优良起泡葡萄酒酵母菌株筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在影响葡萄酒质量与品质的诸多因素中,生态条件与葡萄品种、工艺条件、酿造设备和发酵微生物这四个方面起着决定性的作用。在其他三个因素相对稳定的情况下,葡萄酒微生物的酿造学特性则是葡萄酒质量和感观风格的决定性因素。酵母菌是葡萄酒酿造中重要的微生物,其多样性和分类鉴定是选育优良酿酒酵母菌株的关键和基础。从葡萄品种原产地的环境中筛选出可以充分展现该品种个性、土壤特点、地域特性的酵母,并酿出风格独特、具有品种典型性的葡萄酒。目前国际市场上出现了适用于不同产地、不同葡萄酒类型和葡萄品种的“特种”或“专用”酵母,而且已经开始逐渐取代“广适性”酵母的应用。由此可见优良的酵母菌种,对葡萄酒的质量和品质起着至关重要的作用。
     河北沙城地区是我国主要的葡萄酒产区之一,历史悠久,酒厂众多。选取在该产区代表性的中国长城葡萄酒有限公司及中法庄园进行菌种采集工作。从酒厂环境、葡萄园土壤、葡萄浆果、不同浓度SO2和酒精处理以及未处理的自然发酵醪液中分离酵母菌株,研究SO2和酒精处理醪液中酵母菌群的变化。利用WL培养基对菌株进行初步分类,选取有代表性酵母菌的纯培养,通过5.8S-ITS区的PCR/RFLP分析对所筛选菌种进行鉴定。鉴定属于酿酒酵母的菌株,则用来进行优良起泡葡萄酒酵母菌株各项指标的测试,筛选适合该产区特定生态地理条件及工业条件、具有鲜明风格特征的优良起泡葡萄酒酵母菌株。
     通过一系列试验得到以下结果:
     菌种的分离和鉴定
     试验共得到葡萄酒相关酵母562株,所有菌株在WL营养培养基上培养5d后形成的菌落颜色和形态共分为15大类。根据每一类别中所包含的菌株数量,适当选取一定数量的菌株进行5.8S-ITS区RFLP分子鉴定。
     在所有采集的菌株中,酿酒酵母(Saccharomyces cerevisiae)占的比例最大,共分离得到291株,占总数的51.7%,绝大部分来自自然发酵;其次为柠檬形克勒克酵母(Kloeckera apiculata),共有44株,占总数的7.8%;最少的是酒香酵母(Brettanomyces bruxellensis),共有6株,占总数的1.1%。
     SO2和酒精处理对自然发酵中酵母菌群的影响
     在添加SO2和酒精处理的自然发酵的试验中,首先启动发酵的是一些对SO2不太敏感,和对酒精耐受性差的酵母菌,随后是较敏感的种类如毕赤酵母和隐球酵母等。发酵初始阶段酵母的群体消长情况既受SO2的影响,又受发酵产物酒精浓度的影响。在发酵中期至后期,绝大部分酵母为酿酒酵母,但也能分离到少量的耐SO2和酒精的拜耳接合酵母和贝酵母。
     优良起泡葡萄酒酵母菌筛选
     通过分子鉴定,以291株酿酒酵母(Saccharomyces. cerevisiae)为试材,进行起泡葡萄酒酵母筛选的各项测验试验。在产气能力初筛实验中筛选出了62株泡沫、细腻度、持久性都相对较好的菌株。通过自溶及絮凝性测试、产气复筛、耐酒精能力测试、SO2耐性试验、耐低温能力和耐压力测试后,最终筛选得出Z27、Z25、Z28为优良菌株。
     起泡葡萄酒品评与分析
     通过二次发酵起泡酒及基酒样品香气成分的气相色谱-质谱分析,共检测到了48种不同成分的香气物质。在基酒中共鉴定出了45种香气物质,对照、Z25及Z28菌株酒样中各有46种香气物质,Z27菌株酒样中有47种香气物质。在所有香气成分中,醇、酸、酯类化合物种类最多,占总类别的82.8%。且醇类物质在酒样的香气物质中占据主导地位,其次是酯类和酸类化合物。所有5个酒样都含有的香气物质中,经过二次发酵后,绝大多数香气化合物的相对含量都较基酒中的有所增加,而不同菌株之间的增幅有所差异。
The quality and character of wine are mainly determined by four factors: ecological condition and grape varieties, technology, brewing equipment and fermentation microbiology. The zymurgy’s character of microbiology is the dicisive factor under the hypothesis that the others are relative steady. Wine yeasts are important microorganisms in winemaking. Their diversities and identification are the main bases to screen excellent stains. Strains isolated from wine producing regions are usually more adapted to their own climatic conditions, grapes and also partially responsible for wine quality and style. At present, more and more special or exclusive yeasts has been used in the market, which just were applicable to special wines and particular regions and replaced regularly eurytropy yeasts. We can not deny that wine yeasts are very important for wine quality and style.
     Shacheng is one of famous and long history wine producing region in China. Many wineries located in here. Yeast strains were isolated and screened in Great Wall Wine Co., LTD and Sino-France chateau. Yeast strains were isolated from winery environment, earth of vineyard, grapes, and SO2 and alcohol treatments and untreatment spontaneousness fermentation. The influence of SO2 and alcohol treatments on yeast floras was also researched. Strains were preliminarily classified on WL medium. Then typical and pure cultured yeasts were chose and identificated by PCR/RFLP of 5.8S-ITS method. All the Strains belonging to Saccharomyces cerevisiae were used to screen excellent sparkling wine yeasts.
     Isolation and Identification
     The 562 yeasts isolated in our experiment were belonging to 15 classified types after 5 days on WL medium according to the colony colour and morphology. Then some strains were chose in accordance to the strain numbers of every types and identified by PCR/RFLP analysis of the amplification fragments of 5.8S-ITS.
     The proportion of strains identified as S. cerevisiae was 51.7%, 291strains in all yeast strains, mostly came from spontaneous fermentation. There were 44 strains belonging to Kloeckera apiculata, 7.8% proportion. The least was Brettanomyces bruxellensis, 6 strains, just 1.1%.
     The Influence on Yeast Floras from Spontaneous Fermentation under Different SO2 and Alcohol Treatment Methods
     In the spontaneous fermentation experimentation under SO2 and alcohol treatments, the yeast floras firstly starting fermentation were insensitive to SO2 and lower tolerance to alcohol, subsequently, such as Pichia and Cryptococcus, were sensitive to SO2. The rise and decline of yeast floras during prime fermentation phase was influenced by not only SO2 but also alcohol concentration. From middle to final stage, S. cerevisiae were almost majority, but still some strains which tolerance to SO2 and alcohol were higher were isolated also, for instance Saccharomyces bayanus and Zygosaccharomyces bailii.
     Screening of Excellent Sparkling Wine Yeast Strains
     There were 291 strains identified as S. cerevisiae, which been used to screening experiment through various tests. After prescreening on producing gas capability, 62 wine yeast strains has been selected which bubble was fine and permanence. Z27、Z25、Z28 were the final excellent three yeast trains after autolysis, flocculability, producing gas capability and tolerance of alcohol, SO2 and low temperature fermentation capability tests.
     Tasting and Analysis of Sparkling Wine
     Total 48 kinds aroma compounds were detected by GC/MS analysis from sparkling wines and base wine, of which 45 kinds in base, 46 kinds in sparkling wines fermented by strains Z25, Z28 and CK. The content of alcohol, acid and ester total up to 82.8% in all aroma composition, alcohol was the leading composition, next were acid and ester. The content of aroma compounds in all five wine samples increased compare with that of existing in base wine after second fermentation, but the quantity depends on strains.
引文
[1]张春晖, 李华. 葡萄酒微生物学[M]. 陕西:陕西人民出版社,2003.
    [2]白逢彦. 酿酒酵母属的分类学研究进展[J]. 微生物学报,2000,27(2):139-142.
    [3]Romano P, Fiore C, Paraggio M, et al. Function of yeast species and strains in wine flavour[J]. International Journal of Food Microbiology, 2003,86:169-180.
    [4]Aragon P, Atienza J, Climent M D. Influence of clarification, yeast type, and fermentation temperature on the organic acid and higher alcohols of Malaise and Muscatel wines[J]. American Journal of Enology and Viticulture, 1998,49:211-216.
    [5]Belé Suarez Vallesa, Rosa Pando Bedrin, Norman Fernández Tascó, et al. Yeast species associated with the spontaneous fermentation of cider[J]. Food Microbiology, 2007,24:25-31.
    [6]Sangeeta Patel, Takayuki Shibamoto. Effect of 20 different yeast strains on the production of volatile components in Symphony wine[J]. Journal of Food Composition and Analysis, 2003,16:469-476.
    [7]黄亚东. 优良葡萄酒酵母分离选育的研究[J]. 酿酒,1998(5):38-39.
    [8]Thais M, Guimaraes, Danilo G, et al. Isolation and characterization of saccharomyces cerevisiae strains of winery interest[J]. Revista Brasileira de Ciências Farmacêuticas Brazilian Journal of Pharmaceutical Sciences. 2006,42(1):119-126.
    [9]庄志发, 冯紫慧. 果酒酵母 531 的研究及应用[J]. 微生物学研究与应用,1994(1):4-7.
    [10]Pasteur L. Nouvelles expériences pour démontrer que le germe de la levure qui fait le vin provient de l′extérieur des grains de raisin[C]. Compt Rend Acad Sci. Paris, 1975,1872:781-793.
    [11]Elaine Paget, Jennifer Chan. Wine production[J]. Industrial Bioprocessing. 2005,18(11):401.
    [12]Robert Mortimer, Mario Polsinelli. On the origins of wine yeast. Res Microbiol, 1999,150:199-204.
    [13]王俊沪, 杨丽娟, 冯作山. 优良香梨酒酵母的选育[J]. 酿酒,2003(6):26-29.
    [14]赵祥杰, 陈卫东, 刘学铭等. 果酒酵母选育研究进展[J]. 酿酒,2006(1):57-59.
    [15]杨雪峰, 苏龙, 刘树文. 利用 WL 营养培养基鉴定葡萄酒中的相关酵母菌[J]. 中外葡萄与葡萄酒, 2006(4):4-7.
    [16]Barnett J A, Payne R W, Yarrow D. Yeasts: characteristics and identification(2nd edn)[M]. Cambridge: Cambridge University Press, 1990.
    [17]Krejer van Rij. The yeasts: a taxonomic study(3rd edn)[M]. Amsteram: Elsevier,1984.
    [18]Deak T. Simplified techniques for identifying food borne yeasts[J]. Int J Food Microbiol, 1993,19:15-26.
    [19]Guillamon J M, Querol A, Jimenez M, et al. Phylogenetic relationships among wine yeast strains based on electrophoretic whole-cell protein patterns[J]. Int J Food Microbiol, 1993, 18:115-125.
    [20]Vancanneyt B P, Hennebert G, Kersters K. Differentiation of yeast species based on electrophoretic whole cell protein patterns[J]. Syst Appl Microbiol,1991, 14(5):23-32.
    [21]Augustyn O P H, Ferreira D, Kock J L F. Differentiation between yeast species and strains within species by cellular fatty acid analysis[J]. Saccharomyces sensu stricto, Hanseniaspora, Saccharomycodes and Wickerhamiella Syst, 1990,13:44-45.
    [22]Cottrell M, Kock J L F, Lategan P M, et al. Long chain fatty acid composition as an aid in the classification of the genus saccharomyces[J]. Syst Appl Microbiol, 1986(8):166-168.
    [23]哈瑞根, 李卫华译. 食品微生物实验室手册[M]. 北京:中国轻工业出版社,2004.
    [24]Deák T, Beuchat L R. Handbook of Food Spoilage Yeasts[M]. Boca Raton, FL: CRC Press,1996.
    [25]周春艳, 张秀玲, 王冠蕾. 酵母菌的 5 种鉴定方法[J]. 中国酿造, 2006(8):51-54.
    [26]Golden D A, Beuchat L R. Hitchcock H L. Changes in fatty acid composition of zygosaccharomyces rouxii as infuenced by solutes, potassium sorbate and incubation temperature[J]. Int J Food Microbiol, 1994, 21:293-303.
    [27]巴尼特 J A, 佩恩 R W. 酵母的特征及鉴定手册[M]. 山东:青岛海洋大学出版社,1984.
    [28]毛志群, 张伟, 马雯. 分子生物技术在酵母菌分类中的应用进展[J]. 河北农业大学学报, 2002(5):230-233.
    [29]Naumov G I, Naumova E S, Sniegowski P D. Differentiation of european and far east asian populations of saccharomyces paradoxus by allozyme analysis[J]. Int J Syst Bacteriol, 1997,47:341-344.
    [30]Torok T, Rockhold D. King A D. Use of electrophoretic karyotyping and dna-dna hybridization in yeast identification[J]. Int J Food Microbiol, 1993,19:63-80.
    [31]Guillamon J M, Barrio E, Querol A. Characterization of wine yeast strains of the saccharomyces genus on the basis of molecular markers. Relationships between genetic distance and geographic origin[J]. Syst Appl Microbiol, 1996,19:122-132.
    [32]Perez L, Martinez P, Codon A C, et al. Physiological and molecular characterization of or yeasts: polymorphisms of or yeast populations[J]. Yeast, 1995,11:1399-1411.
    [33]Baleiras Couto M M, Eijsma B, Hosfra H, et al. Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains[J]. Appl Environ Microbiol, 1996,62:41-46.
    [34]Ibeas J I, Lozano I, Perdigones L, et al. Detection of Dekkera/Brettanomyces strains in sherry by a nested PCR method[J]. Appl Environ Microbiol, 1996, 62:998-1003.
    [35]Baleiras Couto M M, van der Vossen J M, Hofstra H, et al. RAPD analysis : a rapid technique for differentiation of spoilage yeasts[J]. Int J Food Microbiol, 1994, 24:249-260.
    [35]Versavaud A, Courcoux P, Roulland C, et al. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine producing area of Charentes, France[J]. Appl Environ Microbiol, 1995, 61:3521-3529.
    [37]Belloch C, Barrio E, Uruburu F, et al. Characterization of four species of the genus Kluyveromyces by mitochondrial DNA restriction analysis[J]. Syst Appl Microbiol, 1997, 20:397-408.
    [38]Romano A, Casaregola S, Torre P, et al. Use of RAPD and mitochondrial DNA RFLP for typing of Candida zeylanoides and Debaryomyces hansenii yeast strains isolated from cheese[J]. Syst Appl Microbiol, 1996, 19:255-264.
    [39]Guillamón J M, Sabaté J, Barrio E, et al. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal ITS regions[J]. Arch Microbiol, 1998, 169:387-392.
    [40]Mareike Wenning, Herbert, Siegfride S. Fourier transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts[J]. Appl Environ Microb, 2002, 10:4717-4721.
    [41]Barros D E, Lopes M A, Soden A,et al. Differentation and species identification of yeasts using PCR[J]. Int J Syst Bact, 1998,48:279-286.
    [42]Mareikewenning, Herbert S, Siegfried S. Fourier-Transform Infrared Microspectroscopy, a Novel and Rapid Tool for Identification of Yeasts[J]. Appl Environ Microb,2002,10:4717-4721.
    [43]李明霞, 唐荣观. 不同类群酵母胞壁甘露聚糖核磁共振氢谱的比较研究[J]. 真菌学报, 1989, 8(4):296-303.
    [44]白逢彦, 贾建华. 脉冲电泳核型分析在酿酒酵母菌分类学研究中的应用[J]. 微生物学报,2000,19(2):9-11.
    [45]Hierro N, González á, Mas A, et al. New PCR-based methods for yeast identification[J]. Journal of Applied Microbiology, 2004,97:792-801.
    [46]Braulio Esteve-Zarzoso, María José Peris-Torán, Daniel Ramón, et al. Molecular characterisation of Hanseniaspora species[J]. Antonie van Leeuwenhoek, 2001, 80:85-92.
    [47]Fell J W, boekhout T, Fonseca A. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis[J]. Int J syst evol microbiol, 2000,50:1351-1371.
    [48]Rosa de Llanos Frutos M, Teresa Fernández-Espinar, Amparo Querol. Identification of species of the genus Candida by analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers[J]. Antonie Van Leeuwenhoke, 2004, 85:175-185.
    [49]郭永亮. 如何提升葡萄酒的口感[J]. 中外葡萄与葡萄酒, 2001(2):53-54.
    [50]Henschke P. Wine yeast[A]. Yeast sugar metabolism, biochemistry, genetics, biotechnology and applications[C]. UK: Technomic Publishing, Lancaster. 1997:527-560.
    [51]David Carro, Enric Bartra. Karyotype rearrangements in a wine yeast strain by rad52-dependent and rad52-independent mechanisms[J]. Applied And Environmental Microbiology, 2003(4):2161-2165.
    [52]刘延琳, 蒋思欣, 张振文. 葡萄酒活性干酵母的温度适应性研究[J]. 西北农林科技大学学报(自然科学版), 2004,32(6):87-94
    [53]邓红梅, 覃伯贵. 温度对酿酒酵母产酒量的影响[J]. 茂名学院学报, 2005, 15(3):23-25.
    [54]Maria Jesus Torija, Gemma Beltran, et al. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine[J]. International Journal of Food Microbiology, 2003, 85:127-136.
    [55]Leroy M J, Charpentier M, Duteurtre B, et al. Yeast autolysis during champagne aging[J]. Am J Enol Vitic, 1992,41:21-28.
    [56]Andre′s Lacueva C, Lamuela Ravento′s R M, Buxaderas S, et al. Influence of variety and aging on foaming properties of cava (sparkling wine). J Agric Food Chem, 1997,45:2520-2525.
    [57]Charpentier C, Feuillat M. Yeast autolysis[M]. Switzerland:Harwood Academic Publishers, 1992.
    [58]吴帅, 肖冬光, 原通磊. 高耐性酿酒酵母菌种的筛选[J].酿酒科技, 2006(9):37-40.
    [59]杨建刚, 马跃, 肖冬光. 酿酒酵母酒精耐性研究进展[J].酿酒科技, 2006(11):86-89.
    [60]李华. 现代葡萄酒工艺学[M]. 陕西:陕西人民出版社,1999.
    [61]邵伟, 乐超银, 涂志英. 安琪果酒酵母生长特性研究[J]. 酿酒科技,2006(10):40-42.
    [62]Pratt Marshall P L, Brey S E, De Costa S D, et al. High gravity brewing an inducer of yeast stress[J]. Brewers’ Guardian, 2002, 131(3):22-26.
    [63]Andre′s Lacueva C, Lamuela Ravento′s R M, Buxaderas S, et al. Influence of variety and aging on foaming properties of cava (sparkling wine)[J]. J Agric Food Chem, 1997, 45:2520-2525.
    [64]Escot S, Feuillat M, Dulau L, et al. Release of polysaccharides by yeast and the influence of released polysaccharides on colour stability and wine astringency[J]. Aust J Grape Wine Res, 2001(7):153-159.
    [65]Martinez Rodriguez A, Carrascosa A V, Martin Alvarez P J, et al. Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method[J]. J Ind Microbiol Biotechnol, 2002, 29:314-322.
    [66]Laura Tabera, Rosario Munoz, Ramon Gonzalez. Deletion of BCY1 from the Saccharomyces cerevisiae Genome Is Semidominant and Induces Autolytic Phenotypes Suitable for Improvement of Sparkling Wines[J]. Applied And Environmental Microbiology, 2006(4):2351-2358.
    [67]Eduardo Cebollero , Ramon Gonzalez. Induction of autophagy by second fermentation yeasts during elaboration of sparkling wines[J]. Applied And Environmental Microbiology. 2006(6):4121-4127.
    [68]Fleet G H, Heard G M. Yeasts: growth during fermentation[A]. Wine Microbiology and Biotechnology[M]. Harwood, Chur, 1993:27-54.
    [69]Amerine M A, Kunkee R E. Microbiology of winemaking[J]. Ann Rev Microbiol, 1968, 22:323-358.
    [70]Cuinier C. Changes in the microflora of Chinon wines during winemaking[J]. Vignes vins, 1978, 269:29-33.
    [71]Poulard A. Influence of several factors affecting variability of the yeast microflora of musts and wines[J]. Vignes vins, 1984, 326:18-21.
    [72]Amerine M A, Berg H W, Kunkee R E, et al. The technology of wine making(4th edn)[M]. USA: AVI Publishing Company,Westport, Conn,1984.
    [73]李华. 葡萄酒酿造微生物研究进展[C]. 葡萄与葡萄酒研究进展. 西安:陕西人民出版社, 2000.
    [74]周德庆. 微生物学教程[M]. 北京:高等教育出版社, 2001.
    [75]溢香轩. 伟大的科学家巴斯德(四)[J]. 酿酒, 2002(4):12.
    [76]谢广发, 孟中法, 董海. 黄酒的技术现状与对策[J]. 酿酒,2002(2):31-33.
    [77]赫尔姆特, 汉斯, 迪特里希著(德), 宋尔康译. 葡萄酒微生物学[M]. 北京:轻工业出版社,1989.
    [78]Isak S, Pretorius. Gene technology in winemaking: new approaches to an ancient art[J]. Agriculture Conspectus Scientificus, 2001, 66(1):27-47.
    [79]尹卓容. 起泡葡萄酒的命名及相关法规[J]. 葡萄栽培与酿酒, 1995(4),35-37.
    [80]中华人民共和国国家经济贸易委员会. 中国葡萄酒酿酒技术规范[S],2002 年第 81 号公告.
    [81]朱宝庸主编. 葡萄酒工业手册[M]. 北京:中国轻工业出版社,1995.
    [82]孙方勋. 世界葡萄酒和蒸馏酒知识[M]. 北京:中国轻工业出版社,1993.
    [83]Luiz A Martinelli, Marcelo Z Moreira, Jean P H B Ometto, et al. Stable carbon isotopic composition of the wine and CO2 bubbles of sparkling wines: detecting C4 sugar additions[J]. Journal of Agricutural and Food Chemistry, 2003,51:2625-2631.
    [84]Alessandro Stanziani. Wine reputation and quality controls: the origin of the AOCs in 19th centuryfrance[J]. European Journal of Law and Economics, 2004,18:149-167.
    [85]吕俊奇, 葛辉. 美国加洲起泡葡萄酒生产概况[J]. 葡萄栽培与酿酒, 1994(1):41.
    [86]卢明. 意大利葡萄汽酒[J]. 中国食品, 1999(9):31.
    [87]Maurizio Ciani, Gianfranco Rosini. Sparkling-wine production by cell recycle fermentation process (crbf)[J]. Biotechnology Letters, 1991(7):533-536.
    [88]Dolors Nadal, David Carro, Juan Fernández-Larrea, et al. Analysis and Dynamics of the Chromosomal Complements of Wild Sparkling-Wine Yeast Strains[J]. Applied And Environmental Microbiology, 1999(4):1688-1695.
    [89]Andrea Caridi. Enological functions of parietal yeast mannoproteins[J]. Antonie van Leeuwenhoek, 2006,89:417-422.
    [90]陈玉庆. 酿酒六十年追忆[J]. 酿酒, 2003,30(5):86-87.
    [91]邱冬梅. 起泡葡萄酒的生产工艺[J]. 食品工业, 1998(4):20.
    [92]王延才. 中国葡萄酒行业现状及发展方向[J]. 中外葡萄与葡萄酒, 2006(1):4-6.
    [93]吕文鉴, 宋文章, 于清. 瓶式发酵起泡酒酵母的性能试验研究[J]. 中外葡萄与葡萄酒, 2001(3):51-52.
    [94]王丽华, 李元瑞, 刘书成等. 起泡苹果酒的酿造及最佳工艺参数的研究[J]. 酿酒, 2002(1):88-90.
    [95]王秋芳. 葡萄酒业五十年的光辉成就[J]. 酿酒, 1999(5):15-23.
    [96]史东健, 张伟, 林杨, 等. 降解苹果酸葡萄酒酵母融合株的构建及特性研究[J]. 酿酒科技, 2005(6):28-35.
    [97]Querol A, Ramon D. The application of molecular techniques in wine microbiology[J]. Trends in Food Sci Technol, 1996(7):73-78.
    [98]Heard G. Novel yeasts in winemaking-looking to the future[J]. Food Australia, 1999, 51:347-352.
    [99]周艳琼. 我国葡萄酒市场的发展[J]. 中国酿造, 2006(6):80-81.
    [100]胡文浪. 梅酒酵母筛选、分离、纯化、选育应用[J]. 酿酒科技,2002(2): 33-34.
    [101]Macpaddin. Media for isolation cultivation identification maintenance of medical bacteria[R]. Baltimore, 1985.
    [102]Christina L, Pallmann, James A, et al. Use of WL medium to profile native flora fermentation[J]. AM J Enol Vitic, 2001, 52(3):198-204.
    [103]周小玲, 沈微, 饶志明, 等. 一种快速提取真菌染色体 DNA 的方法[J]. 微生物学通报, 2004,31(4):89-92.
    [104]Teresa Fernández-Espinar M, Braulio Esteve-Zarzoso, Amparo Querol, et al. RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flora yeasts[J]. Antonie van Leeuwenhoek, 2000,78:87-97.
    [105]Adolfo Martinez Rodriguez, Alronso V, Carrascosa, et al. Autolytic capacity foam analysis as additional criteria for the selection of yeast trains for sparkling wine production[J]. Food Microbiology, 2001, 18:183-191.
    [106]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinwas utilizing the principle of protein-dye binding[J]. Anal Bilchem, 1976,72:248-255.
    [107]Seung-Joo Lee, Ann C Noble. Characterization of odor-active compounds in CalifornianChardonnay wines using GC-olfactometry and GC-Mass spectrometry[J]. J Agric Food Chem, 2003, 51:8036-8044.
    [108]Eduardo Boido, Adriana Laoret, Karina Medina. Aroma composition of Vitis vinifera cv.Tannat: the typical red wine from Uruguay[J]. J Agric Food Chem, 2003,51:5408-5413.
    [109]Sanz M L, Villamiel M, Martínez-Castro I. Inositols and carbohydrates in different fresh fruit juices[J]. Food Chemistry, 2004, 87:325-328.
    [110]Sandra C Diéguez, Lucía C Lois, Esperanza F Gomez. Aromatic composition of the Vitis vinifera grape Albarińo[J]. Lebensm Wiss u-Technol, 2003, 36:585-590.
    [111]Maria Pilar Marti, Montserrat Mestres, Cristina Sala. Solid phase microextraction and gas chromatography olfactometry analysis of successively diluted samples: A new approach of the aroma extract dilution analysis applied to the characterization of wine aroma[J]. J Agric Food Chem, 2003, 51:7861-7865.
    [112]Culea M, Oros M, Cozar O. Aroma compounds and antioxidants from red wine by GC/MS[R]. Fifth General Conference of the Balkan Physical Union, 2003.
    [113]Alejandro Calleja, Elena Falqué. Volatile composition of Mencía wines[J]. Food Chemistry, 2005, 90:357-363.
    [114]Teresa Garde Cerdán, Sara Rodríguez Mozaz, Carmen Ancín Azpilicueta. Volatile composition of aged wine in used barrels of French oak and of American oak[J]. Food Research International, 2002, 35:603-610.
    [115]Green S R, Gray P P. A differential procedure applicable to bacteriological investigation in brewing[J]. Wallerstein Comm, 1950, 13:357-366.
    [116]Cavazza A, Grando M S, Zini C. Rilevazione della flora microbica di mosti e vini[J]. Vignevini, 1992(9):17-20.
    [117]Martini A, Vaughan Martini A. Grape must fermentation: past and present in Spencer. Yeast technology[C]. Springer, Berlin Heidelberg New York, 1990:105-123.
    [118]Christoph M Egli, Thomas Henick-Kling. Identification of Brettanomyces/Dekkera species based on polymorphism in the rrna internal transcribed spacer region[J]. Am J Enol Vitic, 2001, 52(3):241-247.
    [119]Guang-fa Xie, Wang-jun Li, Jian Lu, et al. Isolation and identification of representative fungi from shaoxing rice wine wheat qu using a polyphasic approach of culture-based and molecular-based methods[J]. Journal of the Institute of Brewing, 2007, 113(3):272-279.
    [120]Thais M Guimar?es, Danilo G Moriel, Iara P Machado, et al. Isolation and characterization of Saccharomyces cerevisiae strains of winery interest[J]. Revista Brasileira de Ciências Farmacêuticas Brazilian Journal of Pharmaceutical Sciences, 2006, 42(1):119-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700