采后钙处理对奉节脐橙果皮褐变及钙调蛋白相关基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奉节脐橙(Citrus sinensis Osbeck)是一个优良的甜橙鲜食品种,在国内外市场享有较高声誉,是重庆市柑橘出口中唯一具有较强竞争优势的品种。但奉节脐橙果皮褐变发生较严重,主要症状为油胞破裂下陷、形成褐斑,极大地影响了果实的外观质量和商品价值。目前对脐橙果皮褐变的发生机制尚未进行深入研究,缺乏相应的控制措施,这已成为目前脐橙商品生产发展的关键制约因素。因此迫切需要开展对奉节脐橙果皮褐变的生理及分子机制研究。
     本研究以‘奉园72-1’脐橙为实验材料,果实采后分别采用清水、50 mg.kg-1 2,4-D+250 mg.L-1施保功、1%氯化钙+50 mg.kg-1 2,4-D+250 mg.L-1施保功、2%氯化钙+50 mg.kg-1 2,4-D+250 mg.L-1施保功、1%硝酸钙+50 mg.kg-1 2,4-D+250 mg.L-1施保功、2%硝酸钙+50 mg.kg-1 2,4-D+250 mg.L-1施保功等对果实进行10 min浸钙处理,晾干后用PE薄膜袋单果包装,置于20℃常温下贮藏,定期取样观察果实的褐变情况并测定生理指标,包括褐变指数、相对电导率、丙二醛含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、多酚氧化酶(PPO)活性。并对钙处理后对果实品质的影响进行了分析,定期测量了失重率、可溶性固形物、可滴定酸、维生素C含量等。利用荧光定量PCR方法,检测了对照组和钙处理组CsCAB基因和它的两个靶蛋白基因CsGAD、CsATPase在果皮褐变进程中的表达水平的变化。
     获得的主要研究结果如下:
     ①钙处理可有效降低果皮褐变指数。1% Ca(NO3)2处理组贮藏末期褐变指数比对照低20%,2% Ca(NO3)2处理组贮藏末期褐变指数比对照低15%。CaCl2处理效果优于Ca(NO3)2处理,1% CaCl2处理效果最好,贮藏110 d后褐变指数为25%,比对照降低了27.5%,降低果皮褐变指数能力为1% CaCl2>2% CaCl2>1% Ca(NO3)2>2% Ca(NO3)2。
     ②钙处理显著降低了脐橙果实的相对电导率。随着贮藏时间的延长,对照组果实的相对电导率上升速率明显高于浸钙果实。结果显示,1% CaCl2处理效果最好,贮藏110 d后相对电导率比同期对照低13%,能显著抑制果皮相对电导率的升高。
     ③与对照相比,各处理都能不同程度地减少丙二醛的积累。其中1% CaCl2、2% CaCl2处理效果最佳:在贮藏末期,1% CaCl2处理的果实丙二醛含量为9.35 nmol.g-1,比对照低6.32 nmol.g-1,2% CaCl2处理的果实丙二醛含量为10.16 nmol.g-1,比对照低5.51 nmol.g-1。1% Ca(NO3)2、2% Ca(NO3)2处理的样品中丙二醛含量分别比同期对照低23.4%和11.3%。
     ④钙处理可以明显提高奉节脐橙果实贮藏过程中SOD的活性,其中以1% CaCl2处理的果实中SOD活性最高,110 d时比同期对照高120 U.g-1。贮藏期间,对照处理POD活性都低于钙处理,其中1% CaCl2处理前40 d活性最高,40 d以后处于缓慢下降,但还是显著高于对照组的POD活性。Sporgon+ 2,4-D、2% CaCl2、1% Ca(NO3)2和2% Ca(NO3)2处理在贮藏50 d后POD活性都趋于平缓,但都显著高于对照组活性。
     在贮藏40 d时,1% Ca(NO3)2、1% CaCl2、2% CaCl2、和Sporgon+ 2,4-D处理,都导致PPO活性下降,与对照组差异极显著,其中1% CaCl2处理的PPO活性值最低,比对照组中PPO活性低了77%,且与1% Ca(NO3)2、2% CaCl2和Sporgon+ 2,4-D处理相比,差异显著。贮藏的不同时期,1% CaCl2处理PPO活性都低于其他处理,也低于对照组。
     ⑤钙处理果实贮藏期间,对品质无不良影响。贮藏20 d后,1% CaCl2处理组其失重率均显著小于对照组;1% CaCl2处理组的果实的可溶性固形物含量在第40 d达到高峰,其含量在20~110 d均显著高于对照;1% CaCl2处理组在30 d和50 d时,其可滴定酸的含量显著高于对照,到第110 d时,各处理与对照组基本一致;2% CaCl2处理后的果实的维生素C含量在20 d时达到高峰,50 d后,维生素C含量高于同期对照组,但不显著,110 d时,维生素C含量显著高于对照。另外在110 d时,各处理组含量均显著高于对照。
     ⑥利用荧光定量PCR技术分析钙处理后褐变进程中的钙调蛋白基因CsCAB及其靶蛋白基因CsGAD和CsATPase表达情况,结果显示,1% CaCl2处理组中的CsCAB基因表达量显著高于对照组果实中的表达。贮藏末期100 d时,1% CaCl2处理组CsCAB基因的表达水平是对照组的3倍。CsGAD基因在1% CaCl2处理组表达水平有所波动,但都高于对照组,贮藏50 d时表达水平最高。随着贮藏时间的延长,对照组和钙处理组的CsATPase基因都出现下调表达。贮藏100 d后,1% CaCl2处理组中的CsATPase基因表达量最低。
‘Fengyuan 72-1’navel orange (Citrus sinensis Osbeck) is welcomed by consumers for its good tasty and beautiful color. But it’s prone to develop peel pitting, which has been described as a severe disorder with characteristics of the extensive collapsed areas of the flavedo (outer colored part of the peel) and part of the albedo (inner part of the peel) that becomes brown with time. The external quality and consequently the market value of the fruit are decreased by peel pitting.
     The navel orange fruits were obtained from local orchards, and treated with different concentrations of CaC12 and Ca(NO3)2 in this study.Six sets of fruits were dipped in water (the control), 50 mg.kg-1 2,4-D+ 250 mg.L-1 Sporgon,1% CaCl2+ 50 mg.kg-1 2,4-D+ 250 mg.L-1 Sporgon, 2% CaCl2+ 50 mg.kg-1 2,4-D+ 250 mg.L-1 Sporgon, 1% Ca(NO3)2+ 50 mg.kg-1 2,4-D+ 250 mg.L-1 Sporgon, 2% Ca(NO3)2+ 50 mg.kg-1 2,4-D+ 250 mg.L-1 Sporgon for 10 min respectively. After drying in air, the fruits were bagged and stored at room temperature. Physiological and biochemical indicator correlated incidence of peel pitting including pitting index , relative electric conductivity,malondialdehyde (MDA) content,activities of Polyphenol Oxidase (POD), Polyphenol Oxidase (PPO), Superoxide Dismutase (SOD) were measured every ten days. The fruit quality such as weight loss, soluble solid content , titrtable acidity, Vc content,were also determined. Finally, this study used fluorescence quantitative PCR to measure the changing expression of CsCAB and its two target protein genes CsGAD, CsATPase during the period of peel pitting in control and calcium treated groups respectively.
     The main results of the research were as follows:
     ①Calcium treatments could effectively reduce the peel pitting. The peel pitting index of 1% Ca(NO3)2 at the end of storage was 20% lower than the control while 2% Ca(NO3)2 was 15% lower than the control. CaCl2 treatments were more effective than Ca(NO3)2 treatments, and the peel pitting index of 1% CaCl2 treatment after 110 days of the storage was 25%, which was 27.5% lower than the control. The capacity of reducing peel pitting index was 1% CaCl2> 2% CaCl2> 1% Ca(NO3)2> 2% Ca(NO3)2.
     ②Calcium treatments significantly reduced relative conductivity of navel orange fruits. With the proloning of the storage time, the increasing rate of relative conductivity of the control fruit was obviously higher than that of calcium treatments. The results showed that, 1% CaCl2 treatment was the most efficient, the relative conductivity of which was 13% lower than control, and could significantly inhibit the increase of relative conductivity.
     ③Different calcium treatments could minimize the accumulation of MDA in varying degree compared with the control. Among these treatments, the effects of 1% CaCl2, 2% CaCl2 treatments were the best: at the end of storage, MDA content of 1% CaCl2 treatment fruits was 9.35 nmol.g-1, which was 6.32 nmol.g-1 lower than control, while that of 2% CaCl2 treatment was 10.16 nmol.g-1, which was 5.51 nmol.g-1 lower than control. MDA content of 1% Ca(NO3)2 and 2% Ca(NO3)2 treated samples were respectively 23.4% and 11.3% lower than control.
     ④Calcium treatments significantly increased the SOD activity of‘Fengjie’navel orange fruits during storage, of which 1% CaCl2 treatment was the highest, 120 U.g-1 higher than the control after 110 days of the storage. During storage, POD activity of the control was lower than calcium treatments, of which 1% CaCl2 treatment was the highest before 40 days , later in a slight decline, but still significantly higher than that of control. POD activities of Sporgon+2,4-D treatment, 2% CaCl2 treatment, 1% Ca(NO3)2 treatment, 2% Ca(NO3)2 treatment after 50 days of storage became leveling off, which were significantly higher than the control.
     After 40 days of storage, 1% Ca(NO3)2, 1% CaCl2, 2% CaCl2, and Sporgon+2,4-D treatment, had led to PPO decreasing significantly compared with the control group, of which PPO activity in 1% CaCl2 group was the lowest, 77% lower than the control, and with significant difference compared with 1% Ca(NO3)2, 2% CaCl2, and Sporgon+2,4-D groups. In different periods of storage, PPO activities of 1% CaCl2 treatment were always lower than any other treatments, including the control group.
     ⑤The fruit quality of navel oranges treated with calcium did not decline during the whole storage period. After 20 days of storage, the weight loss of 1% CaCl2 treatment group was significantly lower than control group; the soluble solid content of 1% CaCl2 treatment group reached a peak at the 40th day, and its content during the 20 ~ 110 days of storage were significantly higher than control; titratable acid content of 1% CaCl2 treatment group was significantly higher than the control at the 30th day and 50th day. At the 110th day, each treatment is almost consistent with the control group; Vc content of 2% CaCl2 treatment reached a peak at the 20th day while 50 days later , higher than the control group, not significantly, but at the110th day, much higher than the control. Also at the 110th day, each treatment group was significantly higher than the control.
     ⑥We used fluorescence quantitative PCR technique to study CsCAB, the calmodulin in citrus, and its target protein gene CsGAD and CsATPase gene expression during the period of browning in samples with calcium treatments and control. The results showed that, CsCAB gene expression in 1% CaCl2 treatment was significantly higher than the expression in the control. At the 100th day of storage , CsCAB gene expression of 1% CaCl2 treatment group was 3 times more than the control group. Although CsGAD gene expression levels appeared to fluctuate, but were always richer than the expression of the control group, with the highest expression level at the 50th day of storage. CsATPase gene expression reflected a downward trend both in the calcium treatments and the control. After 100 days of storage, CsATPase gene expression of 1% CaCl2 treatment group was the lowest.
引文
陈晓明,黄维南.钙在防止与缓和采后果蔬生理病害和衰老中的作用[J].植物生理学通讯,1990,2:60-61.
    陈忠斌,王升启.荧光定量pcr技术及其应用[J].医学研究通讯,2003,32(6):31-53.
    范柳萍.国内外果蔬保鲜技术发展状况及趋势分析[J].保鲜与加工,2004,12:24-27.
    高雪,李正国,樊晶,等.奉节脐橙果皮褐变差减文库的构建及初步分析[J].植物生理与分子生物学学报,2007,33(1):71-76.
    高雪,李正国,杨迎伍,等.柑橘果皮生理性病变的发生与控制[J].重庆大学学报(自然科学版),2006,29(5):64-68.
    高雪.奉节脐橙果皮褐变生理及相关基因的分离研究[D].重庆:重庆大学,2006.81.
    龚新明,关军锋,张继澍.黄冠梨采后1-MCP和CaCl2处理对品质和果皮褐斑发生的影响[J].园艺学报.2010,37(3):375-382.
    顾永清.钙调素的生理功能[J].生物学通报,1994,29(10):12-14.
    关军峰.钙与果实生理生化关系的研究进展[J].河北农业大学学报,1991,14(4):105.
    关军锋,束怀瑞.采后苹果衰老与活性氧代谢的关系[J].园艺学报,1996,23(4):326-328.
    关军锋,束怀瑞,黄天栋.钙对‘新红星’苹果乙烯生成的作用[J].园艺学报,1991,18(3):205-209.
    韩涛,李丽萍.果实和蔬菜中的过氧化物酶[J].食品与发酵工业,2000,26(1):69-73.
    韩雅珊.食品化学实验指导[M].北京.中国农业大学出版社.1996.
    韩英群,郝义,郭丹,等.采前钙处理对月光李采后果实品质与生理变化的影响[J].保鲜与加工.2010,10(57):32-34.
    胡维冀,吴金珠,蔡龙祥,等.钙对中华猕猴桃果实采后乙烯释放和呼吸的影响[J].亚热带植物通讯,1995,24(1):13-17.
    鞠志国.莱阳仕梨果实褐变与多酚氧化酶及酚类物质区域化分布的关系[J].植物生理学报,1988,4:356-361.
    柯德森,王爱国,罗广华.成熟香蕉果实活性氧与乙烯形成酶活性的关系[J].植物生理学报,1998,24(4):313-319.
    李继伟,邓祥宜,周竹青,等.Ca2+和ca2+-atpase在小麦颖果筛分子分化中的动态变化[J].中国农业科学,2009,42(12):4209-4217.
    
    李文涛,王俊东,杨利峰,等.实时荧光定量pcr技术及其应用[J].生物技术通讯,2006,17(1):112-114.
    李正国,罗爱民,刘勤晋.钙处理对水蜜桃果实成熟的影响[J].食品科学,2000,21(07):15-16.
    林河通,陈绍军.龙眼果皮细微结构的扫描电镜观察及其与果实耐贮性的关系[J].农业工程学报.2002,18(3):95-99.
    林河通,席玙芳,陈绍军.果实贮藏期间的酶促褐变[J].福州大学学报(自然科学版),2002,30(S1):696-703.
    林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧化物歧化酶及脂质过氧化作用的关系[J].植物学学报.1984,26:605-615.
    刘冰雁,曲柏宏.热和钙处理对苹果梨果实贮藏效应的研究[J].北方园艺,2006,5:172-174.
    刘剑锋,唐鹏,彭抒昂.采后浸钙对梨果实不同形态钙含量及生理生化变化的影响[J].华中农业大学学报,2004,23(5):560-562.
    刘秀春.落叶果实的钙素营养[J].北方果树,2004,2:4-5.
    刘延吉,张蕾,田晓艳,等.盐胁迫对碱茅幼苗叶片内源激素、nad激酶及ca2+-atpase的效应[J].草业科学,2008,25(4):51-54.
    刘愚.果实成熟过程中乙烯的生成和作用[J].大自然探索,1986,5(3):127-131.
    吕莹果,张晖,马晓博,等.米胚芽谷氨酸脱羧酶的分离纯化及部分酶学性质的研究[J].西北农林科技大学学报(自然科学版),2008,36(8):190-196.
    庞学群,段学武,张昭其,等.荔枝果皮过氧化物酶的纯化及部分酶学性质研究[J].热带亚热带植物学报,2004,12(5):449-454.
    祁倩,饶恩于,王喆,等.Cambp-10的cdna克隆和表达及钙调素结合活性分析[J].中国生物化学与分子生物学报,2004,20(4):451-456.
    邵薄芬.柑桔果实褐斑病及其控制技术[J].中国农技推广,1995,4:34.
    邵从本,罗广华,王爱国,等.几种检测超氧物歧化酶活性反应的比较[J].植物生理学通讯.1983,(05):46-49.
    施瑞城,周丽珍,张熙新,等.钙处理对芒果采后生理的影响[J].热带作物学报,2000,20(01):52-55.
    苏明申,叶正文,李胜源,等.施钙对桃品质和贮藏性能的影响[J].中国南方果树,2007,36(3):77-78.
    孙大业,郭艳林,马力耕.细胞信号传导(第三版)[M].北京:科学技术出版社,2001.
    孙蕾,王太明,乔勇进,等.果实褐变机理及研究进展[J].经济林研究,2002,20(2):92-94.
    田梅生,盛其潮,李钰.低温贮藏对鸭梨乙烯释放、膜透性及多酚氧化酶的影响[J].植物学报,1987,29(6):614-619.
    田世平,白昌华,曹照春.钙对甜橙果实储藏病害的效应[J].植物保护,1990,1:5-6.
    田秀英.外源钙对果实生理生化特性的影响[J].渝西学院学报(自然科学版),2005,4(3):39-41.
    万佳,况浩池,谢必武,等.一个水稻钙调素结合蛋白基因oscambp的克隆及表达分析[J].中国水稻科学,2008,22(3):243-248.
    王贵禧,韩雅珊,于梁.浸钙对猕猴桃果实硬度变化影响的生化机制[J].园艺学报,1995,22(1):21-24.
    王秋明,朱璇,曹建康,等.负压渗钙处理对芒果贮藏品质的影响[J].食品工业科技,2007,28(3):200-201,204.
    席与芳,程度,余挺,等.钙处理对桃形李果实采后生理的影响[J].江西农业大学学报,1999,21(1):77-79.
    肖红梅,王薛修.钙处理对桃采后生理和贮藏品质的影响[J].南京农业大学学报,1996,19(3):122-124.
    肖静.钙延缓果实衰老软化的生理机制[J].植物生理学通讯,2003,39(4):380-384.
    谢礼国.做大做强奉节脐橙产业的思考[J].决策导刊,2007,9:35-37.
    谢培荣,马小华,欧阳菊英.采前钙处理对木洞杨梅果实采后品质和延缓衰老的影响[J].中国农学通报.2009,25(07):82-85.
    熊玲媛,徐金森,陈睦传.甜菊钙调蛋白基因的克隆及结构分析[J].厦门大学学报(自然科学版),2002,41(4):476-480.
    闫师杰,马照春,刘铁玲,等.钙处理对中华寿桃采后生理的影响[J].食品研究与开发.2010,31(2):183-186.
    杨林先,王妲,曲柏宏.钙处理对苹果梨叶子钙调蛋白含量及过氧化物酶、多酚氧化酶活性的影响[J].河南农业科学.2010,(2):74-76
    杨增军.采后浸泡或真空渗透cacl2对雪梨果肉褐变的影响[J].园艺学报,1995,22(3):225-229.
    尤瑞深,陈淳,林丽榕,等.采后钙处理对荔枝果实过氧化物酶活性、呼吸率及乙烯生成的影响[J].亚热带植物通讯,1997,26(1):6-10.
    张蓓,沈立松.实时荧光定量pcr的研究进展及其应用[J].国外医学.临床生物化学与检验学分册,2003,24(6):326-329.
    张成,王喆之.豇豆钙调蛋白cdna的克隆及序列分析[J].陕西师范大学学报(自然科学版),2006,34(2):88-91.
    张刚,李里特,丹阳.果蔬成熟衰老中的活性氧代谢[J].食品科学,2004,25:225-230.
    张学杰,屈冬玉,金黎平.马铃薯酶褐变机理及其控制途径[J].中国邓铃薯,2000,14(3):158-160.
    章泳.青花菜应用BA保鲜初报[J].长江蔬菜.1996,1:35-36.
    郑国华.钙处理对枇杷果实采后生理特性的研究[J].中国农学通报.2009,25(11):117-122.
    周开兵,符丽浠,陈丽芳.浸钙处理对荔枝果实贮藏期活性氧损伤的影响[J].山地农业生物学报.2009,28(2):126-129.
    周卫,张新生,何萍,等.钙延缓苹果果实后熟衰老作用的机理[J].中国农业科学,2000,33(6):73-79.
    朱广廉,钟海文,张爱琴.植物生理学实验[M].北京.北京大学出版社.1990.
    Agusti, M., Almela, V., Juan, M., et al. Histological and physiological characterization of rind breakdown of 'navelate' sweet orange[J].Annals of Botany,2001,88(3):415-422.
    Anderson, J.M., Charbonneau, H., Jones, H.P., et al. Characterization of the plant nicotinamide adenine-dinucleotide kinase activator protein and its identification as calmodulin[J].Biochemistry,1980,19(13):3113-3120.
    Anderson, J.M. and Cormier, M.J. Calcium-dependent regulator of nad kinase in higher-plants[J].Biochemical and Biophysical Research Communications,1978,84(3):595-602.
    Askerlund, P. and Evans, D.E. Reconstition and characterization of a calmodulin-stimulated ca2+-pumping atpase purified from brassica oleracea l[J].Plant Phvsiol,1992,100:1670-1681.
    Barnett, M.J. and Long, S.R. Nucleotide-sequence of an alfalfa calmodulin cdna[J].Nucleic Acids Research,1990,18(11):3395-3395.
    Ben Yehoshua, S., Peretz, J., Moran, R., et al. Reducing the incidence of superficial flavedo necrosis (noxan) of 'shamouti' oranges (citrus sinensis, osbeck)[J] . Postharvest Biology and Technology,2001,22(1):19-27.
    Bonza, M.C., Morandini, P., Luoni, L., et al. At-aca8 encodes a plasma membrane-localized calcium-atpase of arabidopsis with a calmodulin-binding domain at the n terminus[J].Plant Physiology,2000,123(4):1495-1505.
    Bramlage, W.J., Drake, M. and Baker, J.H. Relationship of calcium content to respiration and postharvest condition of apples[J].Journal of the American Society for Horticultural Science,1974,99(4):376-379.
    Briskin, D.P. Ca2+-translocating atpase of the plant plasma membrane[J].Plant Physiology,1990,94:397-400.
    Burdon, J.N., Lomaniec, S., Marinansky, R., et al. The post-harvest ripening of water stressed banana fruit[J].Journal of Horticultural Science,1994,69(5):799-804.
    Bush, D.S. Calcium regulation in plant cells and its role in signaling[J].Annual Review of Plant Biology,1995,46:95-122.
    Charbonneau, H. and Cormier, M.J. Purification of plant calmodulin by fluphenazine-sepharose affinity chromatography[J].Biochemical and Biophysical Research Communications,1979,90(3):1039-1047.
    Cheung, W.Y. Calmodulin plays a pivotal role in cellular-regulation[J].Science,1980,207(4426):19-27.
    Cheung, W.Y. Cyclic 3,5-nucleotide phosphodiesterase. Demonstration of an activator[J].Biochemical and Biophysical Research Communications,1970,38(3):533.
    Chung, W.S., Lee, S.H., Kim, J.C., et al. Identification of a calmodulin-regulated soybean ca(2+)-atpase (sca1) that is located in the plasma membrane[J].Plant Cell,2000,12(8):1393-1407.
    Clark, G.B. and Roux, S.J. Annexins of plant-cells[J].Plant Physiology,1995,109(4):1133-1139.
    Ebashi, S. and Kodama, A..A new protein factor promoting aggregation of tropomyosin[J].Journal of Biochemistry,1965,58(1):107.
    Faust, M. and Shear, C.B. The effect of calcium in respiration of apples[J].Journal of the American Society for Horticultural Science,1972,97(4):437-442.
    Ferrar, P.H. and Walker, J.R.L. Inhibition of diphenol oxidase: A comparative study[J].Journal of Food Biochemistry,1996,20:15-30.
    Folzer, H., Capelli, N., Dat, J., et al. Molecular cloning and characterization of calmodulin genes in young oak seedlings (quercus petraea l.) during early flooding stress[J].Biochimica Et Biophysica Acta-Gene Structure and Expression,2005,1727(3):213-219.
    Fraichard, A., Perotti, E., Gavin, O., et al. Subcellular localization distribution and expression of calmodulin in zea mays roots[J].Plant Science,1996,118:157-165.
    Franca, R.C., C.Antonella and De Michelis, M.I. Plasma membrane ca-atpase of radish seedlings : Ii. Regulation by calmodulin.[J].Plant Phvsiol,1992,98(3):1202-1206.
    Freeman, W.M., Walker, S.J. and Vrana, K.E. Quantitative rt-pcr: Pitfalls and potential[J].BioTechniques,1999,26(1):112-118, 120-122, 124-125.
    Gao X, Li ZG, Fan J, et al. Screening and expression of differentially expressed genes for peel pitting of citrus fruit[J]. Acta Horticulturae, 2006, 12: 473-479.
    Garcia, J.M., Baliesteros, J.M. and Albi, M.A. Effect of foliar applications of cacl2 on tomato stored at different temperatures[J].Journal of the Science of Food and Agriculture,1995,43:9-12.
    George, S.E., Vanberkum, M.F.A., Ono, T., et al. Chimeric calmodulin-cardiac troponin-c proteins differentially activate calmodulin target enzymes[J].Journal of Biological Chemistry,1990,265(16):9228-9235.
    Gong, M., Zhang, S.X., Li, X.S., et al. The catabolism of lights and changes of fatty acid composition in the germinating pollen of pinus yunnanexsis and effects of calcium and calmodulin[J].Chinese Journal of Botany,1993,32(2):159.
    Griess, E.A., Igloi, G.L. and Feix, G. Isolation and sequence comparison of a maize calmodulin cdna[J].Plant Physiology,1994,104(4):1467-1468.
    Harmon, A.C., Gribskov, M. and Harper, J.F. Cdpks - a kinase for every ca2+ signal?[J].Trends in Plant Science,2000,5(4):154-159.
    Hetherington, A.M. and Brownlee, C. The generation of ca2+ signals in plants[J].Annual Review of Plant Biology,2004,55:401-427.
    Huang, S.L., Wen, Y.I., Kupranycz, D.B., et al. Abnormality of calmodulin activity in hypertension - evidence of the presence of an activator[J].Journal of Clinical Investigation,1988,82(1):276-281.
    Ikebe, M. and Reardon, S. Phosphorylation of smooth myosin light chain kinase by smooth-muscle ca-2+/calmodulin-dependent multifunctional protein-kinase[J] . Journal of Biological Chemistry,1990,265(16):8975-8978.
    Kang, C.H., Jung, W.Y., Kang, Y.H., et al. Atbag6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants[J].Cell Death and Differentiation,2006,13(1):84-95.
    Katou, S., Kuroda, K., Seo, S., et al. A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice[J].Plant Cell Physiology,2007,48(2):332-344.
    Kim, M.C., Lee, S.H., Kim, J.K., et al. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice mlo homologue[J].The Journal of Biological Chemistry,2002,277(22):19304-19314.
    Knight, H. and Knight, M.R. Abiotic stress signalling pathways: Specificity and cross-talk[J].Trends in Plant Science,2001,6(6):262-267.
    Laral and vendrall, M. Acc oxidase activation by cold storage on 'passe-crassane' pear: Effect of calcium treatment[J].Journal of the Science of Food and Agriculture,1998,26(421-426):
    Leshem, Y.植物衰老和调控(胡文玉,译)[M].沈阳:辽宁科学技术出版社,1990.64.
    Ling, V. and Zielinski, R. Cloning of cdna sequences encoding the calcium-binding protein, calmodulin, from barley (hordeum vulgare l.)[J].Plant Phvsiology,1989,90:714-719.
    Luo, X.F., Tian, X.T. and Yao, H.L. Polyphenol oxidase activities and phenol contents in tissue culture[J].Journal of Beijing Forestry University,1999,21(1):92-95.
    Mager, A.M.H. Polyphenol oxidases in plants[J].Phytochemistry,1979,18:193-215.
    Malmstrom, S., Akerlund, H.E. and Askerlund, P. Regulatory role of the n terminus of the vacuolar calcium-atpase in cauliflower[J].Plant Physiology,2000,122(2):517-526.
    Marangoni, A.G., Palma, T. and Stanley, D.W. Membrane effects in postharvest physiology[J].Postharvest Biology and Technology,1996,7:193-217.
    Martin-Diana, A.B., Rico, D., Frias, J.M., et al. Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: A review[J].Trends in Food Science & Technology,2007,18(4):210-218.
    Mayer, M.A. and Hael, E. Review: Polyphenol oxidase in plants[J].Phytochemistry,1979,18:193-215.
    Medeira, M.C., Maia, M.I. and Vitor, R.F. The first stages of pre-harvest 'peel pitting' development in 'encore' mandarin. An histological and ultrastructural study[J].Annals of Botany,1999,83:667-673.
    Montgomery, R.A. and Dallman, M.J. Semi-quantitative polymerase chain reaction analysis of cytokine and cytokine receptor gene expression during thymic ontogeny[J].Cytokine,1997,97:173-176.
    Muto, S. and Miyachi, S. Properties of a protein activator of nad kinase from plants[J].Plant Physiology,1977,59(1):55-60.
    Nakatsuka, A., Shiomi, S., Kubo, Y., et al. Expression and internal feedback regulation of acc synthase and acc oxidase genes in ripening tomato fruit[J].Plant Cell Physiol,1997,38:1103-1110.
    Nie, L.C., Sun, J.S., Xin, B., et al..Studies on phenolic composition and polyphenol cuitivity in apple fruit[J].Acta Horticultulturae Sinica,2004,31(4):502-504.
    Nogata, Y., Ohta, H. and Voragen, A.G.J. Polygalacturonase in strawberry fruit[J].Phytochemistry,1993,34(3):617-620.
    Obenland, D. Essential oils and chilling injury in lemon[J].HORTSCIENCE,1997,32(1):108-111.
    Olah, A.F. Ultrastructural localization of oxidative and peroxidative activities in carrot suspension cell culture[J].Protoplasma,1981,106:231-248.
    Petracek, P.D. Postharvest pitting of "Fallglo" Tangerine[J].Journal of the American Society for Horticultural Science,1998,123:130-135.
    Petracek, P.D., Dou, H. and Pao, S. The influence of applied waxes on postharvest physiological behaviour and pitting of grapefruit[J].Postharvest Biology and Technology,1998,14:99-106.
    Plazek, A. and Zur, I. Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability[J].Plant Science,2003,164:1019-1028.
    Reddy, A.S.N. Calcium: Silver bullet in signaling[J].Plant Science,2001,160(3):381-404.
    Reddy, V.S., Ali, G.S. and Reddy, A.S.N. Genes encoding calmodulin-binding proteins in the arabidopsis genome[J].Journal of Biological Chemistry,2002,277(12):9840-9852.
    Sala, J.M. and Lafuente, M.T. Catalase enzyme activity is related to tolerance of mandarin fruits to chilling[J].Postharvest Biology and Technology,2000,20:81-89.
    Sanders, D., Brownlee, C. and Harper, J.F. Communicating with calcium[J].Plant Cell,1999,11(4):691-706.
    Siddqui, S. and Bangerth, F. Studies on cell wall mediated changes during storage of calcium infiltration apples[J].Acta Horticultulturae,1993,326:105-110.
    Smith, C.M., Liu, J. and Davies, E. Isolation, sequencing, and analysis of a calmodulin-like cdna from pea (pisum-sativum l var alaska)[J].Plant Physiology,1995,108(1):437-438.
    Snedden, W.A., Arazi, T., Fromm, H., et al. Calcium/calmodulin activation of soybean glutamate decarboxylase[J].Plant Phvsiology,1995,108(2):543-549.
    Snedden, W.A. and Fromm, H. Calmodulin as a versatile calcium signal transducer in plants[J].New Phytologist,2001,151(1):35-66.
    Snedden, W.A., Koutsia, N., Baum, G., et al. Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain[J].Journal of Biological Chemistry,1996,271(8):4148-4153.
    van der Luit, A.H., Olivari, C., Haley, A., et al. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco[J].Plant Physiology,1999,121(3):705-714.
    Vaughn, K.C. Polyphenol oxidase: The chloroplast oxidase with no established function[J].Physiol Plant,1988,72:659-665.
    Vercher, R., F, R.T. and Almela, V. Rind structure, epicuticular wax morphology and water permeability of 'fortune' mandarine fruits affected by peel pitting[J].Annals of Botany,1994,74:619-625.
    Walker, J.R.L. and Ferrar, P.H. Diphenol oxidase, enzyme-catalysed browing and plant disease resistance[J].Biotechnology and Genetic Engineering Reviews,1998,15:457-498.
    Watkins, C., Harman, J. and Ferguson, I. The action of lecithin and calcium dips in the control of bitter pit in apples fruit[J].Journal of the American Society for Horticultural Science,1982,107(2):262.
    Yang, T.B. and Poovaiah, B.W. Calcium/calmodulin-mediated signal network in plants[J].Trends in Plant Science,2003,8(10):505-512.
    Yap, K.L., Yuan, T., Mal, T.K., et al. Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin[J].Journal of Biological Chemistry,2003,328(1):193-204.
    Yingsanga, P., Srilaong, V., Kanlayanarat, S., et al. Relationship between browning and related enzymes (pal, ppo and pod) in rambutan fruit (nephelium lappaceum linn.) cvs. Rongrien and see-chompoo[J].Postharvest Biology and Technology,2008,50(2-3):164-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700