引力N体系统的后牛顿力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Post-Newtonian Mechanics of a Gravitational N-body System
  • 作者:谢懿
  • 论文级别:博士
  • 学科专业名称:天文学
  • 学位年度:2010
  • 导师:朱紫
  • 学科代码:070401
  • 学位授予单位:南京大学
  • 论文提交日期:2010-09-01
摘要
爱因斯坦提出广义相对论已近一百年,但时至今日相对论引力N体问题仍然是一个远未被深入研究和有待解决的棘手问题。为了进一步认识物质和时空之间的相互作用特性,即给出一个全面而自洽的后牛顿参考系和运动方程理论,同时也为了服务于未来的高精度天体测量和实验,尤其是未来1毫米精度的激光测月,作者以太阳系和地月系统为实例,研究引力N体系统的后牛顿力学。
     本文采用标量—张量理论做为引力理论的框架,它相对于广义相对论包含了两个参数化后牛顿参数γ和β。针对太阳系和地月系统,作者使用并拓展了国际天文学联合会2000年有关相对论参考系决议的概念,建立了一系列的后牛顿参考系。假设太阳系是孤立的且时空在无穷远处渐近平坦,可以首先建立太阳系质心参考系。它是一个全局参考系,覆盖整个太阳系的时空,原点位于太阳系质心,空间轴延伸至无穷远。太阳系质心参考系相对于遥远的类星体不存在任何转动,即相对于国际天球参考架保持静止。接着建立的是地月质心参考系。它是一个局部的惯性系,涵盖地月系统,坐标轴延伸到金星和火星的轨道。地月质心参考系是一个动力学上不转动的参考系,即在地月质心参考系中检验粒子的运动方程不包含科里奥利力和惯性离心力。这一建立在引力N系统中某个子系统上的局部参考系拓展了国际天文学联合会2000年相对论参考系决议中建立在某一个天体上的局部参考系的概念。除此之外,作者还建立了其他两个局部参考系:地球质心参考系和月球质心参考系。它们的原点分别位于地球和月球的质心,在动力学上也都是不转动的。相对于其他的局部参考系和国际天球参考架,每一个局部参考系都存在相对论进动。选择动力学无转动局部参考系的理论优点是其数学描述更为简单。在修正了相对论进动之后,每个局部参考系的坐标轴可以和国际天球参考架保持静止。引入这样一个全局参考系和三个局部参考系的目的是为了能够把月球相对于地球的运动和地月质心本身的轨道运动分解开,同时为高精度激光测月实验建立起坐标描述(月球的运动、地球上的观测者和月面上的后向反射镜)和可直接测量量(激光往返原时间隔)之间的联系。作者在所有的参考系中求解了引力场方程,给出了度规张量和标量场的解,其中包含了各个天体的后牛顿多极矩。随后作者推导了参考系之间的后牛顿坐标变换关系,分析了标量一张量引力理论在度规张量和运动方程中所具有的剩余规范自由度,目的是剔除地球和月球运动方程中依赖于坐标的后牛顿效应。
     在此基础上,作者还推导了有关的后牛顿运动方程。根据由不同参考系间匹配过程所得到的局部参考系原点在全局参考系中的运动规律,加上局部引力体质心和局部参考系原点时时都重合的这一限制,作者给出了地月质心在太阳系质心参考系下的运动方程(三维坐标加速度),其中的所有项都表达成了引力体局部质量多极矩和自转多极矩的形式。通过把笛卡尔对称无迹外部引力多极矩和质量以及自转多极矩扩充成四维协变形式,作者又给出了地月质心在太阳系质心参考系下运动方程的四维协变形式,并由此证明在一阶后牛顿近似下其世界线与背景引力场中测地线的偏离是由于其自身的高阶多极矩(l≥1)与外部引力场的耦合以及强等效原理破缺所造成的。使用类似的方法,作者还推导了月球和地球在地月质心参考系中的运动方程以及月球相对于地球的运动方程。这一在局部参考系下所给出的相对运动方程可以用于下一代的激光测月实验。
     虽然上述所有的结果都是针对太阳系和地月系统而给出的,但它们都可以直接推广到一般的引力N体系统中。
It has been almost a century since Einstein published the general relativity. But the relativistic N-body problem is still an unsolved problem and far from well-studied. Focusing on the solar system and the Earth-Moon system, this thesis tries to establish the post-Newtonian (PN) mechanics of a gravitational N-body system for future high-precision astrometry and experiments, especially the lunar laser ranging (LLR).
     A set of PN reference frames are introduced for a comprehensive study of the or-bital dynamics and rotational motion of Moon and Earth by LLR with the precision of 1 millimeter. We employ a framework of a scalar-tensor theory of gravity depending on two parameters,βandγ, of the parameterized post-Newtonian (PPN) formalism and utilize the concepts of the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically fiat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial with its spatial axes spreading out up to the orbits of Venus and Mars, and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames-geocentric (GRF) and selenocentric (SRF)-have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is sub-ject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathemat-ical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital.motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as the proper time and the round-trip laser-light distance. We solve the gravitational field equations and find out the metric tensor and the scalar field in all frames, which description includes the PN definition of the multipole moments of the gravitational field of Earth and Moon. We also de-rive the PN coordinate transformations between the frames and analyze the residual gauge freedom imposed by the scalar-tensor theory of gravity on the metric tensor and equations of motion. The residual gauge freedom is used for removing the spurious, coordinate-dependent PN effects from the equations of motion of Earth and Moon.
     Based on the previous reference frames, the equations of motion are derived. With the law of motion of the origin of the EMB frame in the SSB frame given by the matching procedure and the condition that the origin of the EMB frame coincides with the center of mass of the Earth-Moon system at any instant, the equations of the motion of the center of mass of the Earth-Moon system in the SSB frame are obtained. The 3D coordinate accelerations in these equations are expressed by the local multipole moments. Through extension of multipole moments of external gravitational fields, masses and spins from Cartesian symmetry-trace-free tensors to 4D covariant tensors, it is shown that the equations of motion of the center of mass of the Earth-Moon system in the SSB frame can be written in a covariant form and the higher moments (l> 1) of the Earth-Moon system and the violation of the strong equivalence principle cause the world line of its center of mass to deviate from the geodesics in the background gravitational field. The equations of motion of the Earth or the Moon in the EMB frame are given, and then they lead to the equations of motion of the Moon with respect to the Earth, which could be used in the next generation of LLR. All of the results could be easily extended and applied to a gravitational N-body system.
引文
[1]K. S. Thorne. Multipole expansions of gravitational radiation. Rev. Mod. Phys.,52:299-340, April 1980.
    [2]J. Battat, T. Murphy, E. Adelberger, C. D. Hoyle, R. McMillan, E. Michelsen, K. Nordtvedt, A. Orin, C. Stubbs, and H. E. Swanson. APOLLO:Testing Gravity with Millimeter-precision Lunar Laser Ranging. APS Meeting Abstracts, page 12.003, April 2007.
    [3]T. W. Murphy, E. G. Adelberger, J. B. R. Battat, L. N. Carey, C. D. Hoyle, P. Leblanc, E. L. Michelsen, K. Nordtvedt, A. E. Orin, J. D. Strasburg, C. W. Stubbs, H. E. Swanson, and E. Williams. The Apache Point Observatory Lunar Laser-ranging Operation:Instrument Description and First Detections. Publ. Astron. Soc. Pacific,120:20-37, January 2008.
    [4]D.G. Currie, C. Cantone, W. D. Carrier, S. Dell'Agnello, G. Delle Monache, T. Murphy, D. Rubincam, and R. Vittori. A Lunar Laser Ranging Retro-Reflector Array for the 21st Century. LPI Contributions,1415:2145, July 2008.
    [5]P. L. Bender, J. E. Faller, J. L. Hall, J. J. Degnan, J. O. Dickey, X. X. Newhall, J. G. Williams, R. W. King, L. O. Macknik, and D. O'Gara. Microwave and optical lunar transponders. In M. J. Mumma and H. J. Smith, editors, Astrophysics from the Moon, volume 207 of American Institute of Physics Conference Series, pages 647-653,1990.
    [6]M. Soffel, S. A. Klioner, G. Petit, P. Wolf, S. M. Kopeikin, P. Bretagnon, V. A. Brum-berg, N. Capitaine, T. Damour, T. Fukushima, B. Guinot, T.-Y. Huang, L. Lindegren, C. Ma, K. Nordtvedt, J. C. Ries, P. K. Seidelmann, D. Vokrouhlicky, C. M. Will, and C. Xu. The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework:Explanatory Supplement. Astron. J. (USA),126:2687-2706, December 2003.
    [7]A. Einstein. Die Grundlage der allgemeinen Relativitatstheorie. Annalen der Physik, 354(7):769-822,1916.
    [8]W. de Sitter. On Einstein's theory of gravitation and its astronomical consequences. Second paper. Mon. Not. Roy. Astron. Soc.,77(2):155-184,1916.
    [9]J. Chazy. La Theorie de la Relativite et la Mecanique celeste Tome Ⅰ,1928 et Tome Ⅱ,1930. Paris:Editions Jacques Gabay,2005.
    [10]A. S. Eddington. The Mathematical Theory of Relativity. New York:Chelsea,1975.
    [11]V. A. Brumberg. Essential Relativistic Celestial Mechanics. New York:Adam Hilger,1991.
    [12]R. Baierlein. Testing General Relativity with Laser Ranging to the Moon. Physical Review, 162(5):1275-1287,1967.
    [13]J.-F. Lestrade and P. Bretagnon. Relativistic perturbations for all the planets. Astron. Astrophys.,105(1):42-52,1982.
    [14]B. Mashhoon and D. S. Theiss. Relativistic Effects in the Motion of the Moon. In C. Lammerzahl, C. W. F. Everitt, and F. W. Hehl, editors, Gyros, Clocks, Interferometers: Testing Relativistic Gravity in Space, pages 310-316. Berlin:Springer,2001.
    [15]M. Soffel, H. Ruder, and M. Schneider. The dominant relativistic terms in the lunar theory. Astron. Astrophys.,157(2):357-364,1986.
    [16]M. Chapront-Touze and J. Chapront. The lunar ephemeris ELP 2000. Astron. Astrophys., 124(l):50-62,1983.
    [17]A. Fienga, H. Manche, J. Laskar, and M. Gastineau. INPOP06:a new numerical planetary ephemeris. Astron. Astrophys.,477:315-327, January 2008.
    [18]E. M. Standish. JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL IOM 312.F-98-048, Jet Propulsion Laboratory,1998.
    [19]E. V. Pitjeva. High-Precision Ephemerides of Planets EPM and Determination of Some Astronomical Constants. Sol. Sys. Res.,39(3):176-186,2005.
    [20]G. Y. Li, H. B. Zhao, Y. Xia, F. Zeng, and Y. J. Luo. PMOE planetary/lunar ephemeris framework. In IAU Symposium, volume 248 of IAU Symposium, pages 560-562,2008.
    [21]A. Cook. The motion of the moon. Bristol:Adam Hilger,1988.
    [22]M. C. Gutzwiller. Moon-Earth-Sun:The oldest three-body problem. Rev. Mod. Phys., 70(2):589-639,1998.
    [23]S. Bodenmann. The 18th-century battle over lunar motion. Physics Today,63:27-32, January 2010.
    [24]A. E. Roy. Orbital motion. Bristol:Institute of Physics Publishing,2005.
    [25]M. H. Soffel. Relativity in Astrometry, Celestial Mechanics and Geodesy. Berlin:Springer, 1989.
    [26]P. L. Bender, D. G. Currie, R. H. Dicke, D. H. Eckhardt, J. E. Faller, W. M. Kaula, J. D. Mulholland, H. H. Plotkin, S. K. Poultney, E. C. Silverberg, D. T. Wilkinson, J. G. Williams, and C. O. Alley. The Lunar Laser Ranging Experiment. Science,182:229-238, October 1973.
    [27]C. O. Alley. Laser ranging to retro-reflectors on the Moon as a test of theories of gravity. In P. Meystre and M. O. Scully, editors, Quantum Optics, Experimental Gravitation, and Measurement Theory, volume 94 of NATO ASI Series:Physics, pages 429-495. Plenum Press, New York,1983.
    [28]J. G. Williams. A scheme for lunar inner core detection. Geophys. Res. Lett.,34:3202, February 2007.
    [29]J. G. Williams, D. H. Boggs, J. T. Ratcliff, C. F. Yoder, and J. O. Dickey. Influence of a Fluid Lunar Core on the Moon's Orientation. In Lunar and Planetary Institute Conference Abstracts, volume 32 of Lunar and Planetary Inst. Technical Report, page 2028, March 2001.
    [30]J. G. Williams, D. H. Boggs, C. F. Yoder, J. T. Ratcliff, and J. O. Dickey. Lunar rotational dissipation in solid body and molten core. J. Geophys. Res.,106:27933-27968, November 2001.
    [31]J. G. Williams, D. H. Boggs, and J. T. Ratcliff. Lunar Tides, Fluid Core and Core/Mantle Boundary. In Lunar and Planetary Institute Conference Abstracts, volume 39 of Lunar and Planetary Inst. Technical Report, page 1484, March 2008.
    [32]J. G. Williams, X. X. Newhall, C. F. Yoder, and J. O. Dickey. Lunar Free Libration. In Lunar and Planetary Institute Conference Abstracts, volume 27 of Lunar and Planetary Inst. Technical Report, page 1439, March 1996.
    [33]N. Rambaux, J. G. Williams, and D. H. Boggs. A Dynamically Active Moon-Lunar Free Li-brations and Excitation Mechanisms. In Lunar and Planetary Institute Conference Abstracts, volume 39 of Lunar and Planetary Inst. Technical Report, page 1769, March 2008.
    [34]J. G. Williams, R. H. Dicke, P. L. Bender, C. O. Alley, D. G. Currie, W. E. Carter, D. H. Eckhardt, J. E. Faller, W. M. Kaula, and J. D. Mulholland. New test of the equivalence principle from lunar laser ranging. Physical Review Letters,36:551-554, March 1976.
    [35]J. Muller and K. Nordtvedt. Lunar laser ranging and the equivalence principle signal. Phys. Rev. D,58(6):062001, September 1998.
    [36]C. M. Will. Theory and Experiment in Gravitational Physics. Cambridge:Cambridge Uni-versity Press, March 1993.
    [37]K. Nordtvedt. Lunar Laser Ranging-A Comprehensive Probe of the Post-Newtonian Long Range Interaction. In C. Lammerzahl, C. W. F. Everitt, and F. W. Hehl, editors, Gyros, Clocks, Interferometers...:Testing Relativistic Gravity in Space, volume 562 of Lecture Notes in Physics, Berlin Springer Verlag, pages 317-329,2001.
    [38]J. Mueller, M. Schneider, M. Soffel, and H. Ruder. Testing Einstein's theory of gravity by analyzing Lunar Laser Ranging data. Astrophys. J. Lett.,382:L101-L103, December 1991.
    [39]J. Muller, K. Nordtvedt, and D. Vokrouhlicky. Improved constraint on the α1 PPN parameter from lunar motion. Phys. Rev. D,54:5927-5930, November 1996.
    [40]J. G. Williams, S. G. Turyshev, and T. W. Murphy. Improving LLR Tests of Gravitational Theory. International Journal of Modern Physics D,13:567-582,2004.
    [41]M. Soffel, S. Klioner, J. Muller, and L. Biskupek. Gravitomagnetism and lunar laser ranging. Phys. Rev. D,78(2):024033, July 2008.
    [42]O. Calame and J. D. Mulholland. Lunar Tidal Acceleration Determined from Laser Range Measures. Science,166:977-978,1978.
    [43]H. Xu and W. Jin. Tidal acceleration of the Moon. Shanghai Observatory Annals,15:129-133,1994.
    [44]J. Chapront, M. Chapront-Touze, and G. Francou. A new determination of lunar or-bital parameters, precession constant and tidal acceleration from LLR measurements. Astron. Astrophys.,387:700-709, May 2002.
    [45]B. Bertotti, I. Ciufolini, and P. L. Bender. New test of general relativity-Measurement of de Sitter geodetic precession rate for lunar perigee. Physical Review Letters,58:1062-1065, March 1987.
    [46]J. O. Dickey, X. X. Newhall, and J. G. Williams. Investigating relativity using lunar laser ranging-Geodetic precession and the Nordtvedt effect. Advances in Space Research,9:75-78,1989.
    [47]X. X. Newhall, E. M. Standish, Jr., and J. G. Williams. Planetary and lunar ephemerides, lunar laser ranging and lunar physical librations. (Lecture). In S. Ferraz-Mello, B. Morando, and J.-E. Arlot, editors, Dynamics, Ephemerides, and Astrometry of the Solar System, vol-ume 172 of IAU Symposium, pages 37-44,1996.
    [48]S. M. Kudryavtsev. Accurate harmonic development of Lunar ephemeris LE-405/406. Highlights of Astronomy,14:472-472, August 2007.
    [49]S. M. Kopeikin, E. Pavlis, D. Pavlis, V. A. Brumberg, A. Escapa, J. Getino, A. Gusev, J. Muller, W.-T. Ni, and N. Petrova. Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging. Advances in Space Research, 42:1378-1390, October 2008.
    [50]E. M. Standish. Planetary and Lunar Ephemerides:testing alternate gravitational theories. In A. Macias, C. Lammerzahl, and A. Camacho, editors, Recent Developments in Gravitation and Cosmology, volume 977 of American Institute of Physics Conference Series, pages 254-263, March 2008.
    [51]J. Chapront, M. Chapront-Touze, and G. Francou. Determination of the lunar orbital and ro-tational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data. Astron. Astrophys.,343:624-633, March 1999.
    [52]J. G. Williams, D. H. Boggs, J. T. Ratcliff, and J. O. Dickey. Lunar Rotation and the Lunar Interior. In S. Mackwell and E. Stansbery, editors, Lunar and Planetary Institute Conference Abstracts, volume 34 of Lunar and Planetary Inst. Technical Report, page 1161, March 2003,
    [53]J. Muller, J. G. Williams, and S. G. Turyshev. Lunar Laser Ranging Contributions to Rel-ativity and Geodesy. In H. Dittus, C. Lammerzahl, and S. G. Turyshev, editors, Lasers, Clocks and Drag-Free Control:Exploration of Relativistic Gravity in Space, volume 349 of Astrophysics and Space Science Library, pages 457-472,2008.
    [54]J. Muller, M. Soffel, and S. A. Klioner. Geodesy and relativity. Journal of Geodesy,82:133-145, March 2008.
    [55]C.-L. Huang, W.-J. Jin, and H.-G. Xu. The Terrestrial and Lunar Reference Frame in LLR. Shanghai Observatory Annals, pages 169-175, January 1996.
    [56]C. Huang, W. Jin, and H. Xu. The terrestrial and lunar reference frame in lunar laser ranging. Journal of Geodesy,73:125-129, April 1999.
    [57]E. M. Standish and G. Williams. Dynamical reference frames in the planetary and earth-moon systems. In J. H. Lieske and V. K. Abalakin, editors, Inertial Coordinate System on the Sky, volume 141 of IAU Symposium, pages 173-180,1990.
    [58]H. G. Walter and O. J. Sovers. Astrometry of fundamental catalogues:the evolution from optical to radio reference frames. Berlin, Heidelberg:Springer-Verlag,2000.
    [59]M.R. Pearlman, J.J. Degnan, and J.M. Bosworth. The international laser ranging service. Advances in Space Research,30(2):135-143, July 2002.
    [60]F. Meyer, F. Seitz, and J. Mueller. Algorithm for reliable normal point calculation of noisy LLR measurements. In U. Schreiber, C. Werner, G. W. Kamerman, and U. N. Singh, editors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 4546 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 154-159,January 2002.
    [61]T. W. Murphy, E. L. Michelson, A. E. Orin, E. G. Adelberger, C. D. Hoyle, H. E. Swanson, C. W. Stubbs, and J. B. Battat. Apollo:. a New Push in Lunar Laser Ranging. International Journal of Modern Physics D,16:2127-2135,2007.
    [62]A. Einstein, L. Infeld, and B. Hoffmann. The gravitational equations and the problem of motion. The Annals of Mathematics,39(1):65-100,1938.
    [63]N. M. Petrova. On equations of motion and tensor of matter for a system of finite masses in general theory of relativity. Zh. Exp. Theor. Phys.,19:989-999,1949.
    [64]V. A. Fock. The Theory of Space, Time and Gravitation. New York:Pergamon Press, Febru-ary 1959.
    [65]H. A. Lorentz and J. Droste. The motion of a system of bodies under the influence of their mutual attraction, according to einstein's theory. part i. Versl. K. Akad. Wet. Amsterdam, 26:392,1917.
    [66]H. A. Lorentz and J. Droste. The motion of a system of bodies under the influence of their mutual attraction, according to einstein's theory. part ⅱ. Versl. K. Akad. Wet. Amsterdam, 26:649,1917.
    [67]H. A. Lorentz and J. Droste. The Collected Papers of H. A. Lorentz, chapter The motion of a system of bodies under the influence of their mutual attraction, according to Einstein's theory, pages 330-355. The Hague:Nijhoff,1937.
    [68]V. A. Brumberg. Relativistic Celestial Mechanics. Moscow:Nauka (in Russian),1972.
    [69]L. D. Landau and E. M. Lifshitz. The classical theory of fields. Oxford:Pergamon Press, 1975.
    [70]P. Painleve. La mecanique classique et la theorie de la relativite. C. R. Acad. Sci. (Paris), 173:677-680,1921.
    [71]A. Gullstrand. Allgemeine Losung des statischen Einkorperproblems in der Einsteinschen Gravitationstheorie. Arkiv. Mat. Astron. Fys.,16:1-15, August 1922.
    [72]F. B. Estabrook. Post-Newtonian n-BODY Equations of the Brans-Dicke Theory. Astrophys. J.,158:81-83, October 1969.
    [73]K. Nordtvedt. Existence of the Gravitomagnetic Interaction. International Journal of Theoretical Physics,27:1395-1404, November 1988.
    [74]S. M. Kopeikin and E. B. Fomalont. Gravimagnetism, causality, and aberration of gravity in the gravitational light-ray deflection experiments. General Relativity and Gravitation, 39:1583-1624, October 2007.
    [75]T. W. Murphy, Jr., K. Nordtvedt, and S. G. Turyshev. Gravitomagnetic Influence on Gyro-scopes and on the Lunar Orbit. Physical Review Letters,98(7):071102, February 2007a.
    [76]T. W. Murphy, Jr., K. Nordtvedt, and S. G. Turyshev. Murphy, Nordtvedt, and Turyshev Reply:. Physical Review Letters,98(22):229002, June 2007b.
    [77]S. M. Kopeikin. Comment on "Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit". Physical Review Letters,98(22):229001, June 2007.
    [78]V. A. Brumberg. Relativistic reduction of astronomical measurements and reference frames. In E. M. Gaposchkin and B. Kolaczek, editors, ASSL Vol.86:IAU Colloq.56:Reference Coordinate Systems for Earth Dynamics, pages 283-294,1981.
    [79]J. L. Synge. Recent Developments in General Relativity, chapter Relativity based on chronometry, pages 441-448. Warsaw:Polish Scientific Publishers,1962.
    [80]J. L. Synge. Relativity:The general theory. Series in Physics, Amsterdam:North-Holland Publication Co.,1964.
    [81]L. Infeld and J. Plebanski. Motion and Relativity. Oxford:Oxford University Press,1960.
    [82]R. Baierlein. Testing General Relativity with Laser Ranging to the Moon. Physical Review, 162:1275-1287, October 1967.
    [83]V. A. Brumberg. Relativistic corrections in the theory of motion of the Moon. Bull. Inst. Theor. Astron.,6(10(83)):733-756,1958.
    [84]C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. San Francisco:W.H. Freeman and Co.,1973.
    [85]V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger. Theory of cosmological pertur-bations. Phys. Rep.,215:203-333, June 1992.
    [86]S. Kopeikin. The gravitomagnetic influence on Earth-orbiting spacecrafts and on the lunar orbit. ArXiv e-prints, September 2008.
    [87]S. A. Klioner and A. V. Voinov. Relativistic theory of astronomical reference systems in closed form. Phys. Rev. D,48:1451-1461, August 1993.
    [88]T. Damour, M. Soffel, and C. Xu. General-relativistic celestial mechanics. IV. Theory of satellite motion. Phys. Rev. D,49:618-635, January 1994.
    [89]S. M. Kopejkin. Celestial coordinate reference systems in curved space-time. Celestial Mechanics,44:87-115, March 1988.
    [90]C. Eling, T. Jacobson, and D. Mattingly. Einstein-Ether Theory. In J. T. Liu, M. J. Duff, K. S. Stelle, and R. P. Woodward, editors, Deserfest:A Celebration of the Life and Works of Stanley Deser, pages 163-179,2006.
    [91]A. Kostelecky. Theory and Status of Lorentz Violation. APS Meeting Abstracts, page 13.00001, May 2008.
    [92]T. Damour and G. Esposito-Farese. Tensor-multi-scalar theories of gravitation. Classical and Quantum Gravity,9:2093-2176, September 1992.
    [93]S. M. Kopeikin. Gravitomagnetism and the Speed of Gravity. International Journal of Modern Physics D,15:305-320,2006.
    [94]I. Ciufolini. Lunar Laser Ranging, Gravitomagnetism and Frame-Dragging. ArXiv e-prints, September 2008.
    [95]L. Iorio. Will it be possible to measure intrinsic gravitomagnetism with Lunar Laser Rang-ing? ArXiv e-prints, September 2008.
    [96]V. A. Brumberg and S. M. Kopejkin. Relativistic Reference Systems and Motion of Test Bodies in the Vicinity of the Earth. Nuovo Cimento B Serie,103:63-98,1989.
    [97]J.-H. Tao, T.-Y. Huang, and C.-H. Han. Coordinate transformations and gauges in the rela-tivistic astronomical reference systems. Astron. Astrophys.,363:335-342, November 2000.
    [98]V. Fock. Three Lectures on Relativity Theory. Reviews of Modern Physics,29:325-333, July 1957.
    [99]L. P. Eisenhart. Differential Geometry. Princeton:Princeton University Press,1947.
    [100]B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov. Modern Geometry. New York:Springer-Verlag, February 1984.
    [101]V. A. Brumberg and S. M. Kopejkin. Relativistic theory of celestial reference frames. In J. Kovalevsky, I. I. Mueller, and B. Kolaczek, editors, ASSL Vol.154:Reference Frames, pages 115-141,1989.
    [102]T. Damour, M. Soffel, and C. Xu. General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys. Rev. D,43:3273-3307, May 1991.
    [103]S. M. Kopeikin. Relativistic Reference Frames for Astrometry and Navigation in the Solar System. In E. Belbruno, editor, New Trends in Astrodynamics and Applications III, volume 886 of American Institute of Physics Conference Series, pages 268-283, February 2007.
    [104]T. D. Moyer. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. John Wiley & Sons, Inc.:Hoboken, New Jersey,2003.
    [105]L. Blanchet. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries. Living Reviews in Relativity,5:3, April 2002.
    [106]W. G. Dixon. Extended bodies in general relativity:their description and motion. In J. Ehlers, editor, Isolated Gravitating Systems in General Relativity, pages 156-219,1979.
    [107]L. Blanchet, G. Faye, and S. Nissanke. Structure of the post-Newtonian expansion in general relativity. Phys. Rev. D,72(4):044024, August 2005.
    [108]P. D. D'Eath. Dynamics of a small black hole in a background universe. Phys. Rev. D, 11:1387-1403, March 1975.
    [109]P. D. D'Eath. Interaction of two black holes in the slow-motion limit. Phys. Rev. D,12:2183-2199, October 1975.
    [110]J. D. Bekenstein. The modified Newtonian dynamics-MOND-and its implications for new physics. ArXiv Astrophysics e-prints, January 2007.
    [111]C.M. Will. The Confrontation between General Relativity and Experiment. Living Reviews in Relativity,9:3 (cited on February 10,2009), March 2006.
    [112]P. Jordan. Formation of the stars and development of the Universe. Nature,164:637-640, 1949.
    [113]P.Jordan.. Z. Phys.,157:112,1959.
    [114]M. Fierz.. Helv. Phys. Acta,29:128,1956.
    [115]C. Brans and R. H. Dicke. Mach's Principle and a Relativistic Theory of Gravitation. Physical Review,124:925-935, November 1961.
    [116]R. H. Dicke. Mach's Principle and Invariance under Transformation of Units. Physical Review,125:2163-2167, March 1962.
    [117]R. H. Dicke. Long-Range Scalar Interaction. Physical Review,126:1875-1877, June 1962.
    [118]T. Damour and G. Esposito-Farese. Nonperturbative strong-field effects in tensor-scalar the-ories of gravitation. Physical Review Letters,70:2220-2223, April 1993.
    [119]S. Chandrasekhar and Y. Nutku. The Second Post-Newtonian Equations of Hydrodynamics in General Relativity. Astrophys. J.,158:55-79, October 1969.
    [120]S. Chandrasekhar and F. P. Esposito. The 2(?)-POST-NEWTONIAN Equations of Hydro-dynamics and Radiation Reaction in General Relativity. Astrophys. J.,160:153-179, April 1970.
    [121]T. Damour. Gravitational radiation and the motion of compact bodies. In N. Deruelle and T. Piran, editors, Gravitational Radiation, pages 59-144,1983.
    [122]G. Schafer. The gravitational quadrupole radiation-reaction force and the canonical formal-ism of ADM. Annals of Physics,161:81-100, April 1985.
    [123]S. M. Kopeikin. General Relativistic Equations of Binary Motion for Extended Bodies with Conservative Corrections and Radiation Damping. Soviet Astronomy,29:516-524, October 1985.
    [124]L. P. Grishchuk and S. M. Kopeikin. The Motion of a Pair of Gravitating Bodies Including the Radiation Reaction Force. Soviet Astronomy Letters,9:230-232, April 1983.
    [125]L. P. Grishchuk and S. M. Kopeikin. Equations of motion for isolated bodies with relativistic corrections including the radiation reaction force. In J. Kovalevsky and V. A. Brumberg, ed-itors, Relativity in Celestial Mechanics and Astrometry. High Precision Dynamical Theories and Observational Verifications, volume 114 of IAU Symposium, pages 19-33,1986.
    [126]T. Damour. Three Hundred Years of Gravitation. Edited by Hawking, S. W. and Israel, W., chapter The problem of motion in Newtonian and Einsteinian gravity, pages 128-198. Cambridge:Cambridge University Press,1989.
    [127]A. Papapetrou. Equations of Motion in General Relativity. Proceedings of the Physical Society A,64:57-75, January 1951.
    [128]A. Papapetrou. Equations of Motion in General Relativity:II The Coordinate Condition. Proceedings of the Physical Society A,64:302-310, March 1951.
    [129]V. N. Zharkov and V. P. Trubitsyn. Physics of planetary interiors. Astronomy and Astro-physics Series, Tucson:Pachart,1978.
    [130]Y. G. Markov. Tidal evolution in the motion of deformable celestial bodies. Astronomy Reports,40:681-689, September 1996.
    [131]E. Bois and A. Journet. Lunar and terrestrial tidal effects on the Moon's rotational motion. Celestial Mechanics and Dynamical Astronomy,57:295-305, October 1993.
    [132]D. C. Christodoulidis, D. E. Smith, R. G. Williamson, and S. M. Klosko. Observed tidal braking in the earth/moon/sun system. J. Geophys. Res.,93:6216-6236, June 1988.
    [133]G. H. Darwin. The Tides and Kindred Phenomena in the Solar System. American Journal of Physics,31:70-71, January 1963.
    [134]S. Kopeikin and I. Vlasov. Parametrized post-Newtonian theory of reference frames, multi-polar expansions and equations of motion in the N-body problem. Phys. Rep.,400:209-318, November 2004.
    [135]C. M. Will and K. J. Nordtvedt. Conservation Laws and Preferred Frames in Relativis-tic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J., 177:757-774, November 1972.
    [136]K. J. Nordtvedt and C. M. Will. Conservation Laws and Preferred Frames in Relativis-tic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity. Astrophys. J.,177:775-792, November 1972.
    [137]J. Hardorp. A Demonstration of the Sun's Motion around the Barycenter of the Solar System. In Bulletin of the American Astronomical Society, volume 17 of Bulletin of the American Astronomical Society, page 592, March 1985.
    [138]J. L. Anderson and T. C. Decanio. Equations of hydrodynamics in general relativity in the slow motion approximation. General Relativity and Gravitation,6:197-237, April 1975.
    [139]V. I. Arnold. Mathematical Methods of Classical Mechanics. Berlin:Springer,1995.
    [140]S. M. Kopejkin. Celestial Coordinate Reference Systems in Curved Spacetime. Celestial Mechanics,44:87-115,1988.
    [141]K. S. Thorne and J. B. Hartle. Laws of motion and precession for black holes and other bodies. Phys. Rev. D,31:1815-1837, April 1985.
    [142]R. E. Kates and L. S. Kegeles. Nonanalytic terms in the slow-motion expansion of a radiating scalar field on a Schwarzschild background. Phys. Rev. D,25:2030-2037, April 1982.
    [143]L. Blanchet and T. Damour. Radiative gravitational fields in general relativity. I-General structure of the field outside the source. Royal Society of London Philosophical Transactions Series A,320:379-430, December 1986.
    [144]A. D. Rendall. On the definition of post-Newtonian approximations. Royal Society of London Proceedings Series A,438:341-360, August 1992.
    [145]S. Chandrasekhar. Ellipsoidal figures of equilibrium. New York:Dover,1987.,1987.
    [146]S. Kopeikin and I. Vlasov. The Effacing Principle in the Post-Newtonian Celestial Mechan-ics. ArXiv General Relativity and Quantum Cosmology e-prints, December 2006.
    [147]Z. Cheng. Relation between the Love numbers and the Earth models. Journal Nanjing Univ, 27:234-242, April 1991.
    [148]J. Getino. Perturbed nutations, Love numbers and elastic energy of deformation for Earth models 1066A and 1066B. Zeitschrift Angewandte Mathematik und Physik,44:998-1021, November 1993.
    [149]T. Damour and K. Nordtvedt. General relativity as a cosmological attractor of tensor-scalar theories. Physical Review Letters,70:2217-2219, April 1993.
    [150]Y. Nutku. The Post-Newtonian Equations of Hydrodynamics in the Brans-Dicke Theory. Astrophys. J.,155:999-1007, March 1969.
    [151]Y. Nutku. The Energy-Momentum Complex in the Brans-Dicke Theory. Astrophys. J., 158:991-996, December 1969.
    [152]H. Dittus, C. Lammerzahl, and S. G. Turyshev, editors. Lasers, Clocks and Drag-Free Control:Exploration of Relativistic Gravity in Space, volume 349 of Astrophysics and Space Science Library,2008.
    [153]T. Appourchaux, R. Burston, Y. Chen, M. Cruise, H. Dittus, B. Foulon, P. Gill, L. Gizon, H. Klein, S. Klioner, S. Kopeikin, H. Kriiger, C. Lammerzahl, A. Lobo, X. Luo, H. Margolis, W.-T. Ni, A. P. Paton, Q. Peng, A. Peters, E. Rasel, A. Rudiger, E. Samain, H. Selig, D. Shaul, T. Sumner, S. Theil, P. Touboul, S. Turyshev, H. Wang, L. Wang, L. Wen, A. Wicht, J. Wu, X. Zhang, and C. Zhao. Astrodynamical Space Test of Relativity Using Optical Devices I (ASTROD I)-A class-M fundamental physics mission proposal for Cosmic Vision 2015-2025. Experimental Astronomy,23:491-527, March 2009.
    [154]J. G. Williams, S. G. Turyshev, and D. H. Boggs. Progress in Lunar Laser Ranging Tests of Relativistic Gravity. Physical Review Letters,93(26):261101, December 2004.
    [155]S. A. Klioner and M. H. Soffel. Relativistic celestial mechanics with PPN parameters. Phys. Rev. D,62(2):024019, July 2000.
    [156]J. F. Lestrade and M. Chapront-Touze. Relativistic perturbations of the moon in ELP 2000. Astron. Astrophys.,116:75-79, December 1982.
    [157]J.-F. Lestrade, J. Chapront, and M. Chapront-Touze. The relativistic planetary perturbations and the orbital motion of the moon. In O. Calame, editor, ASSL Vol.94:IAU Colloq. 63:High-Precision Earth Rotation and Earth-Moon Dynamics:Lunar Distances and Related Observations, pages 217-224,1982.
    [158]K. Nordtvedt. Post-Newtonian Gravitational Effects in Lunar Laser Ranging. Phys. Rev. D, 7:2347-2356, April 1973.
    [159]S. M. Kopeikin. Relativistic Frames of Reference in the Solar System. Soviet Astronomy, 33:550-555, October 1989.
    [160]J. Kovalevsky and 1.1. Mueller. Reference frames in astronomy and geophysics:Introduc-tion. In Reference Frames in Astronomy and Geophysics, pages 1-12,1989.
    [161]J. Kovalevsky and P. K. Seidelmann. Fundamentals of Astrometry. Fundamentals of As-trometry, by Jean Kovalevsky and P. Kenneth Seidelmann, pp.420. ISBN 0521642167. Cam-bridge, UK:Cambridge University Press, July 2004., July 2004.
    [162]C. Ma, E. F. Arias, T. M. Eubanks, A. L. Fey, A.-M. Gontier, C. S. Jacobs, O. J. Sovers, B. A. Archinal, and P. Chariot. The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry. Astron. J. (USA),116:516-546, July 1998.
    [163]M. Feissel-Vernier, C. Ma, A.-M. Gontier, and C. Barache. Analysis strategy issues for the maintenance of the ICRF axes. Astron. Astrophys.,452:1107-1112, June 2006.
    [164]O. A. Titov. Apparent proper motions of radio sources from geodetic VLBI data. Astronomy Letters,33:481-487, July 2007.
    [165]Y. Hagihara. On the theory of secular aberration. Annales de l'Observatoire astronomique de Tokyo,36:155-174,1933.
    [166]S. M. Kopeikin and V. V. Makarov. Astrometric Effects of Secular Aberration. Astron. J. (USA),131:1471-1478, March 2006.
    [167]P. G. Bergmann. Cosmology as a science. Foundations of Physics,1:17-22, March 1970.
    [168]C. R. Gwinn, T. M. Eubanks, T. Pyne, M. Birkinshaw, and D. N. Matsakis. Quasar Proper Motions and Low-Frequency Gravitational Waves. Astrophys. J.,485:87-91, August 1997.
    [169]S. A. Klioner and M. H. Soffel. Refining the Relativistic Model for Gaia:Cosmological Effects in the BCRS. In C. Turon, K. S. O'Flaherty, and M. A. C. Perryman, editors, The Three-Dimensional Universe with Gaia, volume 576 of ESA Special Publication, pages 305-308, January 2005.
    [170]E. M. Standish, Jr. Early observations and modern ephemerides. Highlights of Astronomy, 12:326-329,2002.
    [171]C. S. Jacobs, O. J. Sovers, J. G. Williams, and E. M. Standish. The extragalactic and so-lar system celestial frames:Accuracy, stability, and interconnection. Advances in Space Research,13:161-174, November 1993.
    [172]E. M. Standish. Relating the dynamical reference frame and the ephemerides to the ICRF. Highlights of Astronomy,13:609, January 2005.
    [173]W.-T. Ni and M. Zimmermann. Inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. Phys. Rev. D,17:1473-1476, March 1978.
    [174]T. Damour, M. Soffel, and C. Xu. General-relativistic celestial mechanics. II. Translational equations of motion. Phys. Rev. D,45:1017-1044, February 1992.
    [175]R. A. Breuer and E. Rudolph. The force law for the dynamic two-body problem in the sec-ond post-Newtonian approximation of general relativity. General Relativity and Gravitation, 14:181-211.February 1982.
    [176]R. H. Dicke. The weak and strong principles of equivalence. Annals of Physics,31:235-239, January 1965.
    [177]S. M. Kopeikin. Asymptotic Matching of Gravitational Fields in the Solar System. Soviet Astronomy,33:665-672, December 1989.
    [178]W.-M. Suen. Multipole moments for stationary, non-asymptotically-flat systems in general relativity. Phys. Rev. D,34:3617-3632, December 1986.
    [179]G. H. Kaplan and W. M. Grossman. The IAU Resolutions on Astronomical Reference Sys-tems, Time Scales and Earth Rotation Models. U.S. Naval Observatory Circulars,175, Oc-tober 2005.
    [180]L. Blanchet and T. Damour. Post-newtonian generation of gravitational waves. Ann. Inst. H. Poincare,50(4):337-408,1989.
    [181]T. Damour and B. R. Iyer. Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors. Phys. Rev. D,43:3259-3272, May 1991.
    [182]A. Deprit. The motions of the moon in space. In Z. Kopal, editor, Physics and Astronomy of the Moon, pages 1-28,1971.
    [183]V. A. Brumberg, P. Bretagnon, and G. Francou. Analytical algorithms of relativistic reduction of astronomical observations. In Journees 1991:Systemes de reference spatio-temporels, pages 141-148,1991.
    [184]D. Vokrouhlicky. Relativistic spin effects in the Earth-Moon system. Phys. Rev. D,52:6894-6900, December 1995.
    [185]D. Vokrouhlicky. Relativistic rotational effects:application to the Earth-Moon system. In S. Ferraz-Mello, B. Morando, and J.-E. Arlot, editors, Dynamics, Ephemerides, and Astrometry of the Solar System, volume 172 of IAU Symposium, pages 321-324,1996.
    [186]V. A. Brumberg and E. Groten. A note on Earth's rotation angular velocity in the general-relativity framework. Journal of Geodesy,75:673-676, December 2001.
    [187]S. Klioner and M. Soffel. Relativistic aspects of Earth's rotation. Nomenclature, Precession and New Models in Fundamental Astronomy,26th meeting of the IAU, Joint Discussion 16, 22-23 August 2006, Prague, Czech Republic, JD16,#13,16, August 2006.
    [188]J. Mueller. Analysis of lunar laser ranging in the framework of a post-Newtonian theory PhD thesis, Deutsche Geodaetische Kommission, Munich (Germany)., February 1991.
    [189]C. Xu, X. Wu, and M. Soffel. General-relativistic theory of elastic deformable astronomical bodies. Phys. Rev. D,63(4):043002, February 2001.
    [190]C. Xu, X. Wu, M. Soffel, and S. Klioner. Relativistic theory of elastic deformable astronom-ical bodies:Perturbation equations in rotating spherical coordinates and junction conditions. Phys. Rev. D,68(6):064009, September 2003.
    [191]C. Xu, X. Wu, and M. Soffel. General-relativistic perturbation equations for the dynamics of elastic deformable astronomical bodies expanded in terms of generalized spherical harmon-ics. Phys. Rev. D,71(2):024030, January 2005.
    [192]S. M. Kopejkin. Relativistic Manifestations of gravitational fields in gravimetry and geodesy. Manuscripta Geodaetica,16:301-312, January 1991.
    [193]S. A. Klioner. On the hierarchy of relativistic kinematically nonrotating reference systems. Astron. Astrophys.,279:273-277, November 1993.
    [194]N. Ashby and B. Bertotti. Relativistic effects in local inertial frames. Phys. Rev. D,34:2246-2259, October 1986.
    [195]V. A. Brumberg and S. M. Kopeikin. Relativistic time scales in the solar system. Celestial Mechanics and Dynamical Astronomy,48:23-44, March 1990.
    [196]B. Schutz. Geometrical Methods of Mathematical Physics. Geometrical Methods of Math-ematical Physics, by Bernard Schutz, pp.264. ISBN 0521298873. Cambridge, UK:Cam-bridge University Press, January 1980., January 1980.
    [197]N. Spyrou. The N-body problem in general relativity. Astrophys. I,197:725-743, May 1975.
    [198]A. Caporali. A reformulation of the post-Newtonian approximation to general relativity. I-The metric and the local equations of motion. II-Post-Newtonian equation of motion for extended bodies. Nuovo Cimento B,61:181-212, February 1981.
    [199]N. Spyrou. Relativistic equations of motion of extended bodies. General Relativity and Gravitation,9:519-530, June 1978.
    [200]G. Contopoulos and N. Spyrou. The Center of Mass in the Post-Newtonian Approximation of General Relativity. Astrophys. J.,205:592-598, April 1976.
    [201]S. S. Dallas. Equations of motion for rotating finite bodies in the extended PPN formalism. Celestial Mechanics,15:111-123, February 1977.
    [202]Richard C. Tolman. On the use of the energy-momentum principle in general relativity. Phys. Rev.,35(8):875-895, April 1930.
    [203]R. C. Tolman. Relativity, thermodynamics and cosmology. Dover, Mineola, NY, USA., 1987.
    [204]K. Nordtvedt.30 years of lunar laser ranging and the gravitational interaction. Classical and Quantum Gravity,16:A101-A112, December 1999.
    [205]C. Xu, X. Wu, and G. Schafer. Binary systems with monopole, spin, and quadrupole mo-ments. Phys. Rev. D,55(2):528-539, January 1997.
    [206]E. Racine and E. Flanagan. Post-1-newtonian equations of motion for systems of arbitrarily structured bodies. Phys. Rev. D,71(4):044010, February 2005.
    [207]W. G. Dixon. Dynamics of Extended Bodies in General Relativity. I. Momentum and Angular Momentum. Royal Society of London Proceedings Series A,314:499-527, January 1970.
    [208]W. G. Dixon. Dynamics of Extended Bodies in General Relativity. Ⅱ. Moments of the Charge-Current Vector. Royal Society of London Proceedings Series A,319:509-547, November 1970.
    [209]W. G. Dixon. Dynamics of Extended Bodies in General Relativity. Ⅲ. Equations of Motion. Royal Society of London Philosophical Transactions Series A,277:59-119, August 1974.
    [210]M. Mathisson. Neue mechanik materieller systeme. Acta Phys. Pol.,6:163-200,1937.
    [211]W. Tulczyjew. Motion of multipole particles in general relativity theory. Acta Phys. Pol., 18:393-409,1959.
    [212]A. Papapetrou. Spinning Test-Particles in General Relativity. I. Royal Society of London Proceedings Series A,209:248-258, October 1951.
    [213]W. G. Dixon. The definition of multipole moments for extended bodies. General Relativity and Gravitation,4:199-209, June 1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700