Reverse Micellar Organization and Dynamics:A Wavelength-Selective Fluorescence Approach[J]. J. Phys. Chem. B,2002,106:13002-13009.
    [25]吕彤,张玉婷,微乳液法制备CdS超细粒子研究[J].云南大学学报(自然科学版),2002,24(1A):178-180.
    [26]Hirai T, Sato H, Komasaw I. Mechanism of formation of CdS and ZnS ultrafine particles in reverse micelles[J]. Ind. Eng. Chem. Res.,1994,33(12):3262-2367.
    [27]Dmitri. V. Talpain, Robert Koeppe, Stephan Gotzinger, Highly emissive colloidal CdSe/CdS heterosturctures of mixed dimensionality[J]. Nano. Lett.,2003,3:1677-1681.
    [28]Haggata S W, LI X C, David J, et al. Synthesis and characterization of Ⅱ-Ⅵ semiconductor nanoparticulates by the reaction of a metal alkyl polymer adduct with hydrogen sulfide[J]. J. Mater. Chem.,1996,6(11):1771-1775.
    [29]Huaqiang Cao, YanXu, Jianming Hong. Sol-gel template Synthesis of an array of single crystal CdS nanowires on a porous Alumina Template[J]. Adv. Mater.,2001,13: 1393-1394.
    [30]John G Brennan, T. Siegrist, P. J. Carroll, The Preparation of Large Semiconductor Clusters via the Pyrolysis of a Molecular Precursor[J]. J. Am. Chem. Soc.,1998, 111:4141-4143.
    [31]Jum Suk Jang, Upendra A.Joshi, Jae Sung Lee. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production[J]. J. Phys. Chem. C., 2007,111:13280-13287.
    [32]Wei Chen, Kebi Chen, Qing Peng, Yadong Li. Triangular CdS Nanocrystals:Rational Solvothermal Synthesis and Optical Studies[J]. Small,2009,5(6):681-684.
    [33]Qiang Gong, Xuefeng Qian, Pingle Zhou. In Situ Sacrificial Template Approach to the Synthesis of Octahedral CdS Microcages[J]. J. Phys. Chem. C,2007,111:1935-1940.
    [34]Fei Chen, Renjia Zhou, HongZheng Chen. One-step fabrication of CdS nanorod arrays via solution chemistry[J]. J. Phys. Chem. C,2008,112:13457-13462.
    [35]S. Gilje, S. Han, M.S. Wang, K. L. Wang, R. B. Kaner. A chemical route to graphene for device applications[J]. Nano. Lett.,2007,7(11):3394-3398.
    [36]A Martin Rodriguez, P S Valerga Jimenez. Some new aspects of graphite oxidation at 0℃ in a liquid medium:a mechanism proposal for oxidation to graphite oxide[J]. Carbon, 1986,24(2):163-167.
    [37]Y Matsuo, K Watanabe, T Fukuysuka, Characterization of n-hexadecy-lakylamine-intercalated graphite oxide as sorbents[J]. Carbon,2003,41(8):1545-1550.
    [38]W Hummers, R Offeman. Preparation of graphite oxide[J]. J. Am. Chem. Soc,1958, 80:1339-1342.
    [39]T Nakajima, A Mabuchi, R Hagiwara. A new structure model of graphite oxide[J]. Carbon,1988,26(3):357-361.
    [40]M Mermoux, Y Chabre, Arousseau. FTIR and 13C NMR study of graphite oxide[J]. Carbon,1991,29(3):469-474.
    [41]Hontoria-Lucas C, Lopez-Peinado A. J., Lopez-Gonzalez et al. Study of oxygen-containing groups in a series of graphite oxides:physical and chemical characterization[J]. Carbon,1995,33(11):1585-1592.
    [42]Zonhuai Liu, Zhengming Wang, Xiaojing Yang. Intercalation of organic ammonium ions into layered graphite oxide[J]. Langmuir,2002,18:4926-4932.
    [43]Y. Zhang, Y. Tan, P. Kim. Experimental observation of the quantum hall effect and Berry's phase in grapheme[J]. Nature,2005,438:201-204.
    [44]H. C. Schniepp, J. Li, M. J. McAllister. Functionalized single graphene sheets derived from splitting graphite oxide[J]. J. Phys. Chem. B,2006,110(17):8535-8539.
    [45]A. Kuc, L. Zhechkov, S. Patchkovskii. Hydrogen sieving and storage in fullerene intercalated graphite[J]. Nano. Lett.,2007,7(1):1-5.
    [46]Dan Li, Muller M. B., Scott Gilje. Processable aqueous dispersions of graphene nanosheets[J]. ARTICLES,2008,10:1-5.
    [47]Xiaobin Fan,Wenchao Peng,Yang Li,Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation[J]. Adv. Mater.,2008, 20:4490-4493.
    [48]C. Nethravathi, Michael Rajamathi. Chemically modified grapheme sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide[J]. Carbon,2008, 46:1994-1998.
    [49]Chao Xu, Xin Wang, Junwu Zhu. Graphene-Metal Particle Nanocomposites[J]. J. Phys. Chem. C,2008,112:19841-19845.
    [50]刘平桂,龚克成.苯胺嵌入氧化石墨复合物的合成及表征[J].高分子学报,2000,4:492-496.
    [51]邹艳红,吴婧.苯胺/氧化石墨的合成及其在DNA识别上的应用[J].新型炭材料,2005,20(4):360-364.
    [52]Matsuo Y, Hatase K, Sugie Y. Structure and thermal properties of poly(ethylene oxide)-intercalated graphite oxide[J]. Carbon,1997,35:113-120.
    [53]Matsuo Y, Hatase K, Sugie Y. Preparation and Characterization of Poly(vinylalcohol) and Cu(OH)2-Poly(vinyl alcohol)-Intercalated Graphite Oxides [J]. Chem. Mater.,1998, 10:2266-2269.
    [54]Matsuo Y, S. Higashika, et al. Synthesis of polyaniline-intercalated layered materials via exchange reaction[J]. J. Mater. Chem.,2002,12:1592-1596.
    [55]周文明,贺蕴秋.氧化石墨插层纳米复合材料的制备研究进展[J].材料导报,2007,21:204-206.
    [56]杨晓晶,汤卫平,大井健太.氧化石墨/水钠锰矿型锰氧化合物纳米复合材料的新合成法及其电化学性质[J].山西大学学报,2004,22:25-29.
    [57]Sheng Chen, Junwu Zhu, Xin Wang. Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties[J]. Crystal Growth and Design, XXXX, XXX(XX).
    [58]Aoneng Cao, Zhen Liu, Yuanfang Liu. A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials[J]. Adv. Mater.,2009,21:1-4.
    [59]Graeme Williams, Prashant V. Kamat. Graphene-Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide[J]. Langmuir, XXXX, XXX(XX).
    [60]Kong J, Franklin N R, Zhou C. Nanotube Molecular Wires as Chemical Sensors[J]. Science,2000,287(5453):622-625.
    [61]Yung Tang Nien, Badruz Zaman.Raman scattering for the size of CdSe and CdS nanocrystals and comparison with other techniques[J]. Materials Letters, 2008,62:4522-4524.
    [62]Jianfeng Ye, Limin Qi.Solution-phase synthesis of one-dimensional semiconductor nanostructures[J]. J.Mater.Sci. Technol.,2008,24(4):529-540.
    [63]傅玲,邹艳红,刘洪波等.氧化石墨及其聚合物纳米复合材料的研究现状[J].炭素技术,2005,2(24):21-26.
    [64]Nina I. Kovtyukhova, Patricia J. Ollivier, Benjamin R. Martin. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations[J]. Chem. Mater.,1999,11:771-778.
    [65]W Hummers, R Offeman. Preparation of graphite oxide[J]. J. Am. Chem. Soc,1958, 80:1339-1342.
    [66]P. Ramesh, S. Bhagyalakshmi, S. Sampath. Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide [J]. Journal of Colloid and Inerface Science,2004,274:95~102.
    [67]Wang Qingqing,Zhao Gaoling,Han Gaorong,Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothemal[J]. Materials Letters,2005,59:2625-2629.
    [68]Fei Li,Wentuan Bi and Tao Kong, Effect of sulfur sources on the crystal structure, morphology and luminescence of CdS nanocrystals prepared by a solvothermal method[J]. Journal of Alloys and Compounds,2009,479:707-710.
    [69]Shuhong Liu, Haiwei Lu, Zikang Zhu. Synthesis of beltlike CdS nanocrystals via solvothermal route[J]. Journal of Solid State Chemistry,2003,17:480-484.
    [70]Y. D. Yin, A. R. Alivisatos. Colloidal nanocrystal synthesis and the organic-inogranic interface[J]. Nature,2005,20(5):664-670.
    [71]Titipum Thongtem, Anukorn Phuruangrat, Somchai Thongtem. Free surfactant synthesis of microcrystalline CdS by solvothermal reaction[J]. Materials Letters,2007, 61:3232-3238.
    [72]S. Q. Sun, T. Li. Synthesis and Characterization of CdS Nanoparticles and Nanorods via Solvo-Hydrothermal Route[J]. Crystal Growth and Design,2007,7(11):2367-2371.
    [73]Xun Wang, Jing Zhuang, Yadong Li. Synthesis and characterization of sulfide and selenide colloidal semiconductor nanocrystals[J]. Langmuir,2006,22(17):7364-7368.
    [74]Dimitrova V, Tate J. Synthesis and characterization of some ZnS-based thin film phosphors for electroluminescent device applications[J]. Thin Solid Films. 2000,365:134-138.
    [75]Guangcheng Xi, Chao Wang, Xing Wang. From ZnS-eno.s nanosheets to wurtzite ZnS nanorods under solvothermal conditions[J]. J. Phys. Chem. C 2008,112:1946-1952.
    [76]G. H. Yue, P. X. Yan, D. Yan. Synthesis of two-dimensional micron-sized single-crystalline ZnS thin nanosheets and their photoluminescence properties[J]. Journal of Crystal Growth,2006,293:428-432.
    [77]李国平,罗运军.水热法制备ZnS纳米线[J].无机化学学报,2007,23(11):1864-1868.
    [78]Fan D M, Feng S A, Zhu Z P. Assembling carbon nanotube/zinc sulfide composite films in aqueous solution[J].New Carbon Materials,2006,21(4):360-364.
    [79]Wang Qingqing, Xu Gang, Han Gaorong. Solvothermal synthesis and characterization of uniform CdS nanowires in high yield[J]. Journal of Solid State Chemistry,2005, 178:2680-2685.
    [80]V. Gupta, N. Miura. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline[J]. Mater. Lett.,2006,60(12): 1466-1469.
    [81]X. C. Jiang, Y. Xie, J. Lu, Y. T. Qian. Preparation and phase transformation of nanocrystalline copper sulfides (Cu9S8, Cu7S4 and CuS) at low temperature[J]. J. Mater. Chem.,2000,10:2193-2196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700