表面支撑的钽掺杂硅团簇几何和电子结构性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
团簇是介于微观和宏观之间的一物质结构新层次,由于量子尺寸效应,团簇的稳定性、磁学和光学等常会表现出很多新颖的性质。硅作为微电子领域一种重要的半导体材料,其团簇形式已被众多的理论和实验所研究,纯的硅团簇不像炭的团簇那样稳定。通过掺杂适当的过渡金属原子,不但有效改善了纯的硅团簇的稳定性,而且大大改善了硅团簇的电子特性。之前对过渡金属硅团簇的理论研究多集中于对自由团簇的研究,本文考虑到实验中的具体环境(如:衬底),建立了一系列graphene表面支撑的TaSin(n=1-3,12)团簇的计算模型,并采用密度泛函方法对该体系的几何和电子结构进行计算研究。另外,论文最后报道了d电子数目互补的过渡金属Irn和Tan(n=4-10,12,13)自由团簇的对比研究。
     第三章主要运用MedeA-VASP软件中的PAW密度泛函理论方法研究了graphene表面支撑的TaSin(n=1-3,12)团簇的几何稳定性、电子转移特性、差分电荷密度。结果表明,TaSin (n=1,2,3)团簇最稳定的吸附位置都是Ta原子在芯(H)位上,而TaSi12只能吸附在顶(T)位上。前者的Ta—-Si键长以及它们距graphene表面的距离,发生了较大的变化,而TaSi12的几何结构几乎没有变化。这是因为Si原子数目较小的时候,如n=1或2时,团簇中的Ta原子与graphene表面的C原子相互作用比较强,因而团簇与表面的相互作用大;随着Si原子数目增大,Ta原子慢慢被Si原子团簇包围,减弱了与graphene表血的相互作用,当n=12时,TaSi12中Ta原子已经被Si原子完全包裹在中心,因此团簇几乎和表面之间没有相互作用。从吸附能的数值上看,平均吸附能随着Si原子数目增加而减小。TaSi和TaSi2在graphene表而是化学吸附,TaSi3和TaSi12则是物理吸附。在吸附过程中,由于过渡金属钽与石墨烯之间存在电荷转移,这就导致了石墨烯电子结构将被掺杂,随着团簇尺寸的不同,这种掺杂方式也不同,当团簇尺寸较小时,这种掺杂表现出n型掺杂,而团簇较大尺寸时,则为p型掺杂。
     第四章主要运用ADF软件中考虑相对论的密度泛函方法对同处于第六周期、但d电子数目互补的过渡金属Irn和Tan(n=4-10,12,13)团簇的的几何结构稳定性,电子结构和磁性等性质。Irn团簇的基态结构主要以非紧凑的棱柱、简立方等中空结构为增长方式,而Ta。团簇的基态结构则按紧凑密堆积结构为增长方式。Irn和Ta。的平均结合能都表现出尺寸效应,随尺寸增大,团簇的结合能也不断增大,但增加方式有所不同,Irn团簇的结合能曲线表现出微弱的奇偶振荡,而Tan团簇的增长曲线比较平滑,总体看来,Tan团簇的平均结合能远大于Irn团簇的。Irn(n=4-10)的能量二阶差分,最低未占据轨道和最高占据轨道之间的能隙(HOMO-LUMO gap)及原子平均磁矩都随团簇尺寸表现出比较明显的奇偶振荡,而Tan(n=4-10)的这些参量曲线振荡表现较弱, Irn的偶数团簇相对稳定,而Tan的奇数团簇更稳定。另外,除Ta4团簇LUMO-HOMO能隙较大外,其余的Ir。和Tan团簇的能隙都很小,说明它们都有较强的活性;Irn(n=4-7)的原子平均磁矩明显高于相应尺寸的Tan团簇,n>8的Irn团簇的平均磁矩和相应尺寸的Tan团簇都相对较低。
Nanocluster is a unique mesoscope structure between micro and macro-scaled particles. With the quantum size effect of the clusters, some novel phenomena related with the geometrical, electrical, magnetic and optical properties appear. Silicon clusters have been investigated extensively in experimental and theoretical reports as a significant semi-conducter material. Since the pure silicon clusters are geometrically unstable, dopping appropriate transition metals (TM) not only can effectively stabilize the clusters, also improve the electronic properties of them. The previous researches mainly focused on free TM adulterating silicon clusters (TM@Sin). Considering the experimently specific condition (such as:the substrate), this paper have constructed a series of computational models of TM@Sin clusters supported on graphene and calculated them by density functional theory (DFT). Additionally, the properties of Irn and Tan(n=4-10.12,13) clusters are contrastively studied for their complementary d electrons.
     The third chapter mainly studied the geometrical and electrical properties of TaSin(n=1-3,12) supported on graphene by PAW density functional theory(DFT) in MedeA-VASP software package, including the structural stability, charge transfer property as well as difference charge density. It is showed that Ta atom prefers locating over the hollow site of graphene for TaSin(n=1-3) clusters with obvious shifts of the Ta-Si bonds and binding distances between the clusters and subetrate. However, TaSi12 only can be physically adsorbed above the top sits of grapheme with almost original structrue. It is rationalized when considering the interaction between Ta and C is gradually weakened with the increasing of Si atoms which surrounded the Ta. The interaction is comparatively strong between TaSin (n=1-3) and grapheme. While, Ta atom nearly interacts with C atom until Si atoms increases to 12 since Ta atom is capsulated in the center of 12 Si atoms. From the point of adsorption energy (Ea), the average Ea decreased with the nuber of silicon atoms increasing, leading to chemisorption between TaSin(n=1,2) and graphene and physisorption between TaSin(n=3,12) and grapheme.During the adsorption, charges transfer appears between transitional metal and grapheme, leading to a p or n doping in the electronic structure of grapheme. Graphene will be n doped for TaSin (n=1,2) adsorption, on the contrary, p doped for TaSin (n=3,12).
     The geometrical and electrical structures of Irn and Tan(n=4-10,12 and 13) clusters, both period 6 elements with complementary d electrons, are contrastively investigated by relativistic density functional method in the fourth chapter. The ground state structures of Irn favor non-compact structures growth pattern like prism or simple cubic, while Tan clusters are more supportive of compact structures. The average binding energies of Irn and Tan (n=4-10) clusters show size effect. The curve of Irn displays a little oscillates, while that of Tan ascends smoothly. The second-order difference of energy, the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and the atomic average magnetic moments for the lowest-energy Irn (n=4-10) geometries all show obvious odd-even alternative behaviors which is weak for Tan (n=4-10) clusters. And Irn clusters with even number are more stable than those with odd number, but it is converse for Tan. In addition, the gaps between HOMO and LUMO are generally smaller than 0.3 eV except Ta4, indicating a strong chemical activity. The atomic average magnetic moments for lrn(n=4-7) are far higher than those of Tan, while they are very close and comparatively low when n>8.
引文
[1]王广厚,团簇物理学[M].北京:科学技术出版社出版发行,2003:1
    [2]Stein G. D., Atoms and molecules in small aggregates [J]. Phys Teach,1997,17:503-512
    [3]冯端,金国均,凝聚态物理学的新进展Ⅱ[J].物理学进展,1991,11(2):127-213
    [4]Kroto H. W., Heath J. R., O'Brien S. C., et al. C60:Buckminster. Fullerene[J]. Nature (London)1985,318:162-163
    [5]Harris I. A., Kidwell R. S., and Northby J.A., Structure of Charged Argon Clusters Formed in a Free Jet Expansion [J]. Phys. Rev. Lett.,1984,53,2390-2393
    [6]Redemann K., Kaiser B., Even U., et al. Size dependence of the gradual transition to metallic properties in isolated mercury clusters [J]. Phys. Rev. Lett.,1987,59:2319-2321
    [7]Ho J., Ervin K. M. and Lineberger W. C., Photoelectron spectroscopy of metal cluster anions:Cu, Ag, and Au [J]. J. Chem. Phys.,1990,93:6987-7002
    [8]Kaiser B. and Redemann K., Photoelectron spectroscopy of neutral mercury clusters Hgx (x≤109) in a molecular beam [J]. Phys. Rev. Lett.,1992,69:3204-3207
    [9]Sinfelt J. H., Structure of metal catalysts [J]. Rev. Mod. Phys.,1979,51,69-589
    [10]龙娟,密堆积构型贵金属团簇的几何和电子结构的理论计算[D].上海:上海交通大学,2008
    [11]Blaise G., Material Characterization Using Ion Beams (edited by Thomas J P and Cachard A) [M]. Plenum Press,1978,143
    [12]Billas I. M. L., Becker J. A., Chatelain A., et al., Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature [J]. Phys. Rev. Lett.,1993,71: 4067-4070
    [13]Bucher J. P., Douglass D. C., Bloomfield L. A., Magnetic properties of free cobalt clusters [J]. Phys. Rev. Lett.,1991,66(23):3052-3055
    [14]Louderback J. G., Cox A. J., Lising L. J., Douglass D. C. et al., Magnetic properties of nickel dusters [J]. Z. Phys. D,1993,26:301-303
    [15]Duan H. M., Gong X. G., Zheng Q. Q., Electronic structure and magnetic properties of Ni clusters [J]. J. Appl. Phys.,2001,89,7308-7310
    [16]Douglass D. C., Bucher J. P., Bloomfield L. A., Magnetic studies of free nonferromagnetic clusters [J]. Phys. Rev. B,1992,45:6341-6344
    [17]Liu F., Khanna S. N., Jena P., Magnetism in small vanadium clusters [J]. Phys. Rev. B, 1991:8179-8182
    [18]Reddy B. V., Khanna S. N., Jena P., Strucutre and magnetic ordering in Cr8 and Crl3 clusters [J]. Phys. Rev. B,1999,60:15597-15600
    [19]Cox A. J., Louderback J. G, Apsel S. E. et al., Magnetism in 4d-transition metal clusters[J]. Phys. Rev. B,1994,49,12295-12298
    [20]Cox A. J., Louderback J. G., Bloomfield L. A., Experimental observation of magnetism in rhodium clusters [J]. Phys. Rev. Lett.,1993,71,923-926
    [21]Palpant B., Prevel B., Lerme J. et al., Optical properties of gold clusters in the size range 2-4 nm [J]. Phys. Rev. B,1998,57:1963-1970
    [22]Hornyyak G. L., Patrissi C. J., Martin C. R., Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites:the nonscattering Maxwell-Garnett limit [J]. J. Phys. Chem. B,1997,101:1548-1555
    [23]Bell A. T., The impact of nanoscience on heterogeneous catalysis [J]. Science,2003, 299(5613),1688-1691
    [24]盖志刚,铜团簇稳定构型和能量及计算机模拟研究[D].兰州:兰州大学,2007
    [25]王广厚,趋向统一发展的团簇科学[J].物理,1998,27(6):338-343
    [26]王广厚,团簇物理的新进展[J].物理学进展,1991,14(2):121-172
    [27]王广厚,团簇及其制备检测技术[J].现代科学仪器,1998,1,61-74
    [28]王广厚,团簇物理学的新进展(Ⅰ)[J].物理学进展,1994,14(2):121-172
    [29]Gleiter H. Nanocrystalline materials [J]. Progress in Materials Science,1989,33(4): 223-315
    [30]Shingu P. H., Huang B., Nishitani S. R. et al, Nano-meter order crystalline structures of Al-Fe alloys produced by mechanical alloying [J]. Suppl. to Trans. Jpn. Inst. Met.,1988, 29(3A):3-10
    [31]Lu K., Wang J. T., Wei W. D., A new method for synthesizing nanocrystalline alloys [J]. J. Appl. Phys,1991,69:522-524
    [32]Rohlfing E. A., Cox D. M., Kaldor A., Photoionization of isolated nickel atom clusters [J]. J. Phys. Chem.,1984,88(20):4497-4502
    [33]Vager Z., Kanter E. P., Both G. et al., Direct determination of the stereochemical structure of Ch4+[J]. Phys. Rev. Lett,1986,57:2793-2795
    [34]Islamgaliev R. K., Chmelik F., Gibadullin I. F., et al. The nanocrystalline structure formation in germanium subjected to severe plastic deformation [J]. Nanostructured Materials,1994,4(4),387-395.
    [35]罗沉,钯团簇结构演化、异相催化氢分子的密度泛函理论研究[D].北京:中国地质大学,2007
    [36]丁峰,纳米团簇结构‘J热力学性质的理论研究[D].南京:南京大学,2001
    [37]Jarrold M. F., Nanosurface chemistry on size-selected silicon clusters [J]. Science,1991 252:1085-1092
    [38]Raghavachari K. and Logovinsky V., Structure and bonding in small silicon clusters [J]. Phys. Rev. Lett.,1985,55:2853-2856
    [39]Ho K.M., Shvartsburg A. A., Pan B. C, et al., Structures of medium-sized silicon clusters [J]. Na.ure (London) 1998,392:582-585
    [40]Broyer M. et al., In Cluster Assembled Materials, Material Science Forum 1996,232:27
    [41]Jackson K., Nellemore B., Zr-At-Si-20-A Strongly bound Si endohedral system [J]., Chem. Phys. Lett.1996,254:249-256
    [42]Beck S. M., Studies of silicon cluster-metal atom compound formation in a supersonic molecular beam [J]. J. Chem. Phys.1987,87(7):4233-4234
    [43]Hiura H., Miyazaki T., Kanayama T., Formation of Metal-Encapsulating Si Cage Clusters [J]. Phys Rev Lett.,2001,86:1733-1736
    [44]Ohara M., Miyajima K., Pramann A., et al, Geometric and Electronic Structures of Terbium-Silicon Mixed Clusters (TbSin; 6≤n≤16) [J]. J. Phys. Chem. A,2002,106 (15):3702-3705
    [45]Grubisic A., Wang H. P, Ko Y. J. Photoelectron spectroscopy of europium-silicon cluster anions.EuSin-(3≤n≤17) [J]. J.Chem.Phys,2008,129(5):054302-1-054302-5
    [46]Koyasu K., Atobe J., Furuse S., Anion photoelectron spectroscopy of transition metal-and lanthanide metal-silicon clusters:MSin (n=6-20)[J]. J.Chem.Phys,2008,129 (21), 214301-1-214301-7
    [47]Kumar V., Kawazoe Y., Metal-Encapsulated Fullerenelike and Cubic Caged Clusters of
    Silicon [J]. Phys. Rev. Lett.,2001,87,045503-045506
    [48]Kumar V., Kawazoe Y., Magic behavior of Si15M and Si16M (M=Cr, Mo, and W) clusters [J]. Phys. Rev. B.,2000,65(7):073404-073407
    [49]Kumar V., Kawazoe Y., Metal-doped magic clusters of Si, Ge, and Sn:the finding of a magnetic superatom [J]. Appl. Phys. Lett.,2003,83(13):2677-2679
    [50]Zandvliet H. J. W., Moere R. Van, Poelsema B., Free energy and stiffness of (110) and (010) steps on a (001) surface of a cubic lattice:Revival of the solid-on-solid model [J]. Phys. Rev. B,2003,68:073404-073407
    [51]Kawamura H., Kumar V., Kawazoe Y., Growth, magic behavior, and electronic and vibrational properties of Cr-doped Si clusters [J]. Phys. Rev. B,2004,70:245433-245442
    [52]Kawamura H., Kumar V., Kawazoe Y., Growth behavior of metal-doped silicon clusters SinM (M=Ti,Zr,Hf; n=8-16) [J]. Phys. Rev. B,2005,71,075423-075432
    [53]Singh A.K., Kumar V., Kawazoe Y., Stabilizing the silicon fullerene Si20 by thorium encapsulation [J]. Phys. Rev. B,2005,71:115429-115434.
    [54]Khanna S. N., Rao B. K., Jena P., Magic Numbers in Metallo-Inorganic Clusters: Chromium Encapsulated in Silicon Cages [J]. Phys. Rev. Lett.2002,89:016803-016806
    [55]Khanna S.N., Rao B.K., Jena P., et al, Stability and magnetic properties of iron atoms encapsulated in Si clusters [J]. Chem. Phys. Lett.,2003,373:433-438
    [56]Lu J., Nagase S., Structural and Electronic Properties of Metal-Encapsulated Silicon Clusters in a Large Size Range [J]. Phys. Rev. Lett.,2003,90:115506-115509
    [57]Sen P. and Mitas L., Electronic structure and ground states of transition metals encapsulated in a Si [sub 12] hexagonal prism cage [J]. Phys. Rev. B,2003,68:155404-155407.
    [58]Han J. G., Hagelberg F., A density functional investigation of MoSin (n= 1-6) clusters [J]. Chem. Phys.,2001,263:255-262
    [59]Han J. G., Xiao C., Hagelberg F., Geometric and Electronic Structure of WSiN (N= 1-6, 12) Clusters [J]. Struct. Chem.,2002,13:173-191
    [60]Han J.G., A theoretical investigation on electronic properties and stability of IrSix (x=1-6) clusters [J]. Chem. Phys.,2003,286:181-192
    [61]郭平,钽硅混合团簇和纯铱团簇的几何和电子结构性质的理论研究[D].西安:西北 大学,2005
    [62]李锋,候榆青,陈浩伟等.密度泛函方法研究NiSin(n=1~6)团簇[J].西北大学学报(自然科学版),2005,35(05)
    [63]杨阿平.钇、镓金属掺杂硅基团簇的密度泛函理论研究[D].西安:西北大学,2007
    [64]赵润宁.镱硅混合团簇的几何和电子结构性质以及光学性质的研究[D].西安:西北大学,2,006
    [65]赵普举NbSin(n= 1~12)、LaSin(n= 1~6)团簇稳定性和电了结构特性的研究[D].西安:四北大学,2005
    [66]N'Diaye A.T., Bleikamp S., Feibelman P.J., et al. Two-Dimensional Ir Cluster Lattice on a Graphene Moire on Ir(111) [J]. Phys. Rev. Lett.,2006,97,215501-215504
    [67]Chan K. T., Neaton J. B., Cohen M. L. First-principles study of metal adatom adsorption on graphene [J]. Phys. Rev. B,2008,77:2354309-235441
    [68]Feibelman P. J. Pinning of graphene to Ir (111) by flat Ir dots [J]. Phys. Rev. B,2008,77: 165419-165425
    [69]Feibelman P. J. Onset of three-dimensional Ir islands on a graphene/Ir(111) template [J]. Phys. Rev. B,2009,80:085412-085412
    [70]N'Diaye A. T., Gerber T., Busse C., et al. A versatile fabrication method for cluster superlattices [J]. New J. Phys.2009,11:103045-103055
    [71]Sanchez-Paisal Y., Sanchez-Portal D., and Ayuela A. Ab initio calculations of zirconium adsorption and diffusion on grapheme [J]. Phys. Rev. B,2009,80:045428-045428
    [72]Okazaki-Maeda K., Morikawa Y., Tanaka S., et al. Structures of Pt clusters on graphene by first-principles calculations [J]. Surf. Sci.,2010,604:144-154
    [73]Pan Y, Gao M., Huang L., et al. Directed self-assembly of monodispersed platinum nanoclusters on graphene Moire template[J]. Appl. Phys. Lett.,2009,95:093106-093108
    [74]Zhang H., Fu Q., Cui Y., et al. Fabrication of Metal Nanoclusters on Graphene Grown on Ru(0001) [J]. Chinese Sci. Bull.,2009,54:2446-2450
    [75]Wu M., Liu E. Z, Ge M. Y, et al. Stability, electronic, and magnetic behaviors of Cu adsorbed graphene:A first-principles study [J]. Appl. Phys. Lett.,2009,94: 102505-102507
    [76]Ran Q. S., Gao M. Z, Guan X. M., et al. First-principles investigation on bonding formation and electronic structure of metal-graphene contacts [J]. Appl. Phys. Lett.,2009, 94,103511-103513
    [77]Jin Z., Su Y. B., Chen J.W., et al. Study of A1N dielectric film on graphene by Raman microscopy [J]. Appl. Phys. Lett.,2009,95,233110-233112
    [78]Wu J. H., Hagelberg F., Sattler K. First-principles calculations of small silicon clusters adsorbed on a graphite surface [J]. Phys. Rev. B.,2005,72:085441-085448
    [79]Parr R. G.., Yang W., Density Functional Theory of Atoms and Molecules [J]. Oxford, Oxford University,1989
    [80]Ziegler T. Approximate density functional theory as a practical tool in molecular energetics and dynamics [J]. Chem. Rev.,1991,91,651-667
    [81]Thomas L.H. The calculation of atomic fields [J]. Proc. Cambridge Philos. Soc.,1927,23: 542-548.
    [82]Fermi E. Eine statistiche Methode zur Bestimmung einiger Eigenschaften des Atoms des periodischen Systems der Elemente [J]. Z. Phys.,1928,48,73-79
    [83]Slater J.C. A Simplification of the Hartree-Fock Method [J]. Phys. Rev.,1951,81: 385-390
    [84]Hohenberg P., Kohn W. Inhomogeneous Electron Gas [J]. Phys. Rev. B,1964,136: 864-871
    [85]Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev. A,1965,140:1133-1138
    [86]Koelling D. D., Harmon B. N., A technique for relativistic spin-polarized calculations [J]. J. Phys. C.1977, C (10):3107-3114
    [87]Hafner J. Ab-initio simulations of materials using VASP:Density-functional theory and beyond [J]. Journal of Computational Chemistry,2008,29(13):2044-2078
    [88]Perdew J. P., Burke K. Ernzerhof M., Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett.,1996,77:3865-3868
    [89]Huber K. P. and Herzberg G. Constants of Diatomic Molecules [M]. New York:Van Nostrand Reinhold,1979,468-481
    [90]Alonso J. A. Electronic and atomic structure, and magnetism of transition metal clusters [J]. Chem Review,2000,100:637-677.
    [91]Baletto F., Ferrando R. Structural properties of nanoclusters:Energetic, thermodynamic, and kinetic effects [J], Rev Mod Phys,2005,77,371-423
    [92]张材荣,陈宏善,王广厚.Rhn,Ptn(n= 2~20)团簇基态结构的遗传算法研究[J].原子与分子物理学报,2004,21(增刊),235-239
    [93]张蓓,段海明,张军.Rhn, Con(n= 3~56)团簇的结构特性研究[J].原子与分子物理学报,2007,24,63-68
    [94]Ren F. Z., Wang Y. X. Zhang G. B., et al. An ab initio study of niobium (n= 2-11) clusters: structure, stability and magnetism [J].Chin Phys B,2009,18:1491-1497
    [95]Lei X. L., Luo Y. H. Wang X. M., et al. Appearance of metallic features in small tungsten clusters [J]. Chin Phys B,2009,18,2264-2270
    [96]Feng C. J., Xue Y. H. Zhang X. C., et al. Structures, stabilities and magnetic moment of small copper-nickel clusters [J]. Chin Phys B,2009,18:1436-1442
    [97]Bobadova-Parvanova P., Jackson K. A., Srinivs S., et al. Structure, bonding, and magnetism in manganese clusters [J]. J Chem Phys,2005,122:014310-014320
    [98]Bae Y. C., Osanai H., Kumar V., et al. Nonicosahedral growth and magnetic behavior of rhodium clusters [J]. Phys Rev B,2004,70:195413-195419.
    [99]Kumar V., Wazoe Y. Atomic and electronic structures of niobium clusters [J]. Phys Rev B, 2002,65:125403-125413
    [100]刘爱霞,段海明.遗传算法结合不同势研究Irn(n=2-60)团簇结构特性[J].原子与分子物理学报,2008,35(3):702-710
    [101]Xu Z., Xiao F. S., Purnell S. K., et al. Size-dependent catalytic activity of supported metal clusters [J]. Nature,1994,372:346-348
    [102]Ouannasser S., Habar M., Stauffer L., et al. Microscopic Theory and Simulation of Adatom Diffusion on Ir(111) [J]. Surf. Rev. Lett.,1997,4:851-854
    [103]Fu T. Y., Tsong T. T. Structure and diffusion of small Ir and Rh clusters on Ir(001) surfaces [J]. Surf. Sci.,1999,421:157-166
    [104]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations, potentials for K to Au including the outermost core orbitals [J]. J Chem Phys,1985,82: 299-310
    [105]Venturelli A., Rauchfuss T. B. Mobile metal-metal bonds:studies on mixed valence Ir3 and Ir4 clusters [J]. J. Am. Chem. Soc.,1994,116:4824-4831
    [106]Jules J. L., Lombardi J. R. Transition metal dimmer internuclear distances from measured force constants [J]. J. Phys. Chem. A,2003,107:1268-1273
    [107]张材荣,许广济,寇生中.Irn(n=2~25)团簇基态结构的遗传算法研究[J].原子与分子物理学报,2006,23(1):122-126
    [108]郭青蔚.现代铌钽冶金/稀有金属冶金与材料工程丛书[M].北京:冶金工业出版社,2009:3-5
    [109]Koknat F. W., Parsons J. A., Vongvusharintra A. Metal cluster halide complexes. I. Efficient synthesis of hydrated hexanuclear niobium and tantalum cluster halides M6X14.8 H2O [J]. Inorg. Chem.,1974,13:1699-1702
    [110]Kamiguchi S., Noda M., Miyagishi Y.,et al. Catalytic isomerization of 1-hexene to 2-hexene by halide clusters of Nb, Mo, Ta and W possessing an octahedral metal core [J]. J. Mol. Catal. A:Chemical,2003,195:159-171
    [111]Nepijko S.A., Klimenkov M., Kuhlenbeck H., et al. TEM study of tantalum clusters on Al2O3/NiAl(110)[J]. Surf. Sci.,1998,412/413,192-201
    [112]Wu Z. J., Kawazoe Y., Meng J., Geometries and electronic properties of Tan, TanO and TaOn(n=1-3) clusters[J]. J. Mol. Stru:THEOCHEM,2006,764,123-132
    [113]Velde G. T., Baerends E. J. Numerical integration for polyatomic systems [J]. J. Comp. Phys.,1992,99,84-98
    [114]Vosko S. H., Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis [J]. Can. J. Phys.,1980, 58:1200-1211
    [115]Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev.A,1988,38:3098-3100
    [116]Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Phys. Rev. B,1986,33:8822-8824
    [117]Lenthe E. V., Bearends E. J., Snijders J. G. Relativistic total energy using regular approximations [J]. J. Chem. Phys.,1994,101:9783-9792
    [118]Lenthe E. V., Snijders J. G., Bearends E. J. The zero-order regular approximation for relativistic effects:The effect of spin-orbit coupling in closed shell molecules [J]. J. Chem Phys,1996,105:6505-6516
    [119]Daid G, Liao M.Z., Balasubramanian K. Sixteen electronic states of the iridium trimer (Ir3)[J]. Chem. Phys. Lett.,1996,249:141-148
    [120]Miedema A. R., Gingerich K. A. On the formation enthalpy of metallic dimmers [J]. J. Phys. B:At. Mol. Phys,1979,12:2081-2095
    [121]Wang H. M., Craig R.,Haouari H.,et al. Absorption and Raman spectroscopy of mass-selected tantalum tetramers in argon matrices [J]. J. Chem. Phys,1995,103: 3289-3292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700