表面分子印记聚合物的制备及其在农残检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印记技术(Molecular Imprinting Technology,MIT)是一种制备对特定分子具有专一识别性能的聚合物的技术,基于分子印记技术制备的分子印记聚合物材料具有高亲和性和选择性、抗恶劣环境能力强、稳定性好、制备成本低、使用寿命长,应用范围广等优点而在分离提纯、免疫测定、生物模拟、仿生传感、催化、环境的痕量分析、药物释放等以及相关领域显示出广阔的应用前景。
     本文首先对分子印记技术的基本原理、分子印记聚合物的制备、分子印记技术应用状况以及分子印记技术新发展进行了较为全面的综述和评价,探讨了当前分子印记技术所面临的机遇和挑战。传统方法制得的印记聚合物有效印记点的密度很低,因此对目标分子的结合容量小,结合动力学慢,难以满足在传感器上应用的实际需要。纳米结构的分子印记材料具有较高的比表面积,印记材料上大多结合位点位于或接近材料表面,对目标分子具有高亲和力,快速结合动力学等特点,有望真正解决传统分子印记遇到的困难,进一步推动分子印记技术的发展。通过对粒子表面进行修饰制备分子印记聚合物材料是一个较好的方法。本论文重点针对农药分子的识别与检测,以二氧化硅为中心粒子,利用层层自组装技术,发展制备具有高选择性、高亲和力和快速结合动力学的芯-壳型纳米结构印记材料。同时,结合荧光分析技术,发展基于金属卟啉荧光淬灭的表面分子印记聚合物的制备。
     二氧化硅粒子表面layer-by-layer分子印记。首先,在氮气气氛中和惰性溶剂里APTS通过共价耦联到二氧化硅纳米粒子的表面,用戊二醛进行交联,得到表面改性的二氧化硅纳米粒子。然后,利用聚烯丙基胺(PAA)与2,4-D之间的相互作用制备前驱组装体复合物(PAA-2,4-D),以此复合物为构筑基元与戊二醛交替组装在改性的二氧化硅纳米粒子表面上。通过组装的循环次数,可在纳米级别上控制壳层的厚度。结果表明所得的芯-壳型分子印记聚合物对2,4-D具有强的识别能力,对所有的2,4-D结构类似物的吸附能力均低于对2,4-D的吸附能力。本研究拓展了分子印记聚合物的制备,有可能成为纳米传感器中用于分子识别的理想材料。
     基于锌原卟啉(ZnPP)的表面分子印记聚合物的制备和荧光检测。首先,用γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(MPS)对二氧化硅纳米粒子进行表面改性,制得表面键合有双键的改性二氧化硅纳米粒子,然后诱导功能单体甲基丙烯酸(MAA)和ZnPP在二氧化硅粒子表面印记聚合。锌原卟啉直接作为功能单体参与形成空腔,其即为识别元件又为探测元件。实验结果证实了这种发光性分子印记聚合物可以实现对痕量农药残留分子的高灵敏度和高选择性的检测,为农药的残留检测提供了新的途径。
Molecular imprinting technique (MIT) is becoming increasingly recognized as a powerful technique of preparing synthetic polymers that contain tail-made recognition sides for certain molecules. The most significant advantages of molecularly imprinted materials are high affinity and high selectivity to analyte, mechanical/chemical stability, low cost and ease of preparation, usage of long lifetime, and hence have attracted extensive research interests due to the potential application in purification, separation, immunoassay, biomimics, chemical and biological sensors, catalysis, environment detection, drug release and other relevant fields for its predetermination, specificity and practicability of molecule recognition.
     The research described in this thesis gives a brief overview of the development of novel strategies facilitating advanced understanding of the fundamental principles governing selective recognition of molecularly imprinted polymers, and discusses the problems and challenges that molecular imprinting technique meets with at present. Traditional molecular imprinting techniques often produce the polymer materials exhibiting low binding capacity and slow binding kinetics due to low density of effective recognition sites, limiting their use in sensors. As an alternative to these approaches, nano-sized imprinting materials may provide a potential solution to these difficulties due to their extremely high surface-to-volume ratio which lead to the recognition sites to locate at the surface and in the proximity of materials surface, so they have a high affinity and fast binding kinetics. It’s a wise strategy to prepare molecular imprinting materials at the surface of support cores through a simple modification. This thesis aims at pesticides recognition and detection. Taking advantage of the LBL technique, silica core-shell imprinted nanomaterials with high selectivity, high affinity and rapid binding kinetics had been prepared. Moreover, combining with fluorescence analysis technique, a surface molecularly imprinted polymer was prepared based on fluorescence quenching of metalloporphyrin.
     Layer-by-layer molecular imprinting at the surface of silica particles. Firstly, Aminopropyl modification of silica nanoparticles was carried out through the covalently attached to silica surface using 3-aminopropyltriethoxylsilane at inert solvent under nitrogen atmosphere. Followed by cross-linked with glutaraldehyde (GA), then the modified silica was obtained. The imprinting complex (PAA-2,4-D) was prepared by the intermolecular interaction between 2,4-D and PAA. Then, PAA-2,4-D and GA were sequentially assembled onto the surface of modified silica. The shell thickness can be tuned at the nanometer scale by controlling the number of layers. The results showed that imprinted materials had high recognition ability to 2,4-D, and the binding capacity of all of 2,4-D related compounds are lower than that of 2,4-D. The research reported here extends the preparation of MIPs, and can be used as ideal materials for molecular recognition in the field of nanosensors.
     Preparation of surface molecularly imprinted polymers and fluorescence detection based on zinc (II) protoporphyrin (ZnPP). Firstly, surface-modified silica particles which contain double bonds were obtained by modified with 3-(trimethoxysilyl) propylmethacrylate (MPS), and it can direct the selective occurrence of imprinting polymerization at the surface of silica. Using ZnPP as functional monomer to form cavities directly,it can be served not only as recognition element but also as signal-generating element. It has been demonstrated that this molecularly imprinted polymer which may emit fluorescence can be used to detect pesticide residue sensitively and selectively. These results reported herein may provide a new design for the detection of pesticide residues.
引文
[1] Pauling L J. 1940. A theory of the structure and process of formation of antibodies[J]. J. Am. Chem. Soc., 62: 2643-2657.
    [2] Dickey FH. 1949. The preparation of specific adsorbents[J]. Proc. Natl. Acad. Sci., 35: 227-229.
    [3] Wulff G, Sarchan A, Zabrocki K. 1973. Enzyme-analogue built polymers and their use for the resolution of racemates[J]. Tetrahedron lett., 14: 4329-4332.
    [4] Wulff G, Sarchan A. 1972. Macromolecular colloquium[J]. Angew. Chem. Int. Ed., 11: 341-342.
    [5] Andersson LI, Sellergren B, Mosbach K. 1984. Imprinting of amino acid derivatives in macroporous polymers[J]. Tetrahedron Lett., 25: 5211-5214.
    [6] Vlatakis G, Andersson LI, Mosbach K. 1993. Drug assay using antibody mimics made by molecular imprinting[J]. Nature, 361: 645-647.
    [7] Kempe K. 1996. Antibody-Mimicking polymers as chiral stationary phases in HPLC[J]. Anal. Chem., 68: 1948-1953.
    [8] Kempe K, Mosbach K. 1995. Molecular imprinting used for chiral separations[J]. J. Chromatogr. A, 694: 3-13.
    [9] Sellergren B. 2001. Imprinted chiral stationary phases in high-performance liquid chromatography[J]. J. Chromatogr. A, 906: 227-252.
    [10] Haupt K. 2001. Molecularly imprinted polymers in analytical chemistry[J]. Analyst, 126:747-756.
    [11] Wang JF, Cormack PAG, Sherrington DC, et al. 2003. Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications[J]. Angew. Chem. Int. Ed., 42: 5336-5338.
    [12] Fischer L, Muller R, Ekberg B, et al. 1991. Direct enantioseparation ofβ-adrenergic blockers using a chiral station phase prepared by molecular imprinting[J]. J. Am. Chem. Soc., 113: 9358-9366.
    [13] Kriz D, Ramstr?m O, Mosbach K. 1997. Molecular imprinting–New possibilities for sensor technology[J]. Anal. Chem., 69: A345-A349.
    [14] Piletsky SA, Parhometz YP, Lavryk NV, et al. 1994. Sensors for low-weight organic molecules based on molecular imprinting technique[J]. Sens. Actuators B, 19: 629-631.
    [15] Haupt K, Mosbach K. 2000. Molecularly imprinted polymers and their use in biomimetic sensors[J]. Chem. Rev., 100: 2495-2504.
    [16] Malitesta C, Losito I, Zambonin PG. 1999. Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors[J]. Anal. Chem., 7: 1366-1370.
    [17] Dickert FL, Lieberzeit P, Tortschanof M. 2000. Antibodies - a new generation of chemical sensors[J]. Sens. Actuators B, 65 (1): 186-189.
    [18] Merkoi A, Aleqret S. 2002. New materials for electrochemical sensingⅣ. Molecular imprinted polymers[J]. TrAC-Trends Anal. Chem., 21: 717-725.
    [19] Lanza F, Sellergren B. 2001. The application of molecular imprinting technology to solid phase extraction[J]. Chromatographia, 53: 599-611.
    [20] Masque N, Marce RM, Borrull F. 2001. Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction[J]. Trends. Anal. Chem., 20: 477-486.
    [21] Stevenson D. 1999. Molecular imprinted polymers for solid-phase extraction[J]. TrAC-Trends Anal. Chem., 18: 154-158.
    [22] Andersson LI. 2000. Molecular imprinting for drug bioanalysis - A review on the application of imprinted polymers to solid-phase extraction and binding assay[J]. J. Chromatogr. B, 739: 163-173.
    [23] Sellergren B, Karmalkar RN, Shea KJ. 2000. Enantioselective ester hydrolysis catalyzed by imprinted polymers[J]. J. Org. Chem., 65 (13): 4009-4027.
    [24] Lin CI, Joseph AK, Chang CK, et al. 2003. Synthesis of molecular imprinted organic-inorganic hybrid polymer binding caffeine[J]. Anal. Chim. Acta, 481 (2):175-180.
    [25] Wulff G. 2002. Enzyme-like Catalysis by Molecularly Imprinted Polymers[J]. Chem. Rev., 102: 1-28.
    [26] Ulbricht M. 2004. Membrane separations using molecularly imprinted polymers[J]. J. Chromatogr. B, 804: 113-125.
    [27] Wulff G. 1982. Selective binding to polymers via covalent bonds the construction of chiral cavities as specific receptor sites[J]. Pure Appl. Chem., 54 (11): 2093-2102.
    [28] Sellergren B, Lepisteo M, Mosbach K. 1989. Highly enantio- and substrate-selective Polymers obtained by molecular imprinting based on non-covalent interactions[J]. React. Polym., 10: 306-312.
    [29] Katz A, Davis ME. 1999. Investigations into the mechanisms of molecular recognition with imprinted polymers[J]. Macromolecules, 32: 4113-4121.
    [30] Chronakis IS, Milosevie B, Frenot A, Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting[J]. Macromolecules, 2006, 39: 357-361.
    [31] Ye L, Mosbach K. 2001. Molecularly imprinted microspheres as antibody binding mimics[J].React. Funct. Polym., 48: 149-157.
    [32] Whitcombe MJ, Rodriguez ME, Villar P. et al. 1995. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol[J]. J. Am. Chem. Soc., 117: 7105-7111.
    [33] Umpleby RJ, Bode M, Shimizu KD. 2000. Measurement of the continuous distribution of binding sites in molecularly imprinted polymers[J]. Analyst, 125: 1261-1265.
    [34] Piletsky SA, Piletskaya EV, Yano K, et al. 1996. A biomimetic receptor system for sialic acid based on molecular imprinting[J]. Anal. Lett., 157-170.
    [35] Sellergren B, Andersson L. 1990. Molecular recognition in macroporous polymers prepared by a substrate analog imprinting strategy[J]. J. Org. Chem., 55: 3381-3383.
    [36] Whitcombe MJ, Vulfson EN. 2001. Imprinted polymers[J]. Adv. Mater., 13: 467-478.
    [37] Klein JU, Whitcombe MJ, Mulholland F, et al. 1999. Template-mediated synthesis of a polymeric receptor specific to amino acid sequences[J]. Angew. Chem., Int. Ed., 38: 2057-2060.
    [38] Ahernea A, Alexander C, Payne MJ, et al. 1996. Bacterial mediated lithography of polymer surfaces[J]. J. Am. Chem. Soc., 118: 8771-8772.
    [39] Chianella, Lofterzo M, Piletsky SA. 2002. Rational Design of a Polymer for Microcystin-LR Using a Computational Approach[J]. Anal. Chem., 74: 1288-1293.
    [40] Piletsha E, Piletsky SA, Kal Karim. 2004. Biotin-specific synthetic receptors prepared using molecular imprinting[J]. Anal. Chim. Acta, 504:179-183.
    [41] Turiel E, Martin-Esteban A, Fernandez P, et al. 2001. Molecular recognition in a propazine-imprinted polymerand its application to the determination of triazines in environmental samples[J]. Anal. Chem., 73: 5133-5141.
    [42] Muldoon MP, Stanker LH. 1997. Molecularly imprinted solid phase extraction of a trazine from beef liver extracts[J]. Anal. Chem., 69: 803-808.
    [43] Sellergen B, Shea KJ. 1993. Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers[J]. J. Chromatogr. A, 635: 31-49.
    [44] Ferrer I, Lanza F, Tolokan A, et al. 2000. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers[J]. Anal. Chem., 72: 3934-3941.
    [45] O′Shannessy DJ, Ekberg B, Mosbach K. 1989. Molecular imprinting of amino acid derivatives at low temperature (0°C) using photolytic homolysis of azobisnitriles[J]. Anal. Biochem., 177: 144-149.
    [46] Milojkovi? SS, Kostoski D, ?omor JJ, et al. 1997. Radiation induced synthesis of molecularly imprinted polymers[J]. Ploymer, 38: 2853-2855.
    [47] Panasyuk TL, Mirsky VM, Piletsky SA. 1999. Electropolymerized molecularly imprinted polymers as receptor laryers in a capacitive chemical sensors[J]. Anal. Chem., 71: 4609-4613.
    [48] Matsui J, Kato T, Takeuchi T, et al. 1993. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique[J]. Anal. Chem., 65: 2223-2224.
    [49] Matsui J, Takeuchi T. 1997. A molecularly imprinted polymer rod as nicotine selective affinity media prepared with 2-(trifluoromethyl) acrylic acid[J]. Anal. Commun., 34: 199-200.
    [50] Matsui J, Nicholls I A, Takeuchi T. 1998. Molecular recognition in cinchona alkaloid molecular imprinted polymer rods[J]. Anal. Chim. Acta, 365: 89-93.
    [51] Nilsson K, Lindell J, Norrl?w O, et al. 1994. Imprinted polymers as antibody mimetics and new affinity gels for selective separations in capillary electrophoresis[J]. J. Chromatogr. A, 680: 57-61.
    [52] Brüggemann O, Freitag R, Whitcombe MJ, et al. 1997. Comparison of polymer coatings of capillaries for capillary electrophoresis with respect to their applicability to molecular imprinting and electrochromatography[J]. J. Chromatogr. A, 781: 43-53.
    [53] Schweitz L, Andersson LI, Nilsson S. 1997. Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting[J]. Anal. Chem., 69: 1179-1183.
    [54] Mayes A G, Mosbach K. 1996. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase[J]. Anal. Chem., 68: 3769-3774.
    [55] Ansell RJ, Mosbach K. 1997. Molecularly imprinted polymers by suspension polymerization in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent[J]. J. Chromatogr. A, 787: 55-66.
    [56] Smith RM. 2003. Before the injection-modern methods of sample preparation for separation techniques[J]. J. Chromatogr. A, 1000: 3-27.
    [57] Ansell RJ, Mosbach K. 1998. Magnetic molecularly imprinted polymer beads for drug radioligand binding assay[J]. Analyst, 123: 1611-1616.
    [58] Hosoya K, Yoshizako K, Tanaka N, et al. 1994. Uniform-size macroporous polymer-based stationary-phase for HPLC prepared through molecular imprinting technique[J]. Chem. Lett., 1437-1438.
    [59] Haginaka J, Takehira H, Hosoya K, et al. 1997. Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen[J]. Chem. Lett., 26: 555-556.
    [60] Haginaka J, Sanbe H. 2000. Uniform-sized molecularly imprinted polymers for 2-arylpropionic acid derivatives selectively modified with hydrophilic external layer and their applications to direct serum injection analysis[J]. Anal. Chem., 72: 5206-5210.
    [61] Haginaka J, Sakai Y. 2000. Uniform-sized molecularly imprinted polymer material for (S)-propranolol[J]. J. Pharm. Biomed. Anal., 22: 899-907.
    [62] Haginaka J, Sanbe H. 2001. Uniformly sized molecularly imprinted polymer for (S)-naproxen—Retention and molecular recognition properties in aqueous mobile phase[J]. J. Chromatogr. A, 913: 141-146.
    [63] Haginaka J, Takekira H, Hosoya K, et al. 1999. Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer[J]. J. Chromatogr. A, 849: 331-339.
    [64] Masci G, Aulenta F, Crescenzi V. 2002. Uniform-sized clenbuterol molecularly imprinted polymers prepared with methacrylic acid or acrylamide as an interacting monomer[J]. J. Appl. Polym. Sci., 83: 2660-2668.
    [65] Zhang LY, Cheng GX, Fu C. 2002. Molecular selectivity of tyrosine-imprinted polymers prepared by seed swelling and suspension polymerization[J]. Polym. Int., 51: 687-692.
    [66] Ye L, Cormack PAG, Mosbach K. 1999. Molecularly imprinted monodisperse microspheres for competitive radioassay[J]. Anal. Commun., 36: 35-38.
    [67] Ye L, Weiss R, Mosbach K. 2000. Synthesis and characterization of molecularly imprinted microspheres[J]. Macromolecules, 33: 8239-8245.
    [68] Ye L, Cormack PAG, Mosbach K. 2001. Molecular imprinting on microgel spheres[J]. Anal. Chim. Acta, 435: 187-196.
    [69] Suzuki M, Sakakibara Y, Kobayashi S, et al. 2002. Preparation of porous polymers by′in situ precipitation′using low molecular weight gelators[J]. Polym. J., 34: 474-477.
    [70] Norrl?w O, Glad M, Mosbach K. 1984. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates[J]. J. Chromatogr. A, 299: 29-41.
    [71] Lu CH, Zhou WH, Han B, Yang HH, Chen X, Wang XR. 2007. Surface-imprinted core-shell nanoparticles for sorbent assays[J]. Anal. Chem., 79, 5457-5461.
    [72] Gao DM, Zhang ZP, Wu MH, Xie CG, Guan GJ, Wang DP. 2007. Monomer-directing strategy for highly-dense imprinting at surface of silica nanoparticles[J]. J. Am. Chem. Soc., 129, 7859-7866.
    [73] Yoshida M, Uezu K, Nakashiv F, et al. 1998. Spacer effect of novel bifunctionalorganophosphorus monomers in metal-imprinted polymers prepared by surface template polymerization[J].Journal of Polymer Science. Part A: Polymer Chemistry, 36 (15): 2727-2734.
    [74] Uezu K, Yoshida M, Goto M, et al. 1999. Molecular recognition using surface template polymerization[J]. Chemtech, 29 (4): 12-18.
    [75] Yoshida M, Uezu K, Goto M, et al. 2000. Surface imprinted polymers recognizing amino acid chirality[J]. Journal of Applied Polymer Science, 78 (4): 695-703.
    [76] Yoshida M, Hatate Y, Uezu K, et al. 2000. Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography[J]. Journal of Polymer Science. Part A: Polymer Chemistry, 38 (4): 689-696.
    [77] Yilmaz E, Ramstr?m O, M?ller P, et al. 2002. A facile method for preparing molecularly imprinted polymer spheres using spherical silica templates[J]. J. Mater. Chem., 12: 1577-1581.
    [78] Duffy DJ, Das K, Hsu SL, et al. 2002 Binding efficiency and transport properties of molecularly imprinted polymer thin films[J]. J. Am. Chem. Soc., 124: 8290-8296.
    [79] Jakoby B, Ismail GM, Byfield MP, et al. 1999. A novel molecularly imprinted thin film applied to a Love wave gas sensor[J]. Sens. Actuators A, 76: 93-97.
    [80] Hedborg E, Winquist F, Lundstr?m I, et al. 1993. Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices[J]. Sens. Actuators A, 37: 796-799.
    [81] Sallacan N, Zayats M, Bourenko T, et al. 2002. Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers[J]. Anal. Chem., 74: 702-712.
    [82] Shi F, Liu Z, Wu GL, Zhang M, Chen H, Wang ZQ, Zhang X. 2007. Surface imprinting in layer-by-layer nanostrutured films[J]. Adv. Funct. Mater., 17, 1821-1827.
    [83] Niu J, Liu ZH, Fu L, Shi F, Ma HW, Ozaki Y, Zhang X. 2008. Surface-imprinted nanostructured layer-by-layer film for Molecular recognition to theophylline derivatives[J]. Langmuir, 24, 11988-11994.
    [84] Ye L, Haupt K. 2004. Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery[J]. Anal. Bioanal. Chem., 378 (8): 1887-1897.
    [85] Surugiu I, Ye L, Yilmaz E, Dzgvev A, Danielsson B, Mosbach K, Haupt K. 2000. An enzyme-linked molecularly imprinted sorbent assay[J]. Analyst, 125 (1): 13-16.
    [86] Surugiu I, Svitel J, Ye L, Haupt K, Danielsson B. 2001. Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody[J].Anal. Chem., 73 (17): 4388-4392.
    [87] Surugiu I, Danielsson B, Ye L, Mosbach K, Haupt K. 2001. Chemiluminescence imaging ELISA using an imprinted polymer as recognition element instead of an antibody[J]. Anal. Chem., 73 (3): 487-491.
    [88]徐伟箭,罗鹏,张正华. 2002.基于分子印迹技术的仿生化学传感器[J].高分子材料科学与工程, 18 (6): 16.
    [89]孙慧,董襄朝,吕宪禹等. 2003.色谱[M]. 21.
    [90] Piletsky SA, Piletskaya EV, Elgersma AV, et al. 1995. Atrazine sensing by molecularly imprinted membranes[J]. Biosensors and Bioelectronics, 10: 959-964.
    [91] Sergeyeva TA, Piletsky SA, Brovko AA, et al. 1999. Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes[J]. Analyst, 124: 331-334.
    [92] Sergeyeva TA, Piletsky SA, Brovko AA, et al. 1999. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection[J]. Analytical Chimica Acta, 392: 105-111.
    [93] Piletsky SA, Piletskaya EV, et al. 1997. Optical detection system for triazine based on molecular-imprinted polymers[J].Anal. Lett, 30: 445-455.
    [94] Luo CH, Liu M, Mo Y, et al. 2001. Thickness-shear made acoustic sensor for atrazine using molecularly imprinted polymer as recognition element[J]. Analytical Chimica Acta, 428 (1): 143-148.
    [95] Pogorelova SP, Bourenko T, Kharitonov AB, et al. 2002. Selective sensing of atrazine herbicides in imprinted membranes using ion-sensitive field-effect trznsistors and microgravimetric quartz crystal microbalance measurements[J]. Analyst, 127: 1484-1491.
    [96] Shoji R, Takeuchi T, Kubo I. 2003. Atrazine sensor based on molecularly imprinted polymer-modified gold eletrode[J]. Anal. Chem., 75: 4882-4886.
    [97] Delaney TP, Mirsky VM, Ulbricht M, et al. 2001. Impedometric herbicide chemosensors based on molecularly imprinted polymers[J]. Analytical Chimica Acta, 435: 157-162.
    [98] Haupt K, Mayes AG, Mosbach K. 1998. Herbicide assay using an imprinted polymer-based system analogous to competitive fluoroimmunoassays[J]. Anal. Chem., 70: 628-631.
    [99] Haupt K, Dzgev A, Mosbanch K. 1998. Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an antifical recognition element[J]. Anal. Chem., 70: 628-631.
    [100] Leung Mitch KP, Chow Cheuk-Fai, Lam Michael HW. 2001. A sol-gel derived molecular imprinted luminescent PET sensing material for 2,4-dichlorophenoxyacetic acid[J]. J. Mater. Chem., 11: 2985-2991.
    [101] Kroger S, Turner APF, Mosbanch K, et al. 1999. Imprinted polymer-based sensor system for herbicides using differential-pulse voltammetry on screen-printed electrodes[J]. Anal. Chem., 71: 3698-3702.
    [102] Jakusch M, Janotta M, Mizailoff B. 1999. Molecularly imprinted polymers and infrared cvanescent wave spectroscopy. A chemical sensors approach[J]. Anal. Chem., 71: 4786-4791.
    [103] Liang CD, Peng H, Nie LH, et al. 2000. Bulk acoustic wave sensor for herbicide assay based on molecularly imprinted polymer[J]. Fresenius J. Anal. Chem., 367: 551-555.
    [104] Svitel J, Surugiu I, Dzgoev A, et al. 2001. Functionalized surfaces for optical biosensors: Application to in vitro pesticide residual analysis[J]. Materials in Medicine, 12 (10/11/12): 1075-1078.
    [105] Weetall HH, Rogers KR. 2004. Preparation and characterization of molecularly imprinted electropolymerized carbon electrodes[J]. Talanta, 62: 329-335.
    [106] Jenkins AL, Uy OM, Murray GM. 1997. Polymer based lanthanide luminescent sensors for the detection of nerve agents[J]. Anal. Comm., 34: 221-224.
    [107] Jenkins AL, Uy OM, Murray GM. 1999. Polymer based lanthanide luminescent sensors for the detection of the hydrolysis product of the nerve agent soman in water[J]. Anal. Chem., 71: 373-378.
    [108] Jenkins AL, Yin R, Jensen JL. 2001. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water[J]. Analyst, 126 (6): 798-802.
    [109]孟子晖,李元光,刘琴. 2001.通过分子烙印聚合物膜电阻的变化检测甲基磷异丙酯[J].分析化学, 29 (4): 490-490.
    [110] Yamazaki T, Meng Z, Mosbanch K, et al. 2001. A novel amperometric sensor for organophosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center[J]. Electrochemistry, 69 (12): 969-972.
    [111] Marx S, Zaltsman A, Turyan I, et al. 2004. Parathion sensor based on molecularly imprinted sol-gel films[J]. Anal. Chem., 76: 120-126.
    [112] Levi R, McNiven S, Piletsky SA, et al. 1997. Optical detection of chloramphenicol using molecularly imprinted polymers[J]. Anal. Chem., 69: 2017-2021.
    [113] McNiven S, Kato M, Levi R, et al. 1998. Chloramphenicol sensor based on an in situ imprinted polymer[J]. Analytical Chimica Acta, 365 (1-3): 69-74.
    [114] Suarez-Rodriguez JL, Diaz-Garcia ME. 2001. Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers[J]. Biosensors and Bioelectronics, 16 (9-12): 955-961.
    [115] Gong JL, Gong FC, Kuang Y, et al. 2004. Capacitive chemical sensor for fenvalerate assay based on electropolymerized molecularly imprinted polymer as the sensitive layer[J]. Anal. Bioanal. Chem., 379 (2): 302-307.
    [116] Liu Y, Wei WZ, Xia JJ, et al. 2004. Artificial receptor layer for herbicide detection based on electro synthesized molecular imprinting technique and capacitive transduction[J]. Anal. Lett., 37: 2303-2319.
    [117] Polborn, K.; Severin, K. 1999. Molecular imprinting with an organometallic transition state analogue[J]. Chem. Commun., 2481-2482.
    [118] Strikovsky AG, Kasper DGM, Green BS, Hradil J, Wulff G. 2000. Catalytic molecularly imprinted polymers using conventional bulk polymerization or suspension polymerization: selective hydrolysis of diphenyl carbonate and diphenyl carbamate[J]. J. Am. Chem. Soc., 122, 6295-6296.
    [119] Liu JQ, Wulff G. 2004. Molecularly imprinted polymers with strong carboxypeptidase a-like activity: Combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities[J]. Angew. Chem. Int. Ed., 43, 1287-1290.
    [120] Liang CD, Peng H, Bao XY, Nie L, Yao SZ. 1999. Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine[J]. Analyst, 124, 1781-1785.
    [121] Panasyuk TL, Mirsky VM, Piletsky SA, Wolfbeis OS. 1999. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors[J]. Anal. Chem., 71, 4609-4613.
    [122] Kriz D, Ramstrom O, Svensson A, Mosbach K. 1995. A biomimetic sensor based on a molecularly imprinted polymer as a recognition element combined with fiber-optic detection[J]. Anal. Chem., 67, 2142-2144.
    [123] Sulitzky C, Rückert B, Sellrgren B, et al. 2002. Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators[J]. Macromolecules, 35(1): 79-91.
    [124] Chang JY, Kim TH, Chang T, et al. 2005. Facile preparation of core?shell type molecularly imprinted particles: molecular imprinting into aromatic polyimide coated on silica spheres[J]. Macromolecules, 38(15): 6423-6428.
    [125] Lim CH, Kim TH, Chang JY, et al. 2005. Smectic layered polymer networks based on side chain liquid crystalline polymers having thermally reversible urea bonds[J]. Macromoleculs, 38(5): 1525-1527.
    [126] Carter SR, Rimmer R. 2004. Surface molecularly imprinted polymer core-shell particles[J].Adv. Funct. Mater., 14(6): 553-561.
    [127] Natalia PM, Mayes AG. 2004. Noncovalent imprinting in the shell of core?shell nanoparticles[J]. Langmuir, 20(9): 3775-3779.
    [128] Piletsky SA, Matuschewski H, Ulbricht M, et al. 2000. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water[J]. Macromolecules, 33(8): 3092-3098.
    [129] Sergeyeva TA, Matuschewski H, Piletsky SA, et al. 2001. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization[J]. J. Chromatogr. A, 907: 89-99.
    [130] Kochkodan V, Weigel V, Ulbricht M. 2001. Thin layer molecularly imprinted microfiltration membranes by photofunctionalization using a coated a-cleavage photoinitiator[J]. Analyst, 126: 803-809.
    [131] Han M, Kane R, Goto M, et al. 2003. Discriminate surface molecular recognition sites on a microporous substrate: A new approach[J]. Macromolecules, 36(12): 4472-4477.
    [132] Decher G, Hong JD. 1991. Makomol building of ultrathin multiplayer films by a self-assembly process: consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces[J]. Chem. Macromol. Symp., 46: 321-324.
    [133] Unger K. 1979. Porous silica: Its proprieties and use as a support in column liquid chromatography[M]. New York, Elsevier.
    [134] Tong WJ, Gao CY, Mohwald H. 2006. Single polyelectrolyte microcapsules fabricated by glutaraldehyde-mediated covalent layer-by-layer assembly[J]. Macromol. Rapid Commun., 27: 2078–2083.
    [135] Cao L, Zhou XC, Li SFY. 2001. Enantioselective sensor based on microgravimetric quartz crystalmicrobalance with molecularly imprinted polymer film[J]. Analyst, 126 (2): 184-188.
    [136] Stanley S, Percival CJ, Moral T, Braithwaite A, et al. 2003. Enantioselective detection of L-serine[J]. Sens. Actuators B, 89: 103-106.
    [137] Turkewitsch P, Wandelt B, Darling GD, et al. 1998. A polymer-based fluorescent chemosensor for aqueous cAMP[J]. 70: 2025-2030.
    [138] Rachkov A, Mcniven S, Elskaya A, et al. 2000. Fluorescence detection of beta-estradiol using a molecularly imprinted polymer[J]. Anal. Chim. Acta, 405: 23-29.
    [139] Jenkins AL, Yin R, Jensen JL. 2001. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water[J]. Analyst, 126(6): 798-802.
    [140] Tsukube H and Shinoda S. 2002. Lanthanide complexes in molecular recognition and chirality sensing of biological substrates[J]. Chem. Rev., 102: 2389-2404.
    [141] Matsui J, Higashi M, and Takeuchi T. 2000. Molecularly imprinted polymer as 9-ethyladenine receptor having a porphyrin-based recognition center[J]. J. Am. Chem. Soc., 122: 5218-5219.
    [142] Takeuchi T, Mukawa T, Matsui J, et al. 2001. Molecularly imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid[J]. Anal. Chem. 73: 3869-3874.
    [143] Tong AJ, Dong H, Li LD. 2002. Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)–protoporphyrin as a functional monomer[J]. Anal. Chim. Acta, 466: 31-37.
    [144] Whitcombe MJ, Rodrigez ME, Villar P, et al. 1995. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol[J]. J. Am. Chem. Soc., 117: 7105 -7111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700