氧化石墨烯及其复合材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过Hummers法制备氧化石墨,将其分散于有机溶剂中进行超声处理制备氧化石墨烯分散液,选取最具代表性且应用最广的两种塑料——尼龙6(PA6)、聚丙烯(PP)为基体,采用物理溶液混合法制备了聚合物/氧化石墨烯复合材料。采用傅利叶红外光谱扫描仪(FT-IR)、拉曼光谱分析(Raman)、热失重分析仪(TGA/DTG)、差示扫描量热仪(DSC)、X射线衍射仪(XRD)及偏光显微镜(POM)对氧化石墨烯及其复合体系进行了结构表征和性能测试,采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)对其微观分散性进行了观察。
     FT-IR, Raman、XRD、SEM和TEM分析表明,采用Hummers法成功制备氧化石墨,经超声处理得到了尺寸为纳米级的氧化石墨烯,能均匀分散于乙二醇中,经异氰酸酯(TDI)改性后能均匀分散于甲酸中。
     对于聚合物/氧化石墨烯复合体系,通过SEM表征观察到氧化石墨烯能均匀分散于基体中,POM、XRD和DSC分析表明氧化石墨烯的加入对聚合物基体的晶体尺寸、结晶度、结晶温度、结晶速率等影响比较显著,但不影响其晶型。氧化石墨烯一方面破坏了基体分子链的规整性,另一方面起到成核剂作用使基体的结晶性能增强。TGA/DTG分析表明氧化石墨烯的加入对基体的热稳定性影响不明显。对复合体系作热降解动力学分析的结果表明,氧化石墨烯的加入使聚合物的热降解活化能增大。
In this paper, graphite oxide was prepared by hummers method, and then was subjected to ultrasonic treatment in the organic solvents to prepare graphene oxide. Using typic polymer materials PA and PP as matrix, respectively, grapheme oxide as filler, graphene oxide/ polymer composites were prepared by physical solution blending. Graphene oxide and the composite systems were characterized by means of Fourier IR spectra (FTIR), Raman spectroscopy (Raman), Thermal gravimetric analyzer and Derivative Thermo-gravimetry (TGA/DTG), Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Polarized optical microscopy (POM). Meanwhile, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) were used to observe the microstructure of graphene oxide and the composite systems.
     The analysis results of FT-IR, Raman, XRD and TEM show that graphene oxide was successfully prepared and graphene oxide was obtained after ultrasonic treatment. The size of graphene oxide has reached the nm level. Graphene oxide can disperse well in ethylene glycol, and also disperse well in formic acid followed by isocyanate treatment.
     For the composite systems, SEM photographs show that graphene oxide could disperse well in the matrix, POM、XRD and DSC analysis results indicate that the addition of grahene oxide has a great influence on the crystal performances of the matrix, such as crystal morphology, crystallinity, crystallization temperature, crystallization rate, but has no influence on the crystal form. All of these may because that on the one hand the addition of graphene oxide destroyes the molecular chain regularity, on the other hand it enhances the crystallization of the matrix as nucleating agent. TGA/DTG analysis result shows that the addition of graphene oxide played no obvious role in the thermal stability of the matrix. With the analysis of thermal degradation kinetics, it can be concluded that with the addition of graphene oxide, the thermal degradation activation energy of the polymer increases.
引文
[1]Kroto H W, Heath J R, Curl R F, et al. C60:Buckminsterfullerene[J]. Nature,1985,318: 162-163
    [2]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58
    [3]Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature,2007,446(7131):60-63
    [4]Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences,2005,102(30):10451-10453
    [5]Novoselov K S, Geim A K,Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669
    [6]黄毅,陈永胜.石墨烯的功能化及其相关应用[J].中国科学B辑:化学,2009,39(9):887-896
    [7]宋克敏,李国山,冯玉玲等.混酸法制备低硫可膨胀石墨[J].无机材料学报,1996,11(4):749-750
    [8]Kang F, Leng Y. Electrochemical synthesis and characterization of formic-graphite intercalation compound[J]. carbon,1997,35(8):1089
    [9]Genhua Zheng, Jingshen Wu, Wenping Wang, et al. Characteriztions of expanded graphite/polymer composites prepared by in situ polymerization[J]. Carbon,2004,42: 2839-2847
    [10]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene based composite materials[J]. Nature,2006,442(7100):282-286
    [11]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448:457-460
    [12]Si Y C, Samulski E T. Synthesis of Water Soluble Graphene[J]. Nano Lett,2008,8: 1679-1682
    [13]D Li, Kaner R B. Graphene-Based Materials[J]. Science,2008,320:1170-1171
    [14]Geim A K, Novsoselov K S. The rise of graphene[J]. Nature mateials,2007,6:183-191
    [15]Ritter K A, Lyding J W. Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunneling microscopy [J]. Nanotechnology,2008,19(1):015704
    [16]Ezawa M. Supersymmetry and unconventional quantum Hall effect in monolayer, bilayer and trilayer graphene[J]. Physica E:Low-dimensional systems and Nanostructures,2007,40(2):269-272
    [17]Yang Geng, Shu Jun Wang, Jang Kyo Kim.Preparation of graphite nanoplatelets and graphene sheets[J]. Journal of Colloid and Interface Science,2009,336:592-598
    [18]徐秀娟,秦金贵,李振.石墨烯研究进展[J].化学进展.2009,21(12):2259-2265
    [19]Parvizi F, Teweldebrhan D, Ghosh S I, et al. Properties of graphene produced by the high pressure-high temperature growth process[J]. Micro & Nano Letters,2008,3(1): 29-34
    [20]Mcallister M J, Li J L, Adamson D H, et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite [J]. Chem Mater,2007,19:4396-4404
    [21]Lee C G, Wei X D, Kysar J W, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J]. Science,2008,321:385-388
    [22]Kovtyukhova N I, Olliver P I, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films frommicron-sized graphite oxide sheets and polycations[J]. Chem Mater 1999,11:771-778
    [23]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature nanotechnology,2008,3:101-105
    [24]周文明,贺蕴秋.氧化石墨插层纳米复合材料的制备研究进展[J].材料导报,2007,21(4):204-208
    [25]Weihua Kai, Yuuki Hirota, Lei Hua, et al. Thermal and mechanical properties of Poly(s-caprolactone)/graphite oxide composite[J]. Journal of Applied Polymer Science, 2008,107,1395-1400
    [26]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007; 45:1558-1565
    [27]Blagbrough I S, Mackenzie N E, Ortiz C, et al. The condensation reaction between isocyanates and carboxylic acids. A practical synthesis of substituted amides and anilides[J]. Tetrahedron Lett,1986,27(11):1251-1254
    [28]Szabo T, Berkesi O, Dekany I. Drift study of deuterium-exchanged graphite oxide[J]. Carbon,2005,43(15):3186-3189
    [29]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448:457-460
    [30]Park S J, Lee K S. Graphene oxide papers modified by divalentions-Enhancing mechanical properties via chemical cross-linking[J]. ACS Nano,2008,23:572-578
    [31]Stankovich S, Piner R D, Nguyen S T. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets [J]. Carbon,2006,44:3342-3347
    [32]Stankovich S, Piner R D, Chen X Q. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) [J]. Mater Chem,2006,16:155-158
    [33]Ruoff R. Calling all chemists[J]. Nature Nanotechnol,2008,3:10-11
    [34]B C Brodie, On the atomic weight of graphite, Phil.Trans. Roy Soc,1859,149: 249-259
    [35]Staudenmaier L, Verfahren Zur Darstellung Der Graphitsaure, Ber. Dtsh. Chem. Ges. 1898,31:1481-1499
    [36]Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. ACS,1958,80:1339
    [37]Li X L, Wang X R, Zhang L. Chemically derived-ultrasmooth grapheme nanoribbon semiconductors[J]. Science,2008,319:1229-1232
    [38]Viculis L M, Mack J J, Mayer O M. Intercalation and exfoliation routes to graphite nanoplatelets[J]. Journal of Material Chemistry,2005,15:974-978
    [39]Teplykh A E, Bogdanov S G, Dorofeev Y A, et al. Structural state of expanded graphite prepared from intercalation compounds[J]. Crystallography Reports,2006,51: S62-S66
    [40]Schniepp H C, Li J L, Mcallister M J, et al. Functionalized single grapheme sheets derived from splitting graphite oxide[J]. Phys Chem:B,2006,110(17):8535-8539
    [41]Sclladler L S, giammris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites[J]. Appl Phys Lett,1998,73:3842-3847
    [42]Ramesh P, Bhagyalakshmi S, Sampath S. Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide [J]. Journal of Colloid and interface Science,2004,274(1):95-102
    [43]Liu N, Luo F, Wu H X, et al. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite[J]. Adv Funct Mater,2008,18:1518-1525
    [44]Wang J J, Zhu M Y, Outlaw R A, et al. Free-standing subnanometer graphite sheets[J]. Applied Physics Letters,2004,85(7):1265-1268
    [45]Dato A, Radmilovic V, Lee Z H, et al. Substrate-Free Gas-Phase Synthesis of Graphene Sheets[J]. Nano Lett,2008,8:2012-2016
    [46]Antisari M V, Montone A, Jovic N, et al. Low energy pure shear milling:A method for the preparation of graphite nano-sheets[J]. Scripta Materialia,2006,55:1047-1050
    [47]Sun G L, Li X J, Qu Y D, et al. Preparation and characterization of graphite nanosheets from detonation technique[J]. Materials Letters,2008,62:703-706
    [48]Ju H M, Huh S H, Choi S H, et al. Structures of thermally and chemically reduced graphene[J]. Materials Letters,2010,64:357-360
    [49]Tung V C, Allen M J, Yang Y, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors[J]. Nano Letters,2009,9(5):1949-1955
    [50]Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance [J]. Adv Funct Mater,2009,19: 1987-1992
    [51]Chattopadhyay J, Mukherjee A, Billups W E, et al. Graphite epoxide[J]. American Chemical Society,2008,130(16):5414-5415
    [52]Watcharotone S, Dikin D A, Stankovich S, et al. Graphene-Silica Composite Thin Films as Transparent Conductors [J]. Nano Lett,2007,7:1888-1892
    [53]Wu Z S, Ren W C, Cheng H M, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation[J]. ACS Nano,2009,411-417
    [54]Tung V C,Allen M J,Yang Y et al. Nat Nanotech,2009,4:25
    [55]Xu C, W u X, Zhu J, et al. Synthesis of amphiphilic graphite oxide [J]. Carbon,2008, 46:386-389.
    [56]杨建国,牛文新,李建设等.聚苯乙烯/氧化石墨纳米复合材料的制备与性能[J].高分子材料科学与工程,2005,21(5):55-58
    [57]Pinggui Liu,Peng Xiao,Min Xiao, et al. Synthesis of poly(vinyl acetate)-intercated graphite oxide by an in situ intercalative polymerization[J]. Chinese journal of polymer science,2000,18(5):413-418
    [58]Liu Zh, Wang Z M, Yang X, et al. Intercalation of organic ammonium ions into layered graphite oxide[J]. Langmuir,2002,18(12):4926-4932
    [59]Matsu Y, Higashika S, Kimura K, Synthesis of polyaniline-intercalated layered material via exchange reaction[J]. Mater Chem,2002; 12:1592-1596
    [60]Matsuo Y, Hatase Y, Sugie Y. Monomer emission from pyrene adsorbed in surfactant-intercalated graphite oxide[J]. Chem commun,1999(1):43-44
    [61]Matsuo Y, Watanabe K, Fukutsuka T, et al. Characterization of n-hexadecylalkyl amine-intercalated graphite oxides as sorbents[J]. Carbon,2003,41(8):1545-1550
    [62]Matsuo Y, Fukutsuka T, Sugie Y. Preparation and fluorescent properties of rhodamine B-hexadecylamine-intercalated graphite oxide thin film[J]. Chem Lett,2003,32(11): 1004-1005
    [63]Matsuo Y, Tabata T, Fukunaga T, et al. Preparation and characterization of silylated graphite oxide[J]. Carbon,2005,43(14):2875-2882
    [64]Matsuo Y, Fukutsuka T, Sugie Y. Monomeric dispersion of covalently attached pyrene chromophores in silylated graphite oxide[J]. Chem Lett,2006,35(5):530-531
    [65]Matsuo Y. Preparation of intercalation compounds of graphite oxide[J]. TANSO,2007, (228):209-214
    [66]Matsuo Y, Miyabe T, Fukutsuka T, et al. Preparation and characterization of alkylamine-intercalated graphite oxides[J]. Carbon,2007,45(5):1005-1012
    [67]Matsuo Y, Nishino Y, Fukutsuka T, et al. Introduction of amino groups into the interlayer space of graphite oxide using 3-amino propylethoxysilanes[J]. Carbon,2007, 45(7):1384-1390
    [68]Lomeda J R, Doyle C D, Kosynkin D V, et al. Diazonium functionalization of surfactant wrapped chemically converted graphene sheets [J]. American Chemical Society,2008,130:16201-16206
    [69]Song Yujun, Qu konggang, Zhao chao, et al. Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Advanced Materials,2010, 22:1-5
    [70]Zhang K, Dwivedi V, Chi C Y, et al. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water [J]. Journal Hazardous Materials,2010
    [71]Singh V K, Patra M K, Manoth M, et al. In situ synthesis of graphene oxide and its composites with iron oxide[J]. New Carbon Materials,2009,24(2):147-152
    [72]Kai W H, Yuuki H, Yoshio I, et al. Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite[J]. Applied Polymer Science,2008, 107:1395-1400
    [73]Verdejo R, Bujans F B, Rodriguez M A, et al. Functionalized graphene sheet filled silicone foam nanocomposites[J]. Mater Chem,2008,18:2221-2226
    [74]Ramanathan T, Abdala A A, Stankovich S. Functionalized graphene sheets for polymer nanocomposites[J]. Nature nanotechnology,2008,3:327-331
    [75]Wissler M. Graphite and carbon powders for electrochemical applications[J]. Journal of Power Sources,2007,156:142-150
    [76]Gengchao Wang, Zhenyu Yang, Xingwei Li, el at. Synthesis of poly (aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method[J]. Carbon,2005,43:2564-2570
    [77]傅玲,刘洪波,邹艳红,等.Hummers法制备氧化石墨时影响氧化程度的工艺因素 研究[J].炭素,2005,4:10-14
    [78]张磊.氧化石墨及其聚合物纳米复合材料的制备及表征[D].山东:青岛大学,2009
    [79]Szabo T, Berkesi O, Dekany I. Drift study of deuterium-exchanged graphite oxide[J]. Carbon,2005,43(15):3186-3189
    [80]Xu chao, Wang Xin.Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates[J]. Small,2009,5(19):2212-2217
    [81]Ding R F, Hu Y, Gui Z, et al. Preparation and characterization of polystyrene/graphite oxide nanocomposite by emulsion polymerization[J]. Polymer Degradation and stability,2003,81:473-476
    [82]Rui-hitzky E.Conducting polymers intercalated in layered solids[J]. Adv.Mater,1993, 5(5):334-340
    [83]Alexandre M, Onbois D. Polymer-layered silicate nanocomposites:preparation, properties and users of new class of materials[J]. Mater Sci Eng:R:Reports,2000, 28(1):1-63
    [84]Tyan H L, Leu C M, Wei KH.Effect of reactivity of organics-modified montmorillonite on the thermal and mechanical properties of montmorillonite/polyimide nanocomposites[J]. Chem Mater,2001,13(1):222-226
    [85]孔晓丽,刘勇兵,杨波.纳米复合材料的研究进展[J].材料科学与工艺,2002,10(4):436-441
    [86]Flory P J, Do Yeung Yoon. Molecular morphology in semicrystalline polymers[J]. Nature,272(5650):226-229
    [87]Wang Guoxiu, Wang Bei, Jinsoo Park, et al. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method [J]. Carbon,2009, 47:68-72
    [88]Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon,2006,44:3342-3347
    [89]Stankovich S, Dikin D A, Dommett G H, et al. Graphene based composite materials[J]. Nature,2006,442(7100):282-286
    [90]Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. [J]. Composite. Chemistry.1997,18: 393-402.
    [91]Everson Kandare, Deng H M, Wang D Y, et al. Thermal stability and degradation kinetics of poly(methyl methacrylate)/layered copper hydroxyl methacrylate composites[J]. Polym. Adv. Technol.2006,17:312-319
    [92]Bradhury E M, Brown L, Elliott A, et al. The structure of the gamma form of polycaproamide(Nylon 6)[J]. Polymer,1965,6(9):465-482
    [93]Jiang T, Liu M Y, Fu P, et al. Melting behavior, isothermal and nonisothermal crystallization kinetics of nylon 1111[J]. Polymer Engineering and Science,2009, 1002,1366-1374
    [94]Gurato G, Fichera A, Grandi F Z, et al. Crystallinity and polymorphism of 6-polyamide[J]. Macromolecular Chemistry and Physics,2003,175(3):953-975
    [95]Kyotani M, Mitsuhashi S. Studies on crystalline forms of nylon6. Ⅱ. Crystallization from the melt[J]. Journal of polymer science Part A-2(polymer Physics),1972,10(8): 1497-14508
    [96]Magill J H. Crystallization kinetics study of nylon 6[J]. Polymer,1962,3:Polymer 655-664
    [97]Campoy I, Gomez M A, Marco C. Structure and thermal properties of blends of nylon 6 and liquid crystal copolyester[J]. Polymer,39(25):6279:6288
    [98]王玮.PP/mica复合材料界面增强作用及机理研究[D].安徽:合肥工业大学,硕士学位
    [99]李文华.碳纳米管的修饰及改性聚丙烯复合材料的研究[D].湖南:湖南大学,2008
    [100]徐卫兵,戈明亮,何平笙.聚丙烯/蒙脱土纳米复合材料非等温结晶动力学的研究[J].高分子学报,2001,5:584-588
    [101]肖文昌.β晶型聚丙烯的结晶行为及结晶动力学,硕士论文,复旦大学
    [102]Jang X L, Zhang Y, Zhang Y X. Crystallization behavior of dynamically cured polypropylene/epoxy blends [J]. Journal of polymer Science:Part B:Polymer Physics, 2004,42(7):1181-1191
    [103]Avrami. Kinetics of phase change[J]. J Chem Phys,1940(8):212-214
    [104]Ozawa T. Kinetics of non-isothermal crystallization[J]. Polymer,1971,1:150-158
    [105]Ziabicki A. Kinetics of Polymer crystallization and molecular orientation in the course of melt spinning[J]. Appl Polym Symp,1967,6:1
    [106]Ziabicki A. T can be converted into crystallization time t with various cooling rate[J]. Coll Polym Sci,1974,6:252
    [107]Douillard A, Dumazet Ph, Chabert B, et al. A comparative model for an isothermal and isothermal crystallization of poly(ethylene terephthalate)[J]. Polymer,1993,34(8): 1702-1708
    [108]Caze C, Devaux E, Crespy A, et al. A new method to determine the Avrami exponent by d.s.c studies of non-isothermal crystallization from the molten state[J]. Polymer, 1997,38(3):497-502
    [109]Jeziorny A. Parameters Characterizing the kinetics of the non-isothermal crystallization of poly ethylene terephthalate determined by DSC[J]. Polymer,1978, 19:1142-1144
    [110]Lee S W, Park C E, Jung Y K, et al. Synthesis and non-isothermal crystallization behaviors of poly(ethylene isophthalate-co-terephthalate)[J]. Polymer,1999,40: 7137-7146
    [111]Gopakumar T G, Lee J A, KontopoulouM, et al. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites[J]. Polymer,2002, 43(20):5483-549
    [112]Sachin J, han G, Martin V D, et al. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene[J]. Polymer,2005,46:8805-8818
    [113]Lorenzo M L, Silvestre C. Non-isothermal crystallization of polymers [J]. Prog Polym Sci,1999,24(6):917-950
    [114]Kim S H, Ahn S H, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate)[J]. Polymer,2003,44(19):5625-5634
    [115]Liu Y, Yang G S. Non-isothermal crystallization kinetics of polyamide-6/Graphite oxide nanocomposites[J]. Thermochimica Acta,2010,500:13-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700