新型纳米生物传感界面的构建及其电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学传感器是化学传感器中研究较为成熟的一种,它是采用电化学效应将检测信号转变为电信号的化学传感器,电化学传感器在分析测定中有广泛的应用。含酶或蛋白质的生物传感器是利用生物活性物质的亲和性,如酶-底物、抗原-抗体、激素-受体等的分子识别功能来检测待测物,因其具有较高的选择性而备受关注,纳米微粒具有庞大的比表面积、较强的催化活性和较好的生物相容性等优点,研究蛋白质及纳米粒子在纳米修饰电极的电化学行为是本论文的主要工作。随着生物传感器的发展,酶及蛋白质生物活性物质的活性受温度以及pH值等环境因素的影响大大限制了含酶生物传感器的应用,随之发展起来的无酶生物传感器的制备和应用成为一个新的研究热点,本论文还构建了基于纳米材料的无酶电化学生物传感,并研究了修饰电极材料的其它电化学性质,取得了一定的研究进展。
     第一章主要介绍了电化学生物传感器的概念、种类、研究进展情况以及电化学传感器中电极的修饰方法。简单介绍了纳米材料及其在电化学生物传感器中的应用和发展前景。分别对导电聚合物和石墨烯做了概括性的介绍,并论述了导电聚合物与石墨烯复合材料的研究现状及发展前景。
     第二章中,我们利用高压水热合成法,制备了刺球状的CeO2纳米粒子(CeO2NPs),将其与肌红蛋白(Mb)混合后固定在玻碳电极(GCE)上,构建了无媒介第三代生物传感器。采用TEM、UV-vis和XRD对制备的CeO2 NPs进行表征,结果表明CeO2 NPs表面的独特的刺球状结构,能够增大Mb在电极表面的有效负载量。循环伏安法研究表明CeO2 NPs对肌红蛋白直接电子转移(DET)有促进作用,CeO2NPs的独特电子传导性能加快Mb与电极之间的电子传递速率,且具有优良生物相容性的CeO2 NPs为所固定的蛋白质提供了一个良好的生物微环境。构建的Mb/CeO2 NPs/GCE生物传感器对双氧水(H2O2)具有良好的电催化还原作用,其检测限为0.3μM(S/N=3),线性响应范围:0.7-194μM,并且有一个较低的KMapp值,约为0.048 mM。表明该生物传感器具有灵敏度高,稳定性强、能够增强Mb对H202的亲和性,促进其对H202的催化还原等特点。
     第三章是根据柯肯达尔效应,利用高压水热合成法,制备了CeO2-ZrO2空心复合纳米球,将肌红蛋白(Mb)固定在CeO2-ZrO2修饰的玻碳电极(GCE)上,构建了一种新的第三代无媒介生物传感器。采用TEM、UV-vis对制备的复合物进行表征,结果表明CeO2-ZrO2复合物具有独特的介孔结构和良好的生物相容性,可增大Mb在电极表面的有效负载量。通过循环伏安法研究了该复合物对肌红蛋白直接电子转移的促进作用,Mb/CeO2-ZrO2修饰电极为蛋白质和基底电极的直接电子传输提供了一个有利的微环境,因此加快了Mb与电极之间的电子传递速率。实验结果表明构建的Mb/CeO2-ZrO2/GCE生物传感器对双氧水(H202)具有良好的电催化,其检测限为1.1μM,KMapp为0.128 mM,线性响应范围:8.5-330μM,ks约为2.65 s-1。CeO2-ZrO2复合材料为固定蛋白质和制备生物传感器提供了一种很好的基体材料,有利于推动生物传感器及其它生物电化学器件的发展。
     第四章用水热法制备了Fe3O4@ZrO2核壳纳米微球,将肌红蛋白(myoglobin,Mb)通过静电吸附固定在Fe3O4@ZrO2核壳纳米微球表面上,利用磁性玻碳电极(MGCE)的外磁场磁力将此复合材料固定于MGCE上研究Mb的直接电化学,实现了材料在电极上的快速固定化,只需要几秒钟的时间。实验结果表明,Mb在电极上的平均表面覆盖度约为1.3×10-10 mol·cm-2,在-326 mV和-363 mV左右有一对血红素类蛋白的特征氧化还原峰,峰电位差约为37 mV。该传感器对H202有良好的电流响应,速率常数ks为1.4 s-1信噪比为3时(S/N=3)其检测限为0.32μM。在较大的检测范围内,传感器表现出Michaelis-Menten行为,其米氏常数(KMapp)计算值约为40μM,较小的KMapp表明固定在电极上的Mb很好的保持了它的生物活性。
     第五章中我们首先制备了聚苯胺/氧化石墨烯(PANI/GO)复合材料,然后在PANI/GO表面原位生长铂纳米粒子(Pt NPs)进而制备了铂/聚苯胺/氧化石墨烯(Pt/PANI/GO)纳米复合材料,用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、x-射线衍射(XRD)、红外光谱(FT-IR)等表征手段研究了材料的结构和性质,研究表明所制备的Pt NPs粒径小,在PANI/GO的表面负载均匀、负载密度高。将所制备的材料修饰在玻碳电极(GCE)表面,研究了材料的各种电化学性质。实验结果表明,负载在PANI/GO复合材料上的Pt NPs对氧气和甲醇有良好的催化作用有望用于燃料电池的应用,所制备的传感器在优化的条件下对H202和葡萄糖也有很好的电流响应。该传感器还表现出了优良的稳定性和重现性。
Electrochemical sensor, the chemical sensor that translate detecting signal into electric signal by electrochemical effect, is the maturest one in chemical sensors. Electrochemical sensor was widely used in the analytical determination. Enzymatic or protein biosensors, which can detect analytes using the specific reaction of bioactive materials such as the enzyme-substrate, enzyme-coenzyme, antigen-antibody, incretion-acceptor and so on, have attracted much attentions due to their good selectivity. Nanoparticles have many extraordinary features such as huge specific surface area, strong catalytic activity and good bio-compatibility. Study on the electrochemical behavior of protein on the nanoparticles modified electrode is one of the main research works of the thesis. Howerver, the enzymatic or protein biosensors are limited by the stability of the enzyme to both pH value and temperature with the development of biosensor. As such recent effort has been put into producing nonenzymatic biosensors. we also used the nanoparticles to fabricate nonenzymatic biosensors and studied the other electrochemical behaviors of the nanoparticles modified electrode in this paper.
     This section described the concept, classification and actuality of electrochemical biosensor, the nanoparticles and it's application in electrochemical biosensor, the polymer and graphene and the study of their compounds.
     In part two, monodispersed urchinlike spherical ceria nanoparticles (CeO2 NPs) with rough surface were prepared via a simple one step hydrolysis process in glycol and have been utilized for immobilization of proteins to fabricate the third biosensor. Those as-prepared CeO2 NPs have good biocompatibility, favorable conductivity, large surface area, as verified by transmission electron microscopy (TEM) and X-ray powder diffraction spectroscopy. UV-vis spectroscopy analysis of the Mb/CeO2 NPs film suggested that the immobilized Mb could retain its natural structure, which is illuminated that the prepared CeO2 NPs have excellent biocompatible. The modified glassy carbon electrode (GCE) by Mb and CeO2 NPs exhibited direct electrochemistry with a fast electron transfer rate (1.03 s-1) and good electrochemical performance to reduce hydrogen peroxide (H2O2). The proposed biosensor shows a linear response to H2O2 concentrations ranging from 0.7μM to 194μM with a detection limit of 0.3μM at a signal-to-noise ratio of 3 and the low value of apparent Michaelis-Menten constant (0.048 mM) indicates enhanced enzyme affinity of Mb to H2O2. Therefore, our experiments implemented the fast direct electron transfer (DET) of proteins indicated the present CeO2 NPs may provide a favorable bio-microenvironment for proteins immobilized on the electrode surface and enhance electron transfer between proteins and electrodes.
     In part three, a novel hollow matrix, CeO2-ZrO2 solid solution nanocages particles which synthesized by hydrothermal method via Kirkendall Effect, were used for immobilizing myoglobin (Mb) to fabricate protein electrodes suitable for studying the direct electron transfer between the redox centers of proteins and the electrode. The transmission electron microscopy (TEM), UV-vis and electrochemical measurements showed that the matrix was well biocompatible and could retain the bioactivity of immobilized protein to a large extent. The direct electron transfer of the immobilized myoglobin (Mb) exhibited a couple of stable and well-defined redox peaks in 0.1 M pH 6.98 PBS. The Mb/CeO2-ZrO2 modified electrode also exhibited excellent catalytic performance for H2O2 with the detection limit of 1.1μM, apparent Michaelis-Menten constant (KMapp) of 0.128 mM and the linear response range was from 8.5μM to 330μM. This matrix could accelerate the electron transfer between Mb and the electrode with a surface controlled process and an electron transfer rate constant ks was 2.65 s-1. CeO2-ZrO2as a good material for immobilization of protein can facilitate the development of electrochemical biosensor.
     In part four, direct electron transfer (DET) of myoglobin (Mb) was achieved by its direct immobilization on magnetic glassy carbon electron (MGCE) with the big magnetic Fe3O4@ZrO2 Core-Shell microspheres as binder, the material can fast immobilized on the MGCE. A pair of well-defined redox peaks, characteristic of the protein heme FeⅡ/FeⅢredox couples, was obtained at the Mb/Fe3O4@ZrO2 film on magnetic glassy carbon electrode (MGCE), as a consequence of the direct electron transfer between the protein and the MGCE electrode. The redox peaks were acquired in 0.1 M phosphate buffer solution (pH 6.98) with oxidation potential of-326 mV, reduction potential of-363 mV, the formal potential E0 (E0=(Epa+Epc)/2) at-345 mV and the peak to peak potential separation of 37 mV at 100 mV·s-1. The average surface coverage of the electroactive Mb immobilized on the electrode surface was calculated as 4.82×10-11mol·cm-2. Mb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2). The cathodic peak current of Mb was linear to H2O2 concentration in the range from 1μM to 76μM with a detection limit of 0.32μM (S/N=3). The apparent Michaelis-Menten constant (KMapp) and the electron transfer rate constant (ks) were estimated to be 40μM and 1.4 s-1, respectively. The biosensor achieved the direct electrochemistry of Mb on Fe3O4@ZrO2 Core-Shell microspheres without the help of any supporting film or any electron mediator.
     In this section we prepared the PANI/GO firstly by in-situ polymerization and then grow up Pt NPs on both of the surfaces of PANI/GO, the Pt NPs which loaded on the PANI/GO has small size and ultra-high density. The structure and character of different compounds were tested with SEM, TEM, XRD, FT-IR and thermogravimetric and so on. We tested the electrochemical behaviors of different modified GCE, and the Pt/PANI/GO/GCE showed excellent electrocatalytic activity to O2 and methanol, it also performed good electricity response of the H2O2 and glucose under the optimized conditions.
引文
[1]司士辉.生物传感器.化学工业出版社.2003.
    [2]Gu H Y, Yu A M, Chen H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. Journal of Electroanalytical Chemistry.2001,516(1-2):119-126.
    [3]汪尔康.21世纪的分析化学.科学出版社.1999.
    [4]Guilbault G G, Montalvo Jr. J G. Urea-specific enzyme electrode. Journal of the American Chemical Society.1969,91(8):2164-2165.
    [5]Paredes P A, Parellada J, Fernandez V M, et al. Amperometric mediated carbon paste biosensor based on D-fructose dehydrogenase for the determination of fructose in food analysis. Biosensors and Bioelectronics.1997,12(12):1233-1243.
    [6]Padeste C, Grubelnik A, Tiefenauer L. Ferrocene-avidin conjugates for bioelectrochemical applications. Biosensors and Bioelectronics.2000,15(9-10):431-438.
    [7]Jiang H Q, Yong C L, Hai Y L, et al. Characterization of regenerated silk fibroin membrane for immobilizing peroxidase and construction of an amperometric hydrogen peroxide sensor employing phenazine methosulphate as electron shuttle. Journal of Electroanalytical Chemistry.1994,397(1-2):157-162.
    [8]Bachurin S O, Shumakovich G P, Dubova L G, et al. Monoamine oxidase catalysis on electrodes modified with artificial acceptors of electrons. Bioelectrochemistry and Bioenergetics.1998,46(2):185-191.
    [9]Timothy J O, Ravi R, Adam H. "Wired" enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Analytical chemistry.1994, 66(15):2451-2457.
    [10]Kevin M K, Anna B T. Tetrathiofulvalene tetracyanoquinodimethane xanthine oxidase amperometric electrode for the determination of biological purines. Analytical chemistry. 1987,59(7):954-958.
    [11]Li J G, Chun Y, Ju H X. Simultaneous electrochemiluminescence detection of anisodamine, atropine, and scopolamine in flos daturae by capillary electrophoresis using b-cyclodextrin as additive. Electroanalysis.2007,19(15):1569-1574.
    [12]Zhang W, Yang T, Zhuang X M, et al. An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Biosensors and Bioelectronics.2009,24 (8):2417-2422.
    [13]Xiao F, Zhao F Q, Zhang Y F, et al. Ultrasonic electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors. The Journal of Physical Chemistry C.2009,113(3): 849-855.
    [14]Mack M, Oed M, Amtmann R, et al. Liaison(?)hCG-An automated chemiluminescent immunoassay for the determination of human chorionic gonadotropin. European Journal of Cancer.1997,33(8):S52
    [15]Crowley E, O'Sullivan C, Guilbault G G. Amperometric immunosensor for granulocyte-macrophage colony-stimulating factor using screen-printed electrodes. Analytica Chimica Acta.1997,389(1-3):171-178.
    [16]Benkert A, Scheller F, Schossler W, et al. Development of a creatinine ELISA and an amperometric antibody-based creatinine sensor with a detection limit in the nanomolar range. Analytical Chemistry.2000,72(5):916-921.
    [17]Gregg B A, Heller A. Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Analytical Chemistry.1990,62(3):39-48.
    [18]Bordes A, Limoges B, Brossier P, et al. Simultaneous homogeneous immunoassay of phenytoin and phenobarbital using a nafion-loaded carbon paste electrode and two redox cationic labels. Analytica Chimica Acta.1997,356(2-3):195-203.
    [19]Wang Q L, Lu G X, Yang B J. Myoglobin/sol-gel film modified electrode:direct electrochemistry and electrochemical catalysis. Langmuir.2004,20(4):1342-1347.
    [20]Kaushik A, Khan R, Solanki P R, et al. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosensors and Bioelectronics.2008,24(4):676-683.
    [21]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature.1996,382(6592):607-609.
    [22]Qin X Y, Kim J G, Lee J S. Synthesis and magnetic properties of nanostructured gamma-Ni-Fe alloys. Nanostructed Materials.1999,11(2):259-270.
    [23]Webster T J, Siegel R W, Bizios R J. Osteoblast adhesion on nanophase ceramics. Biomaterials.1999,20(13):1221-1227.
    [24]Teruhisa O, Fumihiro T, Kan F, et al. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. Journal of Photochemistry and Photobiology A:chemistry.1999,127(1-3):107-110.
    [25]Dhakate S R, Parashar V K, Raman V, et al. Effect of titania (TiO2) inteffacial coating on mechanical properties of cabon composites. Journal of Materials Science Letters.2000, 19(11):699-701.
    [26]张立德.纳米材料与纳米结构.化学工业出版社.2000.
    [27]Wang J, Parasad N. Sol-gel-derived thick-film amperometric immunosensors. Analytical Chemistry.1998,70(6):1171-1175.
    [28]Keren K, Rgilad R S, Buchstab E, et al. DNA-templated carbon nanotube field-effect transistor. Science.2003,302(5649):1380-1382.
    [29]Lin Y H, Fang L, Tu Y, et al.Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters.2004,4(6):191-195.
    [30]Wang W U, Chen C, Lin K H, et al. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proceedings of the National Academy of Sciences of the United States of America.2005,102(9):3208-3212.
    [31]Foster B J, Kem J A. HER2-targeted gene transfer. Human Gene Therapy.1997,8 (6): 719-727.
    [32]Tanyolac D, Ozdural A R. BSA adsorption onto magnetic polyvinylbutyral microbeads. Journal of Applied Polymer Science.2001,80(45):707-715.
    [33]Molday R S, Yen S P S, Rembaum A. Application of magnetic microspheres in labelling and separation of cells. Nature.1977,268(5619):437-438.
    [34]Tang H, Chen J H, Yao S Z, et al. Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Analytical Biochemistry.2004,331(1):89-97.
    [35]Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications.1977,17:578-580.
    [36]Basescu N, Liu Z X, Moses D, et al. High electrical conductivity in doped polyacetylene. Nature.1987,327(6121):403-405.
    [37]Kanazawa K K, Diaz A F, Geiss R H, et al.'Organic metals':polypyrrole, a stable synthetic'metallic'polymer. Journal of the Chemical Society, Chemical Communications. 1979,19:854-855.
    [38]Abell L, Adams P N, Monkman A P. Electrical conductivity enhancement of predoped polyaniline by stretch orientation. Polymer.1996,37(26):5927-5931.
    [39]Yamamoto T, Sanechika K, Yamamoto A. Preparation of thermostable and electric-conducting poly(2,5-thienylene). Journal of Polymer Science:Polymer Letters Edition.1980,18(1):9-12.
    [40]Delamar M, Lacaze P C, Dumousseau J Y, et al. Electrochemical oxidation of benzene and biphenyl in liquid sulfur dioxide:formation of conductive deposits. Electrochimical Acta. 1982,27(1):61-65.
    [41]Mutase I, Ohnishi T, Noguchi T, et al. Highly conducting poly(para-phenylenevinylene) prepared from a sulfonium salt. Polymer Communications.1984,25(11):327-329.
    [42]Osaka T, Nakajima T, Naoi K, et al. Electroactive polyaniline film deposited from nonaqueous organic media.2. effect of acid concentration in solution. Journal of Electrochemical Society.1990,137(7):2139-2142.
    [43]MacDiarmid A G, Chiang J C, Halpern M, et al. "Polyaniline":interconversion of metallic and insulated forms. Molecular Crystals and Liquid Crystals.1985,121:173-180.
    [44]Wan M X, Yang J, Zhu C F, et al. Scanning tunnelling microscopy images of polyaniline. Thin Solid Films.1992,208(2):153-155.
    [45]Rao P S. Sathyanarayana D N, Palaniappan S. Polymerization of aniline in an organic peroxide system by the inverted emulsion process. Macromolecules.2002,35(13): 4988-4996.
    [46]Liu W, Kumar J, Tripathy S, et al. Enzymatic synthesis of conducting polyaniline in micelle solutions. Langmuir.2002,18(25):9696-9704.
    [47]Bingham A, Ellis B. Polymerization of aromation amines with ferric chloride to produce thermally stable polymers. Journal of Polymer Science Part A-1:Polymer Chemistry.1969, 7(11):3229-3244.
    [48]Pron A, Genoud F, Menardo C, et al. The effect of the oxidation conditions on the chemical polymerization of polyaniline. Synthetic Metals.1988,24(3):193-201.
    [49]Han M G, Cho S K, Oh S G, et al. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synthetic Metals.2002,126(1): 53-60.
    [50]Duic L J, Mandic Z, Kovacicek F. The fffect of supporting electrolyte on the electrochemical synthesis, morphology, and conductivity of polylaniline. Journal of Polymer Science Part A-1:Polymer Chemistry.1994,32(1):105-111.
    [51]Li S Z, Wan M X. Photo-induced doped polyaniline by the vinylidene chloride and methyl acrylate copolymer as photo acid generator. Chinese Journal of Polymer Science.1997, 15(2):108-113.
    [52]Sadek A Z, Wlodarski W, Kalantar-Zadeh K, et al. Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sensors and Actuators A-Physical. 2007,139(1-2):53-57.
    [53]Sung J H, Kim S J, Lee K H. Preparation of compact polyaniline films:electrochemical synthesis using agar gel template and charge-storage applications. Journal of Power Sources.2004,126(1-2):258-267.
    [54]Gupta V, Miura N. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta.2006,52(4):1721-1726.
    [55]Wang H L, Hao Q 1, Yang X J, et al. Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications.2009,11(6):1158-1161.
    [56]Anderson M R, Mattes B R, Reiss H, et al. Conjugated polymer films for gas separations. Science.1991,252(5011):1412-1415.
    [57]Laco J I I, Villota F C, Mestres F L. Corrosion protection of carbon steel with thermoplastic coatings and alkyd resins containing polyaniline as conductive polymer. Progress in Organic Coatings.2005,52(2):151-160.
    [58]Sathiyanarayanan S, Muthukrishnan S, Venkatachari G, et al. Corrosion protection of steel by polyanilne(PANI) pigmented paint coating. Progress in Organic Coatings,2005,53(4): 297-301.
    [59]da Silva J E P, de Torresi S I C, Torresi, R M. Polyaniline acrylic coatings for corrosion inhibition:the role played by counter-ions. Corrosion Science.2005,47(3):811-822.
    [60]Kroto H W, Heath J R, O'Brien S C, et al. C60:Buckminsterfullerene. Nature.1985, 318(6042):162-163.
    [61]Iijima S. Helical microtubules of graphitic carbon. Nature.1991,354(6348):56-68.
    [62]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science.2004,306(5296):666-669.
    [63]Berger C, Song Z M, Li T B, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B.2004, (108):19912-19916.
    [64]Wang H L, Robinson J T, Diankov G, et al. Nanocrystal growth on graphene with various degrees of oxidation. Journal of the American Chemical Society.2010,132(10), 3270-3271.
    [65]Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature.2009,457(7230):706-710.
    [66]Williams J R, DiCarlo L, Marcus C M. Quantum hall effect in a gate-controlled p-n junction of graphene. Science,2007,317:638-641.
    [67]Becerril H A, Mao J, Liu Z F, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano.2008,2(3):463-470.
    [68]Liu Q, Liu Z F, Zhang X Y, et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT. Advanced Functional Materials.2009,19(6):894-904.
    [69]Liu Z F, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material:graphene. Advanced Materials.2008,20(20):3924-3930.
    [70]Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and Berry's phase in graphene. Nature.2005,438(7065):201-204.
    [71]Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature.2005,438(7065):197-200.
    [72]Chen G H, Weng W G, Wu D J, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon.2004,42(4):753-759.
    [73]Viculis L M, Mack J J, Mayer O M, et al. Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry.2005,15(9):974-978.
    [74]Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials,2007,6 (9):652-655.
    [75]Kou R, Shao Y Y, Wang D H, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications.2009,11(5):954-957.
    [76]Yang H F, Li F H, Shan C S, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. Journal of Materials Chemistry.2009, 19(26):4632-4638.
    [77]Bai H, Xu Y X, Zhao L, et al. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications.2009,13:1667-1669.
    [78]Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of graphite and graphene. Journal of the American Chemical Society.2006,128:7720-7721.
    [79]Si Y C, Samulski E T. Synthesis of water soluble graphene. Nano Letters.2008,8(6): 1679-1682.
    [80]Stankovich S, Piner R D, Chen X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry.2006,16(2):155-158.
    [81]Patil A J, Vickery J L, Scott T B, et al. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Advanced Materials.2009, 21(31):3159-3164.
    [82]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature.2006,442(7100):282-286.
    [83]Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nature nanotechnology.2008,3(6):327-331.
    [84]Zhang K, Zhang L L, Zhao X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials.2010,22(4):1392-1401.
    [85]Yan J, Wei T, Fan Z J, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources.2010,195(9):3041-3045.
    [86]Nikzad L, Alibeigi S, Vaezi M R, et al. Synthesis of a graphite-polyaniline nanocomposite and evaluation of its electrochemical properties. Chemical Engineering and Technology. 2009,32(6):861-866.
    [1]Wang S F, Chen T, Zhang Z L, et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir. 2005,21(20):9260-9266.
    [2]Glezer V, Lev O. Sol-gel vanadium pentaoxide glucose biosensor. Journal of the American Chemical Society.1993,115(6):2533-2534.
    [3]Dai Z H, Xu X X, Ju H X. Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix. Analytical Biochemistry.2004, 332(1):23-31.
    [4]Rodriguez J A, Ma S, Liu P, et al. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science.2007,318(5857):1757-1760.
    [5]Tarnuzzer R W, Colon J, Patil S, et al. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Letters.2005,5(12):2573-2577.
    [6]Xiao X L, Luan Q F, Yao X, et al. Single-crystal CeO2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase. Biosensors and Bioelectronics.2009,24(8):2447-2451.
    [7]Zhang W, Yang T, Zhuang X M, et al. An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Biosensors and Bioelectronics.2009,24(8):2417-2422.
    [8]Liang X, Wang X, Zhuang Y, et al. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via kirkendall effect. Journal of the American Chemical Society. 2008,130(9):2736-2737.
    [9]Libert S, Gorshkov V, Goia D, et al. Model of controlled synthesis of uniform colloid particles:cadmium sulfide. Langmuir.2003,19(26):10679-10683.
    [10]Ge J P, Hu Y X, Biasini M, et al. Superparamagnetic magnetite colloidal nanocrystal clusters. Angewandte Chemie International Edition.2007,46(23):4342-4345.
    [11]Potdar H S, Deshpande S B, Deshpande A S, et al. Preparation of ceria-zirconia (Ce0.75Zr0.25O2) powders by microwave-hydrothermal (MH) route. Materials Chemistry and Physics.2002,74 (3):306-312.
    [12]George P, Hanania G A. Spectrophotometric study of ionizations in methaemoglobin. Biochemical Journal.1953,55(2):236-243.
    [13]King B C, Hawkridge F M, Hoffman B M. Electrochemical studies of cyanometmyoglobin and metmyoglobin:implications for long-range electron transfer in proteins. Journal of the American Chemical Society.1992,114(26):10603-10608.
    [14]Yoon H C, Hong M Y, Kim H S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode. Analytical Chemistry.2000,72(18):4420-4427.
    [15]Laviron E. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. Journal of Electroanalytical. Chemistry.1979.100(1-2):263-270.
    [16]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical.1979,101(1):19-28.
    [17]Zhao G, Xu J J, Chen H Y. Interfacing myoglobin to graphite electrode with an electrodeposited nanoporous ZnO film. Analytical Biochemistry.2006,350(1):145-150.
    [18]Sun Y X, Wang S F. Direct electrochemistry and electrocatalytic characteristic of heme proteins immobilized in a new sol-gel polymer film. Bioelectrochemistry.2007,71(2): 172-179.
    [19]Zhou Y L, Hu N F, Zeng Y H, et al. Heme protein-clay films:direct electrochemistry and electrochemical catalysis. Langmuir.2002,18(1):211-219.
    [20]Wang S F, Chen T, Zhang Z L, et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir. 2005.21(20):9260-9266.
    [21]Zhang L, Zhang Q, Li J. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry. Advanced Functional Materials.2007,17(12):1958-1965.
    [22]Zhang L, Zhao G C, Wei X W, et al. A nitric oxide biosensor based on myoglobin adsorbed on multi-walled carbon nanotubes. Electroanalysis.2005,17(7):630-634.
    [23]Liu S Q, Dai Z H, Chen H Y, et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosensors and Bioelectronics.2004,19 (9):963-969.
    [24]Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry.1980, 52(8):1198-1205.
    [25]Zhao G, Feng J J, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film. Electrochemistry Communications. 2005,7(7):724-729.
    [1]Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science.2004,304(5671):711-714.
    [2]Janata J. Chemical sensors. Analytical Chemistry.1990,62(12):33R-44R.
    [3]Liang X, Wang X, Zhuang Y, et al. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via kirkendall effect. Journal of the American Chemical Society. 2008,130 (9):2736-2737.
    [4]George P, Hanania G A. Spectrophotometric study of ionizations in methaemoglobin. Biochemical Journal.1953,55(2):236-243.
    [5]Gao F, Xu Z H, Wang Q X, et al. Preparation, characterization of CeO2-ZrO2 composite hollow microspheres and their application as electrocatalysis materials for hemoglobin in biosensor. Journal of Dispersion Science and Technology.2009,30(2):178-184.
    [6]Potdar H S, Deshpande S B, Deshpande A S, et al. Preparation of ceria-zirconia (Ce0.75Zr0.25O2) powders by microwave-hydrothermal (MH) route. Materials Chemistry and Physics.2002,74 (3):306-312.
    [7]Huang Q, Lu Z, Rusling J F. Composite films of surfactants, nafion, and proteins with electrochemical and enzyme activity. Langmuir.1996,12(22):5472-5480.
    [8]Riskin M, Basnar B, Huang Y, et al. Magnetoswitchable charge transport and bioelectrocatalysis using maghemite-Au core-shell nanoparticle/polyaniline composites. Advanced Materials.2007,19(18):2691-2695.
    [9]Yoon H C, Hong M Y, Kim H S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode. Analytical Chemistry.2000,72(18):4420-4427.
    [10]Laviron E. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. Journal Electroanalytical Chemistry.1979,100(1-2):263-270.
    [11]Liu H H, Tian Z Q, Lu Z X, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosensors and Bioelectronics.2004. 20(2):294-304.
    [12]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal Electroanalytical Chemistry.1979,101(1): 19-28.
    [13]Zhang H M, Li N Q. The direct electrochemistry of myoglobin at a DL-homocys-teine self-assembled gold electrode. Bioelectrochemistry.2001,53(1):97-101.
    [14]Wu Y H, Shen Q C, Hu S S. Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film. Analytica Chimica Acta.2006,558(1-2):179-186.
    [15]Chen X, Hu N, Zeng Y. Ordered electrochemically active films of hemoglobin, didodecyldimethylammonium ions and clay. Langmuir.1999,15(20):7022-7030.
    [16]Shire S J. Hanania G I H, Gurd F R N. Electrostatic effects in myoglobin. hydrogen ion equilibriums in sperm whale ferrimyoglobin. Biochemistry.1974,13(14):2967-2974.
    [17]Sun H, Hu N F, Ma H Y. Direct electrochemistry of hemoglobin in polyacrylamide hydrogel films on pyrolytic graphite electrodes. Electroanalysis.2000,12(13):1064-1070.
    [18]Lu Q, Zhou T, Hu S. Direct electrochemistry of hemoglobin in PHEA and its catalysis to H2O2. Biosensors and Bioelectronics.2007,22(6):899-904.
    [19]Huang R, Hu N F. Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films. Bioelectrochemistry.2001.54(1):75-81.
    [20]Dong S J, Chu Q W. Study on electrode process of myoglobin at a polymerized toluidine blue film electrode. Chinese Journal of Chemistry.1993.11(1):12-20.
    [21]Kamin R A, Willson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry.1980, 52(8):1198-1205.
    [22]Gan X, Liu T, Zhong J, et al. Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. ChemBioChem.2004,5(12):1686-1691.
    [23]Liu S Q. Ju H X. Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles. Electroanalysis.2003,15(18):1488-1493.
    [1]Matsuno R, Yamamoto K, Otsuka H, et al. Chemistry of Materials.2003,15(1):3-5.
    [2]Beydoun D, Amal R, Low G. K.C, et al. Novel Photocatalyst:Titania-Coated Magnetite. Activity and Photodissolution. The Journal of Physical Chemistry B.2000,104(18): 4387-4396.
    [3]Qiu J D, Peng H P, Liang R P, et al. Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry Biosensors and Bioelectronics. 2010.25(6) 1447-1453.
    [4]Li Y, Leng T H, Lin H Q. et al. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. Journal of Proteome Research.2007,6(11):4498-4510.
    [5]Fang M M, Kaschak D M, Sutorik A C, et al. A "mix and match" ionic-covalent strategy for self-assembly of inorganic multilayer films. Journal of the American Chemical Society. 1997,119(50):12184-12191.
    [6]Deng H, Li X L, Peng Q, et al. Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angewandte Chemie International Edition.2005,44(18):2782-2785.
    [7]Wang J, Kawde A N. Magnetic-field stimulated DNA oxidation. Electrochemistry. Communications.2002,4(4):349-352.
    [8]George P, Hanania G. A spectrophotometric study of ionizations inmethaemoglobin. Biochemical Journal.1953.55(2):236-243.
    [9]Brown K R, Walter D G, Natan M J. Seeding of colloidal Au nanoparticle Solutions.2. improved control of particle size and shape. Chemistry of Materials.2000,12(2):306-313.
    [10]Liu S Q, Ju H X. Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles. Electroanalysis.2003.15(18):1488-1493.
    [11]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal Elctroanalytical Chemistry.1979,101(1): 19-28.
    [12]Liu H Y, Hu N F. Comparative bioelectrochemical study of core-shell nanocluster films with ordinary layer-by-layer films containing heme proteins and CaCO3 nanoparticles. The Journal of Physical Chemistry B.2005.109 (20):10464-10473.
    [13]Kamin R A, Willson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry.1980, 52(8):1198-1205.
    [14]Zhao G. Feng J J. Xu J J, et al. Direct electronchemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 flim. Electrochemistry Communications. 2005,7(7):724-729.
    [1]Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta.2006,556(1):46-57.
    [2]Song Y Y, Zhang D, Gao W, et al. Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chemistry-A European Journal.2005,11(7):2177-2182.
    [3]Fei X, Zhao F Q, Mei D P, et al. Nonenzymatic glucose sensor based on ultrasonic-electrode position of bimetallic PtM (M= Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosensors and Bioelectronics.2009,24(12): 3481-3486.
    [4]Wang S Y, Jiang S P, White T J, et al. Electrocatalytic activity and interconnectivity of Pt nanoparticles on multiwalled carbon nanotubes for fuel cells. Journal of Physical Chemistry C.2009,113 (43):18935-18945.
    [5]F. S. Hoor, M. F. Ahmed, S. M. Mayanna. Methanol oxidative fuel cell:electrochemical synthesis and characterization of low-priced WO3-Pt anode material. Journal of Solid State Electrochemistry.2004,8(8):572-576.
    [6]Rajesh B, Thampi K R, Bonard J M, et al. Pt particles supported on conducting polymeric nanocones as electro-catalysts for methanol oxidation. Journal of Power Sources.2004, 133(2):155-161.
    [7]Mu S L, Chen C X, Wang J M. The kinetic behavior for the electrochemical polymerization of aniline in aqueous solution. Synthetic. Metals.1997,88(3):249-254.
    [8]Cheng P Z, Teng H. Electrochemical responses from surface oxides present on HNO3-treated carbons. Carbon.2003,41(11),2057-2063.
    [9]Kinyanjui J M, Hatchett. D W. Chemical synthesis of a polyaniline/gold composite using tetrachloroaurate. Chemistry of Materials.2004,16(17),3390-3398.
    [10]Gao Y, Shan D C, Cao F, et al. Silver/polyaniline composite nanotubes:one-step synthesis and electrocatalytic activity for neurotransmitter dopamine. The Journal of Physical Chemistry C.2009,113(34):15175-15181.
    [11]Zhou H H, Chen H, Luo S L, et al. Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline. Biosensors and Bioelectronics.2005,20(7): 1305-1311.
    [12]Guo S J, Dong S J, Wang E K. Polyaniline/Pt hybrid nanofibers:high-efficiency nanoelectrocatalysts for electrochemical devices. Small.2009,5(16):1869-1876.
    [13]Zhang K, Zhang L L, Zhao X S, et al.Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials,2010,22(4):1392-1401.
    [14]Yan J, Wei T, Fan Z J, et al. Preparation of graphene nanosheet/carbon nanotube/ polyaniline composite as electrode material for supercapacitors. Journal of Power Sources. 2010,195(9):3041-3045.
    [15]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science.2004,306(5296):666-669.
    [16]Lee C G, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science.2008,321(5887):385-388.
    [17]Nikzad L, Alibeigi S, Vaezi M R, et al. Synthesis of a graphite-polyaniline nanocomposite and evaluation of its electrochemical properties. Chemical Engineering and Technology. 2009,32(6):861-866.
    [18]Cote L J, Kim F K, Huang J X. Langmuir-blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society.2009,131(3):1043-1049.
    [19]Wang H L, Hao Q L, Yang X J, et al. Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications.2009,11(6):1158-1161.
    [20]Li Y J, Gao W, Ci L J, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon.2010,48(4):1124-1130.
    [21]Fang B Z, Chaudhari N K., Kim M S, et al. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. Journal of the American Chemical Society.2009,131(42):15330-15338.
    [22]Liu H, Gao J, Xue M Q, et al. Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive nethylene green. Langmuir.2009,25(20):12006-12010.
    [23]McCall R P, Ginder J P, Leng J M, et al. Spectroscopy and defect states in polyaniline. Physical Revier B.1990,41(8):5202-5213.
    [24]Wan M X, Absorption spectra of thin film of polyaniline. Journal of Polymer Science Part A-Polymer Chemistry.1992,30(4):543-549.
    [25]Pillalamarri S K, Blum F D, Tokuhiro A T, et al. One-pot synthesis of polyaniline-metal nanocomposites. Chemistry of Materials.2005,17(24):5941-5944.
    [26]Cassagneau T, Fendler J H. High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes. Advanced Materials.1998,10(11): 877-881.
    [27]Xing S X, Zheng H W, Zhao G K. Preparation of polyaniline nanofibers via a novel interfacial polymerization method. Synthetic Metals.2008,158(1-2):59-63.
    [28]Rajendra P K, Munichandraiah N. Elcctrooxidation of methanol on polyaniline without dispersed catalyst particles. Journal of Power Sources.2002,103(2):300-304.
    [29]Wang H L, Hao Q L, Yang X J, et al. Effect of graphene oxide on the properties of its composite with polyaniline. ACS Applied Materials and Interfaces.2010,2(3):821-828.
    [30]Palaniappan S, John A. Polyaniline materials by emulsion polymerization pathway. Progress in Polymer Science.2008,33(7) 732-758.
    [31]Wang D W, Li F, Zhao J P, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano. 2009,3(7):1745-1752.
    [32]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper. Nature.2007,448:457-460.
    [33]Jia J B, Cao L Y, Wang Z H. Platinum-coated gold nanoporous films surfaces: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Langmuir. 2008,24(11):5932-5936.
    [34]Lee E P, Peng Z M, Cate D M, et al. Growing Pt nanowires as a densely packed array on metal gauze. Journal of the American Chemical Society.2007,129(35):10634-10635.
    [35]Holstein W, Rosenfeld H D. In-situ x-ray absorption spectroscopy study of Pt and Ru chemistry during methanol electrooxidationt. The Journal of Physical Chemistry B.2005, 109(6):2176-2186.
    [36]Tang H, Chen J H, Huang Z P, et al. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon.2004,42(1):191-197.
    [37]Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. Journal of the Electrochemical Society.1990,137(3):845-848.
    [38]Hyeon T, Han S, Sung Y E, et al. High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. Angewandte Chemie Interantional Editon. 2003,42(36):4352-4356.
    [39]Lin Y H, Cui X L, Yen C Y, et al. Pt Ru/carbon nanotubes nanocomposite synthesized in supercritical fluid:a novel electrocatalyst for direct methanol fuel cells. Langmuir.2005, 21(24):11474-11479.
    [40]Ray A, Asturias G E, Kershner D L, et al. Polyaniline:doping, structure and derivatives. Synthetic Metals.1989,29(1):141-150.
    [41]Zheng H, Xue H G, Zhang Y F, et al. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst. Biosensors and Bioelectronics. 2002,17(6-7):541-545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700