与花球发生相关的AP1,CAL基因调控顶端分生组织方面的功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CAL(CAULIFLOWER)基因与AP1(APETALA1)基因都是控制花分生组织特性的基因,二者都属于MADS-box转录因子编码基因。在拟南芥中,CAL基因单突变时没有明显的表型,但AP1,CAL同时突变会使花分生组织保持花序分生组织的无限分生特性,大量增生分生组织结构,形成花球。而花椰菜(Brasscia oleracea L.var.botrytis)中BobCAL基因单突变就能形成花球,显然两个物种中CAL和AP1同源蛋白的功能有所不同。即使作为花分生组织特性的控制基因,人们对CAL和AP1的靶基因也不清楚。为了研究芸苔属植物中CAL和AP1同源蛋白的功能,尤其是在调控顶端分生组织方面的功能,我们从分析它们的互作因子和遗传学两个方面进行了初步的探讨。
     一方面,采用酵母双杂交的方法从分子水平筛选与芸苔属中BoCAL互作的因子,结果得到互作较强的四类蛋白,分别涉及蛋白质的磷酸化和去磷酸化、蛋白质的修饰、蛋白质的结合位点等,它们分别与转录调控途径及信号转导途径有着密切的联系,这些因子的获得为BoCAL作用机制的研究提供了线索。选取筛选到的与BoCAL互作最强的蛋白,检测它与BobCAL不同剪切之间的互作关系,结果没有互作现象,说明BoCAL与BobCAL的互作因子存在不同,说明BobCAL部分K-box及其后的C-端的缺失影响了蛋白质的互作,为了探究该突变基因是否还有花分生组织特性决定性,我们构建了BoCAL和BobCAL两个基因的过量表达载体,并通过转基因方法获得得这两个基因的拟南芥中过量表达植株,结果发现BoCAL过量表达时,可以显著促进拟南芥提前开花,而BobCAL过量表达时,也能一定程度上促进开花提前,这表明和全长的BoCAL相比,花椰菜中BobCAL发生的基因提前终止,导致其在促进开花方面的功能有所削弱,但是并没有完全丧失,这种花分生组织特性决定性的功能削弱可能是花椰菜花序发育过程需要长时间积累BobCAL从而导致发育停滞、花球形成的原因。
     为了分析CAL和AP1同源蛋白在芸薹属和拟南芥中的功能差异,我们同样利用酵母双杂交方法检测了部分MADS-box转录因子和BoCAL,BoAP1之间的互作关系,结果表明,BoCAL,BoAP1和拟南芥中同源蛋白都能与SVP互作,但与拟南芥中同源蛋白不同的是,BoCAL,BoAP1与FLM,SOC1(SUPPRESSOR OF CO OVEREXPRESSION 1)和AGL24(AGAMOUS-LIKE24)作用很弱或不能互作,暗示BoCAL和BoAP1与拟南芥中同源蛋白功能上是不完全相同的。
     在SVP的克隆过程中,克隆到了SVP的一个新的剪切SVPa,它与BoAP1不能互作,可能与SVP有不同的功能。对SVP和SVPa的荧光定位发现它们都在细胞核及细胞膜中表达,结合它们的可变剪切的多样性和表达时间的持久性,说明其表达受到了精密的调控,暗示SVP在植物发育过程中功能相当重要。
     荧光共定位的方法对AP1和SVP在植物体内互作关系进行了进一步验证。同时利用分子生物学方法对这两个基因在表达水平的相互调节关系进行了初步分析。结果发现,AP1过量表达植株的花中,SVP的表达量下降;svp突变体中,AP1的表达量也会出现下调,表明,AP1对开花的影响可能主要通过SVP来进行调节,而SVP对开花的影响可能受到了其他的调控。
     另一方面,为了研究CAL、AP1和控制顶端分生组织的相关基因间的遗传关系,我们通过遗传杂交的方法将ap1,ap1cal突变体与控制顶端分生组织的WUS-CLV途径中重要相关基因的突变体进行了杂交,ap1wus双突变表现wus单突变的表型,顶端分生组织的发育受到抑制,说明ap1突变体顶端分生组织的增生是WUS依赖性的。当它们与clv进行杂交之后,表型增加,或者出现两种突变体表型叠加的现象,说明他们是在两条不同的途径中起作用。而分子生物学RT的结果表明,ap1突变体中WUS的表达量没有明显变化,而ap1cal突变体中,WUS的表达量出现下调,暗示着CAL的参与对WUS的表达情况有了更为复杂的调控。
     以上对CAL、AP1同源蛋白功能的初步分析进一步提供了花椰菜花球形成基础的分子证据,同时互作因子的获得为进一步探讨花球形成指明了方向,本工作第一次对花球的形成与控制顶端分生组织相关基因间的遗传关系进行了初步分析,这部分工作的深入研究将为CAL、AP1基因在调控顶端分生组织方面的功能提供突破口。
CAL (CAULIFLOWER) and AP1 (APETALA1) g, both of which belong to MADS-box gene family, are floral meristem identity gene. In Arabidopsis thaliana, loss of cal function doesn't result in obvious phynotype, while loss of cal, ap1 function at the same time leads to floral meristem proliferation unlimited, and displays the cauliflower phenotype. But as to cauliflower (Brasscia oleracea L.var.botrytis) , the BobCAL single mutant can display the cauliflower phenotype. It appears that CAL and AP1 homolog have different function in both species. Even as regulator of the flower apical meristem, we know few about of CAL and API's target genes. To study the function of homozygous CAL , AP1 protein in Brassica Species, especially their regulater function in the apical meristem, we probed into this question from molecular and genetic two sides.
     On one hand, yeast-two-hybrid method was applied to screen interaction factors of BoCAL. We got four kinds of proteins which are respectively involve in phosphorylation and dephosphorylation of proteins, proteins modification, proteins binding-site and so on. They separately have close relationship with translation, regulation pathways and signal transferring pathways respectively, which provide clues for the study of function of BoCAL. We choose the most strong interaction factor of BoCAL, and testify the relationship between the factor and different splicing of BobCAL, the results showed there is no interaction relationship between them. This suggests that there are different between BoCAL and BobCAL's interaction factors, and then the absence of partial K-box ang C terminance. To study if BobCAL with mutation still has function in floral meristem determinance, we construct overexpression vectors of both BoCAL and BobCAL,and obtained overexpressed transgenic plants in Arabidopsis. The results showed that overexpressing BoCAL can greatly promote flowering, while overexpressing BobCAL also promoted flowering to some extent. This indicates that compared with the full lengh BoCAL, the function of BobCAL which terminated prematurely in cauliflower was weakened, but not lost in the aspect of promoting flower. The weakened function of BobCAL may be the reason of cauliflower's inflorescence stop development for a long time and arrising a curd, and then it can accumulate enough BobCAL to promote flowering.
     Additionally, to analyze the difference of the homolog of CAL and AP1's function in Brassica and Arabidopsis, we testify the relationship between some known MADS-box translation factors and BoCAL and BoAP1. The results showed that both BoCAL and BoAP1 interact with SVP, while there were no interaction between BoCAL, BoAP1 with FLM, SOC1 and AGL24. The data here indicate the function of homozygous BoCAL and BoAP1 differ from that in Arabidopsis thaliana.
     During the cloning of SVP, we abtained a new splicing of SVP, it can't interact with BoAP1, and then it may have different function with SVP. We found both of them express in cell membrane and nuclear using the fluorescence microscopy method. Considering SVP has kinds of splicing and it express during almost all stage of the plant, there must be exact regulation during the expression of SVP, and it indicates SVP has important function during the plant development.
     Using the fluorescence microscopy method,we further validate the interaction of SVP and AP1 in plant. At the same time, we analyzed the interregulation of AP1 and SVP with molecular biology method. We discovered in AP1 overexpression plant, SVP's expression is down, while in svp, AP1's expression is down too. It suggests that AP1 influences flowering may depend on SVP, but SVP influences flowering through other pathway.
     On the other hand, we studied the genetic relationship between CAL, AP1 and genes relevant regulating apical meristem. We crossed ap1, apical mutants with mutants which are important in WUS-CLV pathway. The progeny of ap1wus displayed the phenotype of wus single mutant, the development of apical meristem is repressed, which suggested that the proliferation of ap1 apical meristem is WUS dependent. But when ap1, apical were crossed with clv mutant, the clv mutant phenotype was enhanced, and displayed the character of both ap1 and clv3,which indicate these genes may function in different pathways to regulate the size of apical mesitem. The RT results showed WUS expression in ap1 has no obvious different with wild,while in apical, the expression level is down regulate. It suggests there is more complicated regulation while CAL mutates.
     The analysis to the homolog of both CAL and AP1 provide molecular proof to the curds arrising of cauliflower, and the analysis to the interfactor of them point out a way to the curds arrising too. Our work analyzed the genetic relationship between the curds arrising and apical meristem regulater. The further study of it will provide direction to the function of AP1, CAL to the apical meristem.
引文
Aiabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Ma s, P., and Kay, S.A., 2001, Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293, 880-883.
    Alvarez-Buyila, E. R., S. Pelaz, S.J. Liljegren, S. E. Gold, C. Burgeff, G. S. Ditta, L. Ribas de Pouplana, L. Martinez-Castiila & M. F. Yanofsky, 2000a, An ancestral MADS-box gene duplication ocurred prior to the divergence of plants and animals. Proc. Natl Acad.Sci. USA, 97: 5328-5333.
    Amador V, Monte E, Garcia-Martinez J, et al. 2001,Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell, 106(3): 343~354.
    Amasino, R. 2004,Vernalization, competence, and the epigenetic memory of winter. Plant Cell, 6, 2553-2559.
    Anthony, R. G., P. E. James & B. R. Jordan, 1996, Cauliflower (Brassica oleracea var. botrytis L.) curd development: the expression of meristem identity genes. J. Exp. Bot.,47: 181-188.
    Araki, T. 2001,Transition from vegetative to reproductive phase. Curr Opin Plant Biol, 4,63-68.
    Ausin I, Alonso-Blaneo C, Jarillo J A, et al. 2004, Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet, 36 (2): 162~166.
    Bastow, R., and Dean, C. 2003, Plant sciences. Deciding when to flower. Science, 302, 1695-1696.
    Bastow R, Myine J S, Lister C, Lippman Z, Martienssen R A, Dean C. 2004, Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 427 (6970):164~167.
    Bla zquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D. 1998, Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 0, 791-800.
    Bla zquez, M A, Weigel D. 2000, Integration of floral inductive signals in Arabidopsis. Nature, 404 (6780): 889~892
    Bla zquez, M., Koornneef, M., and Putterill, J. 2001, Flowering on time: Genes that regulate the floral transition. Workshop on the molecular basis of flowering time control. EMBO Rep., 2, 1078-1082.
    Borner R, Kampmann G, Chandler J, et al. 2000, A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J, 24 (5): 591~599
    Boss, P.K., BASTOW, R.M., MYLNE, J.S., and DEAN, C. 2004, Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 6 Suppl, S18-31.
    Bowman, J. L., J. Alvrez, D.Weigel, E. M.Meyerowitz & D. R.Smyth, 1993, Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119: 721-743.
    Bowwman JL, Smyth DR, Meyerowitz EM. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1:37-52.
    Bowwman JL, Smyth DR, Meyerowitz EM. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1-20.
    Brand U, Fletcher J, Hobe M, Meyerowitz E, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289:617-619
    Braun U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617-19.
    Bundock, P. and Hooykaas, P. 2002. Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants. Plant Cell 14, 2451-2462
    Chou, M.-L., and Yang, C.-H. 1998, FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development. Plant J. 1998,15, 231-242.
    Chen R, Zhang S, Sun S, et al. 2005, Characterization of a new mutant allele of the Arabidopsis flowering locus D (FLD) gene that controls the flowering time by repressing FLC. Chinese Science Bulletin, 50 (23): 2701~2706
    Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM. 1996. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabisopsis. Development 122:1567-75.
    Clark SE, Running MP, Meyerowitz EM. 1993. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397-418.
    Clark SE, Running MP, Meyerowitz EM. 1995. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057-67.
    Clark SE, Williams RW, Meyerowitz EM. 1997. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575-85.
    Cock JM, McCormick S. 2001. A large family of genes that share homology with CLAVATA3. Plant Physiol. 126:939-42.
    Covington, M.F., Panda, S., Liu, X.L., Strayer, C.A., Wagner, D.R., and Kay, S.A. 2001,ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell, 13, 1305-1315.
    Cristel C. Carlesl, Dan Choffnes-lnadal, Keira Revillel, Kvin Lertpiriyapong and Jennifer C. Fletcher. 2005.ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development 132, 897-911.
    de Folter S, Immink RGH, Kieffer M, Parenicova L, Henz SR, Weigel D, et al. 2005. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17: 1424-1433.
    de Young BJ, Clark SE. 2001. Signaling through the CLAVATA1 receptor complex.Plant Mol Biol, 46:505-513
    Dorion, S., S. Lalonde & H.S. Saini, 1996, Induction of Male Sterility in Wheat by Meiotic-Stage Water Deficit Is Preceded by a Decline in Invertase Activity and Changes in Carbohydrate Metabolism in Anthers. Plant Physiol, 111: 137-145.
    Doyle M R, Davis S J, Bastow R M, et al. 2002, The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature, 419(6902): 74~77
    Dubnau, J., and Struhl, G. 1996, RNA recognition and translational regulation by a homeodomain protein. Nature 379, 694-699.
    Esau K. 1977. Anatomy of Seed Plants. New York:Wiley.
    Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911-14.
    Go mez-Mena, C., Pin eiro, M., Franco-Zorrilla, J.M., Salinas, J., Coupland, G,, and Martinez-Zapater, 2001,J.M. early bolting in short days: An Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. Plant Cell, 13, 1011-1024.
    Green, R.M., and Tobin, E.M. 1999, Loss of the circadian clockassociated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl. Acad. Sci. USA, 96, 4176-4179.
    Gregis, V., A. Sessa, L. Colombo & M. M. Kater, 2006, AGL24, SHORT VEGETATIVE PHASE, and APETALA1 Redundantly Control AGAMOUS during Early Stages of Flower Development in Arabidopsis. Plant Cell, 18(6): 1373-82.
    Guyomarc'h, S., Vernoux, T., Traas, J., Zhou, D. X. and Delarue, M. 2004. MGOUN3, an Arabidopsis gene with TetratricoPeptide-Repeatrelated motifs, regulates meristem cellular organization. J. Exp. Bot. 55, 673-684.
    Haecker, A., Groβ-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., and Laux, T. 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131,657-668.
    Halford, N. G., S. Hey, D. Jhurreea, S. Laurie, R. S.MeKibbin, M. Paul & Y. Zhang, 2003, Metabolic signalling and carbon partitioning: role of Snfl-related (SnRK1) protein kinase. J Exp Bot, 54: 467-475.
    Hartman, U., S. Hohmann, K. Nettesheim, E.Wisman, H. Saedler & P. Huijser, 2000, Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J., 21: 351-360.
    Haughn.G.W., SCHULTZ E.A., and MARTINEZ-ZAPATER J.M., 1995, The regulation of flowering in Arabidopsis thaliana: meristems, morphogenesis, and mutants. Can. J. Bot. 73:959-981.
    Hempel F D,Feldman L J. 1994, Bi-directional inflorescence development in Arabidopsis thaliana: Acropetal initiation of flowers and basipetal initiation of paraclades. Planta, 192, 276-286.
    He Y, Michaels S D, Amasino R M. 2003, Regulation of flowering time by histone acetylation in Arabidopsis. Science, 302 (5651): 1751~1754
    Huq, E., Tepperman, J.M., and Quail, P.H. 2000, GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA, 97, 9789-9794.
    Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R., and Kay, S.A. 2003, FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426, 302-306.
    Irish VF, Sussex IM. 1992. A fate map of the Arabidopsis embryonic shoot apical meristem. Development 115:745-53.
    Jack T. 2001. Relearning our ABCs: new twists on an old model. Trends Plant Sci.6:310-16.
    Jack, T. 2004, Molecular and genetic mechanisms of floral control. Plant Cell, 16 Suppl, S1-17
    Jacobsen S E, Olszewski N E. 1993, Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell, 5(8): 887~896
    Jarillo, J.A., Capel, J., Tang, R.H., Yang, H.Q., Alonso, J.M., Ecker, J.R., and Cashmore, A.R. 2001, An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 410, 487-490.
    Jeong S, Trotochaud AE, Clark SE. 1999. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925-33.
    Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C. 2000, Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 290 (5490): 344~347.
    Kaya H, Shibahara K-I, Taoka K-I, Iwabuchi M, Stillman B, Araki T. 2000. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:131-42.
    Kayes JM, Clark SE. 1998. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843-51.
    Kempin, S. A., B. Savidge& M. F. Yanofsky, 1995, Molecular basis of the cauliflower phenotype in Arabidopsis. Science, 267: 522—525.
    Kim, W.Y., Geng, R., and Somers, D.E. 2003, Circadian phasespecific degradation of the F-box protein ZTL is mediated by the proteasome. Proc. Natl. Acad. Sci. USA, 00, 4933-4938.
    Kirsten A. Green, Michael J. Prigge, Rebecca B. Katzman, and Steven E. Clark.2005.CORONA, a Member of the Class Ⅲ Homeodomain Leucine Zipper Gene Family in Arabidopsis, Regulates Stem Cell Specification and Organogenesis. The Plant Cell, 17, 691-704.
    Koornneef, M., Hanhart, C.J., and Van der Veen, J.H. 1991, A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Moh Gen. Genet. 229, 57-66.
    Koornneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C.J., and Peeters, A.J. 1998, Genetic interactions among late-flowering mutants of Arabidopsis. Genetics, 148, 885-892.
    Laufs, P., Grandjean, O., Jonak, C., Kieu, K. and Traas, J. 1998. Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10, 1375-1390.
    Laux T, Marer KFX, Berger J, Jurgens G.1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122: 87-96.
    Lee, I., Aukerman, M. J., Gore, S. L., Lohman, K. N., Michaels, S. D., Weaver, L. M., John, M. C., Feldmann, K. A., and Amasino, R. M. 1994, Isolation of LUMINIDEPENDENS: A gene involved in the control of flowering time in Arabidopsis. Plant Cell, 6, 75-83.
    Lee, Jeong Hwan, Yoo, Seong Jeon, Park, Soo Hyun, Hwang, Ildoo, Lee, Jong Seob, Ahn, Ji Hoon. 2007 Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. GENES AND DEVELOPMENT, 21(4), 397-402.
    Lenhard L, Laux T. 2003. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development, 130: 3163-3173
    Levy Y Y, Mesnage S, Mylne J S, Gendall A R, Dean C. 2002, Multiple roles of Arabidopsis VRN1 in vernalization and flowering tine control. Science, 297 (5579): 243~246.
    Leyser HMO, Furner IJ. 1992. Charactedsation of three shoot apical meristem mutants of Arabidopsis thaliana. Development 116: 397-403.
    Lira M H, Kim J, Kim Y S, et al. 2004, A New Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell, 16 (3): 731~740
    李小方、刘平林、沈瑞娟、何玉科,2000,CAL基因的结构特征与芸薹属植物花球的形态遗传。植物学报,42(7):712-718。
    Li, X. F., R. J. Shen, P. L. Liu &Y. K. He, 2000, Molecular characters and morphological genetics of CAL gene in Chinese cabbage, Cell Research, 10: 29-38.
    Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J., and Wanger, D. R. 2001, ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell, 13, 1293-1304.
    Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, et al. 2001. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793-803.
    Lyndon RF. 1990. Plant Development: The Cellular Basis. London: Unwin Hyman.
    Macknight, R., Duroux, M., Laurie, R., Dijkwel, P., Simpson, G., and Dean, C. 2002, Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell, 14, 877-888.
    Macknight R, Bancroft I, Page T, et al. 1997, FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell, 89 (5): 737~745
    Macknight, R., Duroux, M., Laurie, R., Dijkwel, P., Simpson, G., and Dean, C. 2002. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14, 877-888.
    Magome H, Yamaguchi S, Hanada A, et al. 2004, Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J, 37 (5): 720~729
    Makino, S., Matsushika, A., Kojima, M., Yamashino, T., and Mizuno, 2002, T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana. I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol, 43, 58-69.
    Mandel. M. A. &M, F. Yanofsky, 1995, A gene triggering flower formation in Arabidopsis. Nature, 377: 522—524.
    Martinez-Garcia, J.F., Huq, E., and Quail, P.H. 2000, Direct targeting of light signals to a promoter element-bound transcription factor. Science, 288, 859-863.
    Martinez-Zapater, J.M., Coupland, G., Dean, C., and Koornneef, M. 1994, The transition to flowering in Arabidopsis. In Arabidopsis, E.M. Meyerowitz and C.R. Somerville, eds (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), pp. 403-433.
    Mater KFX, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805-15.
    Matsushika, A., Imamura, A., Yamashino, T., and Mizuno, T. 2002a, Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. Plant Cell Physiol. 43, 833-843.
    Matsushika, A., Makino, S., Kojima, M., Yamashino, T., and Mizuno, T. 2002b, The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana. Ⅱ. Characterization with CCA1-overexpressing plants. Plant Cell Physiol. 43, 118-122.
    Mayer K, Sehoof H, HaeckerA, Lenhard M, Jurgens G, Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95: 805-815.
    MeClung, C. R.,Hsu, M.,Painter, J. E.,Gagne, J. M.,Karlsberg, S. D.,Salome, P. A.2000. Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol., 123(1):381-92.
    McWatters, H.G., Bastow, R.M., Hall, A., and Millar, A.J. 2000, The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature, 408, 716-720.
    Merton TR, Burdick AB. 1954.The morphology, anatomy and genetics of a stem fasciation in Lycopersicon esculentum. Am.J.Bot. 41:726-32.
    Miehaels, S.D., and Amasino, R.M. 1999a, FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11, 949-956.
    Michaeis S D., and Amasino R M. 2001, Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell, 13 (4): 935~941
    Michaels S D, He Y, Scortecci K C, et al. 2003, Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A, 100 (17): 10102~10107
    Miilar, A.J., Carre, I.A., Strayer, C.A., Chua, N.H., and Kay, S.A. 1995, Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science, 267, 1161-1163.
    Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H.R., Carre, I.A., and Coupland, 2002, G. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell, 2, 629-641
    Mizukami Y, MaH. 1997. Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9:393-408.
    Mizoguchi, Tsuyoshi, Oda, Atsushi, Fujiwara, Sumire, Coupland, George, Nakagawa, Mayu, Kamada, Hiroshi. 2005, short vegetative phase (svp) mutation suppressed late flowering phenotype of lhy ccal under continuous light condition. 16TH INTERNATIONAL CONFERENCE ON ARABIDOPSIS RESEARCH.
    Mockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y.C., Dolan, S., and Lin, C. 2003, Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. USA, 100, 2140-2145.
    Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.C., and Lee, I. 2003a, The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35, 613-623.
    Mouradov A, Cremer F, Coupland C. 2002, Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 14 (Suppl): S111~S130
    Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A., and Bartel, B. 2000, FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell, 101,331-340.
    Ohnacker, M., Barabino, S.M., Preker, P.J., and Keller, W. 2000, The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA 39-end-processing complex. EMBO J. 19, 37-47.
    Opsahl-Frestad H-G, Le Deunff E, Dumas C,Rogowsky PM. 1997. ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J. 12:235-46.
    Pelaz, S., C. Gustafson-Brown, S. E. Kohalmi, W. L. Crosby & M. F. Yanofsky, 2001, APETALA1 and SEPALLATA3 interact to promote flower development. The Plant Journal, 26(4): 385-394.
    Poethig RS. 1987. Clonal analysis of cell lineage patterns in plant development. Am.J.Bot. 74:581-94.
    Purugganan M D, Rounsley S D, Sehmidt R J, and Yanofsky, M.F. 1995, Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics,140: 345~356.
    Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, C. 1995, The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 80, 847-857.
    Quesada, V., Macknight, R., Dean, C., and Simpson, C.G. 2003, Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J. 22, 3142-3152
    Riechmann, J. L., J. Heard, C. Martin, L. Reuber, C. Jiang, J. Keddie, L. Adam, O. Pineda, O. J. Ratcliffe, R. R. Samaha, R. Creelman, M. Pilgrim, P. Broun, J. Z. Zhang, D. Ghandehari, B. K. Sherman & G. Yu,2000,Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes.Science, 290: 2105-2110.
    Riechmann, J. L. & O.J. Ratcliffe, 2000, A genomic perspective on plant transcription factors. Curr Opin Plant Biol., 3(5): 423-34.
    Rojo E, Sharma VK, Kovaleva V,. Raikhel NV, Fletcher JC. 2002. CLV3 is localized to the extracellular space, where it activates the Arabidopsis clavata stem cell signaling pathway. Plant Cell, 14: 969-977.
    Ruiz-Garcia L, Madueno F, Wilkinson M, et al. 1997, Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell, 9 (11): 1921~1934
    Running, M. P., Fletcher, J. C. and Meyerowitz, E. M. 1998. The WlGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development 125, 2545-2553.
    Running, M. P., Lavy, M., Sternberg, H., Galiehet, A., Gruissem, W., Hake, S., Ori, N. and Yalovsky, S. 2004. Enlarged meristems and delayed growth in pip mutants result from lack of CaaX prenyltransferases. Proc. Natl. Acad. Sci. USA 101, 7815-7820.
    Samach A, Onouchi H, Gold S E, et al. 2000a, Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 288 (5471): 1613~1616
    Sanda, S.L., and Amasino, R.M. 1996, Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111,641-644.
    Satina S, Blakeslee AF, Avery AG. 1940. Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am.J.Bot. 27:895-905.
    Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I.A., and Coupland, G. 1998, The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 93, 1219-1229.
    Schiestl, R. H. & R.D. Gietz, 1989, High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet.,16:339-346
    Schomburg F M, Bizzell C M, Lee D J, et ai. 2003, Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf. Plant Cell, 15(1): 151~163
    Schomburg, F.M., Patton, D.A., Meinke, D.W., and Amasino, R.M. 2001, FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell, 13, 1427-1436.
    Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100:635-644
    Schultz D C, Ayyanathan K, Negorev D, Maul G G, Rauseher F J. 2002, SETDB1: a novel KAP212associated histone H3, lysine 92specific methyltransferase that contributes to HP12mediated silencing of euchromatin genes by KRAB zinc2finger proteins. Genes Dev, 16(8): 919~932.
    Schultz, T.F., Kiyosue, T., Yanovsky, M., Wada, M., and Kay, S.A. 2001,A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell, 13, 2659-2670.
    Scortecci, K. C., S. D. Michaels & R.M. Amasino, 2001, Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. The Plant Journal, 26(2): 229-236.
    Scott, R. J. & M. Spielman, 2006, Genomic imprinting in plants and mammals: how life history constrains convergence. Cytogenet Genome Res., 113(1-4): 53-67.
    Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., and Dennis, E.S. 1999, The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 11,445-458.
    Sheldon, C.C., Finnegan, E.J., Rouse, D.T., Tadege, M., Bagnali, D.J., Helliwell, C.A., Peacock, W.J., and Dennis, E.S. The control of flowering by vernalization. Curt. Opin. Plant Biol.2000a, 3, 418-422.
    Siddiqui, N. U., Stronghill, P. E., Dengler, R. E., Hasenkampf, C. A. and and Riggs, C. D. 2003. Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis. Development 130, 3283-3295.
    Simpson, G.G., and DEAN, 2002,C. Arabidopsis, the Rosetta stone of flowering time? Science, 296, 285-289.
    Simpson, G,G., Dijkwel, P.P., Quesada, V., Henderson, I., and Dean, C. 2003, FY is an RNA 39-end processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell, 113, 777-787.
    Simpson, G.G., Gendall, A.R., and DEAN, C. 1999, When to switch to flowering. Annu Rev Cell Dev Biol, 15, 519-550.
    Smith, C.W.J., Patton, J.G,, and Nadal Ginard, B. 1989. Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23, 527-577.
    Somers, D.E., Schultz, T.F., Miinamow, M., and Kay, S.A. 2000, ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell, 101, 319-329.
    Soraya Pelaz, Cindy Gustafson-Brown, Susanne Kohalmi, Bill Crosby, Martin F. Yanofsky. 1997, Isolation of genes whose products interact with APETALA1 and CAULIFLOWER using the yeast 2-hybrid system. 8TH INTERNATIONAL CONFERENCE ON ARABIDOPSIS RESEARCH
    Steeves TA, Sussex IM. 1989. Patterns in Plant Development. New York: Cambridge Univ.Press.
    Stewart RN. 1978. Ontogeny of the primary body in chimeral forms of higher plants. In The Clonal Basis of Development, ed. S Subtelny, IM Sussex. New York: Academic.
    Stone, S. L., H. Hauksdottir, A. Troy, J. Herschleb, E. Kraft & J. Callis, 2005, Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol., 137(1): 13-30.
    Strayer, C.A., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas, P., Panda, S., Kreps, J.A., and Kay, S.A. 2000, Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 289, 768-771.
    Suarez-Lopez P, Wheatley K, Robson F, et al. 2001, CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410 (6832): 1116~1120
    Sub, S.S., Choi, K.R., and Lee, I. 2003, Revisiting phase transition during flowering in Arabidopsis. Plant Cell Physiol, 44, 836-843.
    Sung S, Amkasimo RM. 2004, Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427 (6970): 159~164.
    Sung, S., and Amasino, R.M. 2004a, Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol, 7, 4-10.
    Sussex, I. M. and Rosenthal, D. 1973. Differential 3H-thymidine labeling of nuclei in the shoot apical meristem of Nicotiana. Bot. Gaz. 134, 295-301.
    Suzuki, T., Inagaki, S., Nakijima, S., Akashi, T., Ohto, M., Kobayashi, M., Seki, M., Shinozaki, K., Kato, T., Tabata, S. et al. 2004. A novel Arabidopsis gene TONSOKU is required for proper cell arrangement in root and shoot apical meristem. Plant J. 38, 673-684.
    Taguchi-Shiubara F, Yuan Z, Hake S, Jackson D. 2001. The fascinated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev.15: 2755-66.
    Takeda, S., Hofmann, I., Probst, A. V., Angelis, K. J., Kaya, H., Araki, T., Mengiste, T., Scheid, O. M., Shibahara, K. et al. 2004. BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis. Genes Dev. 18, 782-793.
    TheiBen, G., Kim, J. T. and Saedler, H. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484-516.
    Tilney-Bassett RAE. 1986. Plant Chimeras. London: E Arnold.
    Trotochaud, A. E., Hao, T., Wu, G., Yang, Z. and Clark, S. E. 1999. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11, 393-406.
    Trotochaud AE, Jeong S, Clark SE 2000. CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase. Science, 289: 613-617.
    Wagner D, Sabowski R, Meyerowitz E. 1999, Transcriptional activation of APETALA1 by LEAFY. Science, 285 (5427): 582~584
    Wang, Z. -Y., and Tobin, E. M. 1998, Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 93, 1207-1217.
    Würschum T, Groβ-Hardt R, Laux T.2006. APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18, 295-307.
    徐淑平,卫志明,(1998),基因枪的使用方法介绍,植物生理学通讯,34(1),41-43。
    Yamamoto E, Karakaya HC, Knap HT.2000. Molecular characterization of two soybean homologs of Arabidopsis thaliana CLAVATA1 from the wide type and fasciation mutant. Biochim. Biophys. Acta 1491: 333-40.
    Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. 2004, The wheat VRN2 gene is a flowering repressor down2regulated by vernalization. Science, 303 (5664): 1640~1644.
    Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. 2003, Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 100 (10): 6263~6268.
    Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription facters. Nature 346: 35-39.
    Yu LP, Simon EJ, Trotochaud AR, Clark SE. 2000. POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci. Development 127: 1661-70.
    赵升、曹文广、刘平林、巩振辉、何玉科,2003,外源BoCAL基因对花椰菜花球形态发生的调节及其遗传。实验生物学报,36(4):259-263。
    Ziegelhoffer, E. C., Medrano, L. J. and Meyerowitz, E. M. 2000. Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc. Natl. Acad. Sci. USA 97, 7633-7638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700