MicroRNA在乳腺癌血清中的异常表达及mir-205功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     MircoRNAs(miRNAs)是一类短序列、非编码、具有调控功能的单链小分子RNA,长约20-24 nt,由一段具有发夹样环状结构、长约70-80 nt的单链RNA前体(pre-miRNA)经过Dicer酶加工后生成。miRNAs通过与其靶mRNA分子的3’端非编码区(3’-UTR)互补结合,在翻译水平上特异性抑制基因表达,参与调控生物生长和发育等许多复杂的生命过程。许多miRNAs的序列在起源甚远的物种之间相对保守,虽然这些miRNAs的生物学功能目前还不十分清楚,但可以肯定的是它们有不同的表达模式,同时参与调节各种生理病理过程。异常的miRNAs表达与人类某些疾病包括肿瘤的发生发展都密切相关,miRNAs被认为是一组新的癌或抑癌基因,其表达具有特异性的肿瘤组织表达谱。循环核酸(circulating nucleic acid,CNA)是指存在于血液(血清或血浆)等体液中的细胞外游离DNA和RNA,与生理和病理状态下的细胞代谢密切相关,循环DNA和RNA水平的检测及其在基因诊断等方面的应用对于恶性肿瘤等疾病的诊断和监测具有十分重要的意义。近期人们在进行循环DNA、RNA分子检测的同时,在miRNAs方面也做了许多的工作,研究结果使得与肿瘤相关的核酸分子检测这一领域变的更加让人振奋。在血液中检出肿瘤特异性的miRNAs并将其作为肿瘤的生物学标志物对于早期诊断肿瘤具有至关重要的意义。
     目的:
     1.建立起从血清中提取miRNA的方法,并检测mir-21、mir-200c、mir-205在乳腺癌患者和健康对照人群血清中的表达差异情况。
     2.了解mir-205对乳腺癌细胞系MCF-7生长和凋亡的影响。
     3.结合生物信息学技术预测miR-205的靶基因,为理解mir-205在乳腺癌发生发展中的作用提供依据。
     4.通过本研究,希望为乳腺癌的治疗提供新的分子靶点,为乳腺癌相关的诊断、预后标志物研究提供新的内容。
     方法:
     1.利用实时荧光定量RT-PCR技术,检测并比较mir-21、mir-200c、mir-205在乳腺癌病人和健康对照人群血清中的表达差异。
     2.利用脂质体转染技术,上调mir-205在MCF-7细胞中的表达。利用荧光显微镜和荧光定量RT-PCR技术检测该方法的有效性。利用MTT法分析转染前后细胞增殖活性的变化;流式细胞PI法分析转染前后细胞生长周期的变化;流式细胞仪FITC-AnnexinV/PI法分析转染前后细胞凋亡的变化。
     3.应用不同的生物信息学方法对在乳腺癌细胞系MCF-7中表达下调的miR-205的靶基因进行预测。
     结果:
     1.利用实时荧光定量RT-PCR法,对10例乳腺癌患者和3例健康对照人群的血清miRNA进行了检测,成功从乳腺癌患者和健康对照人群的血清中提取出miRNA,发现相对于对照组,乳腺癌患者血清中mir-200c的表达上调,mir-205表达下调,差异有统计学意义。
     2.本实验利用脂质体转染miRNA mimics的实验技术,其上调miRNA的有效性得到证实。发现上调mir-205表达水平以后会降低乳腺癌细胞MCF-7的增殖活性,增加细胞凋亡率,而对细胞周期无明显影响。
     3.应用miRBase、Pictar和Targetscan三大经典靶基因预测软件对miR-205进行靶基因预测,在至少两个以上软件预测出的靶基因有113个。其多个基因涉及细胞周期、信号转导、细胞增殖、分化和细胞凋亡等众多生物学过程,说明miR-205在乳腺癌发生发展中有着重要的生物学功能。
     结论:
     1.利用Trizol法和实时荧光RT-PCR方法能够成功提取乳腺癌患者和健康对照人群血清中的miRNA,并且发现乳腺癌患者血清中mir-200c的表达上调,mir-205表达下调,有可能作为乳腺癌早期诊断的肿瘤分子标志物。
     2.mir-205可降低乳腺癌细胞的增殖活性,增加凋亡率,但不影响细胞周期。
     3.生物信息学预测miR-205可能通过调控下游一系列靶基因的转录和翻译引起乳腺癌细胞生物学特性的改变,参与了乳腺癌的发病机制。
Background:
     MicroRNAs(miRNAs)are a new class of non-protein-coding, endogenous, small RNAs and of about 20-24 nucleotides in length, which are cleaved from the 70-80 nt partially duplexed precursor by the RNase III Dicer. Mature miRNAs are known to negatively regulate gene expression or destroy the stability of genes via incomplete or complete matching with the 3'UTR of their target genes at the post-transcriptional level. They are involved in processes such as the regulation of organismal development, nerve differentiation, cell proliferation, apoptosis and fat metabolism. Many miRNAs have relatively conservative sequences among species. Though the functions of these miRNAs are not clear, it is sure that they have different express patterns, which can regulate many physiological and pathological processes and abnormal expression of miRNAs may result in some human diseases including tumors. miRNAs are recognized as oncogenes or anti-oncogenes and they have specific express profiles in different tumor tissues. It has been demonstrated that circulating nucleic acid (CNA) which exists in body fluids including serum and blood plasma is closely related to cell metabolism in physiological and pathological condition. The detection and gene diagnosis of CNA has played a very important role in the diagnosis of malignant tumors. Recently circulating miRNAs are found in serum and blood plasma. Thus, it is possible that circulating miRNAs become a new class of clinical biomarkers in the early detection of malignant tumors.
     Objective:
     1. To demonstrate that the extraction of RNA and subsequent identification of miRNA from serum is feasible and to detect the expression of mir-21, mir-200c and mir-205 in serum between breast cancer patients and healthy controls.
     2. To investigate the effect of mir-205 on cell growth and apoptosis in breast cancer cell lines.
     3. To predict the target genes of mir-205 using bioinformatics methods and provide theoretical support and experimental basis for further research on mechanism of mir-205 in breast cancer development.
     4. In summary, this study hopes to find new molecular targets in treatment of breast cancer and new biomarkers for diagnosis and prognosis.
     Methods:
     1.Real-time quantitative PCR is used to detect the abnormal expression of mir-21, mir-200c and mir-205 in the serum of breast cancer patients compared with healthy controls.
     2.mir-205 mimics is transfected into MCF-7 cells and fluorescent dyes cy3 linked at the oligonucleotide was observed by fluorescence microscope and qRT-PCR of mir-205 was chosen to observe the changes of miRNA expression. MTT was tested to evaluate the changes in cell growth. Cell cycle was observed by assessment of flow cytometry PI staining and apoptosis was observed by assessment of FITC-AnnexinV/PI two-color flow cytometry before and after transfection.
     3.Different bioinformatic ways are used to predict the target genes of miR-205 which is down-regulated in breast cancer cell lines MCF-7.
     Results:
     1.mir-21, mir-200c and mir-205 were detected in serum of 10 breast cancer patients and 3 healthy controls with real-time quantitative PCR. Results show that mir-200c is up-regulated while mir-205 is down-regulated in breast cancer patients.
     2.Observation of fluorescent dyes cy3 in cells and qRT-PCR of mir-205 after transfection confirmed the efficiency of transfection. Up-regulation of mir-205 would decrease the cell activity while increasing apoptosis but has no effect on cell cycles.
     3.There are 113 target genes predicted by at least two bioinformatic ways, most of the genes are involved in cell cycles, cell proliferation, differentiation, apoptosis, signal transduction and so on.
     Conclusions:
     1. miRNA could be detected in serum and some miRNA abnormally expressed in serum of breast cancer patients compared with healthy controls. Circulating miRNAs may become a novel class of biomarkers for early diagnosis of breast cancer.
     2. mir-205 could decrease cell proliferation activity while increasing apoptosis, but has no effect on cell cycles.
     3. Bioinformatic analysis that predicts miR-205 might be involved in origin and progression of breast cancer as target gene regulators.
引文
[1]Thomson J M, Newman M, Parker J S, et al. Extensive post-transcriptional regul-ation of microRNAs and its implications for cancer[J].Genes Dev,2006,20(16): 2202-2207.
    [2]Jiang J, Lee E J, Gusev Y, Schmittgen TD. Real-time expression profiling of mi-croRNA precursors in human cancer cell lines [J]. Nucleic Acids Res,2005, 33(17):5394-5403.
    [3]Medina PP, Slack FJ. MicroRNAs and cancer:an overview[J]. Cell Cycle,2008, 7(16):2485-2492.
    [4]李晓霞,李瑞平,杜紫明,等.鼻咽癌差异表达miRNAs筛选研究[J].中山大学学报:医学科学版,2007,(28)6:607-612.
    [5]Schmittgen TD, Jiang J, Liu Q, et al. A high throughput method to monitorthe expression of microRN A precursors [J]. Nucleic Acids Res,2004,32(4):43.
    [6]Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR [J].Nucleic Acids Res,2005,33(20):e179.
    [7]Onafuwa-Nuga AA, King SR, Telesnitsky A, et al.Nonrandom Packaging of host RNAs in moloney murine leukemia virus [J].J Virol,2005,79(21):13528-13537.
    [8].Liu C Q, Plumb J, Hendry P, et al.Rapid specific detection and quantification of bacteria and arehaea involved in mineral sulfide Bioleaching using realtime PCR [J].Biotechnol Bioeng,2006,94(2):330-336.
    [9]Jiang JM, Lee EJ, Kwak CK, et al. Real-time expression profiling of microRNA precursors in human cancer cell lines [J]. Nucleic Acids Res,2005,33 (17): 5394-5403.
    [10]Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez 1'Homme. C R Acad Sci Paris,1948,142(3):241-243.
    [11]Kamm R C, Smith A G. Nucleic acid concentrations in normal human plasma. Clin Chem,1972,18(6):519-522.
    [12]Taylor D D, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol,2008,110(1):13-21.
    [13]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res,2008, 18(10):997-1006.
    [14]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells [J].Cell,2007,131(6):1109-1123.
    [15]Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells [J]. Biol Pharm Bull,2006, 29(5):903-906.
    [16]Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth[J]. Oncogene,2007, 26(19):2799-2803.
    [17]Frankel L B, Christoffersen N R, Jacobsen A, et al. Programmed Cell Death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells [J].J Biol Chem,2008,283(2):1026-1033.
    [18]Afonja O, Juste D, Das S, et al. Induction of PDCD4 tumor suppressor gene exp-ression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer c-ells.Evidence for a role in apoptosis[J]. Oncogene,2004, 23(49):8135-8145.
    [19]Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is over expressed in human lung cancers and enhances cell proliferation [J]. Cancer Res,2005,65(21):9628-9632.
    [20]Lytle J R, Yario T A, Steitz J A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proc Natl Acad Sci USA,2007,104:9667-9672.
    [21]Orom U A, Nielsen F C, Lund A H. MicroRNA-10a binds the 5' UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell,2008,30: 460-471.
    [22]Tay Y, Zhang J, Thomson A M, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature,2008,455: 1124-1128.
    [23]Ruvkun G. Glimpses of a tiny RNA world. Science,2001,294:797-799.
    [24]Hiroshi I S, Kaoru Y, Koichi S, et al. Modulation of microRNA processing by p53. Nature,2009,460:529-533.
    [25]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res,2008, 18:997-1006.
    [26]Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA,2008,105: 10513-10518.
    [27]El-Hefnawy T, Raja S, Kelly L, et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem,2004,50:564-573.
    [28]Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol,2007,9:654-659.
    [29]Ng E K, Chong W W, Jin H, et al. Differential expression of microRNAs in plasma of colorectal cancer patients:a potential marker for colorectal cancer screening. Gut,2009,58:1375-1381.
    [30]Wong T S, Liu X B, Wong B Y, et al. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res,2008,14: 2588-2592.
    [31]Lawrie C H, Gal S, Dunlop H M, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol,2008,141:672-675.
    [32]Lawrie C H, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer,2007,121:1156-1161.
    [33]Zhu W, Qin W, Atasoy U, et al. Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes,2009,2:89.
    [34]Resnick K E, Alder H, Hagan J P, et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol,2009,112:55-59.
    [35]Ahn K, Huh J W, Park S J, et al. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol Biol,2008,9:78.
    [36]Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (REST(?)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res,2002,30:e36.
    [37]Lusi E A, Passamano M, Guarascio P, et al. Innovative electrochemical approach for an early detection of microRNAs. Anal Chem,2009,81:2819-2822.
    [38]Karginov FV, Conaco C, Xuan Z, et al. A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A.2007,4; 104(49):19291-6.
    [39]Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets Proc Natl Acad Sci U S A.2006, 14;103(7):2257-61.
    [40]Raveche ES, Salerno E, Scaglione BJ, et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood.2007,15; 109(12):5079-86.
    [41]Lu S, Cullen BR. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol.2004 Dec;78(23):12868-76.
    [42]Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res.2007,4; 104(49):19291-6.
    [43]Lee YS, Kim HK, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem.2005,29; 280(17):16635-41.
    [44]Jiang F, Ye X, Liu X, et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev.2005,15; 19(14):1674-9.
    [45]Suarez Y, Fernandez-Hernando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007,27;100(8):1164-73.
    [46]Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod.2005 Sep; 73(3):427-33.
    [47]Meister G, Landthaler M, Dorsett Y, et al. Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing. RNA.2004,10(3):544-50.
    [48]Tsuchiya Y, Nakajima M, Takagi S, et al. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res.2006 Sep 15; 66(18):9090-8.
    [49]Chellappan P, Vanitharani R, Fauquet CM. MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci U S A.2005, 19;102(29):10381-6.
    [50]Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science.2005, 16;310(5755):1817-21.
    [51]Chapman EJ, Prokhnevsky Al, Gopinath K, et al. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 2004,15;18(10):1179-86.
    [52]Calin GA, Seviguani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. ProcNatlAcad SciUSA,2001,101(9):2999-3004.
    [53]GusevY.ComPutationalmethodsforanalysisofeellularfunetionsandPathways collectively targeted by differentially expressed microRNA [J].Methods,2008, 44(1):61-72.
    [54]Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian micro-RNA targets [J]. Cell,2003,115(7):787-798.
    [55]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by aden-Osines, indicates that thousands of human genes are microRNA targets [J]. Cell, 2005,120(1):15-20.
    [56]Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions [J]. Nat Genet,2005,37(5):495-500.
    [57]Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing". Cell,129:1401-1414.
    [58]Lagos-Quintana M, Rauhut R, Lendeekel W, et al. Identification of novel genes coding for small expressed RNAs [J]. Science,2001,294(5543):853-8.
    [59]SethuPathy P, Megraw M, Hatzigeorgiou AG. A guide through Present computational approaches for the identification of mammalian microRNA targets[J]. Nat Methods,2006,3(11):881-6.
    [60]XuX. Same computational analysis, different miRNA target Predictions[J].Nat Methods,2007,4(3):191-197.
    [61]Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila[J].Genome Biol 2003,5(1):RI.
    [62]Lewis BP, Shih IH, Jones-Rhoades MW et al. Prediction of mammalian microRNA Targets[J].Cell,2003,115(7):787-98.
    [63]Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target Predictions[J].Nat Genet,2005,37(5):495-500.
    [64]Iorio MV, Casalini P, Piovan C, et al. microRNA-205 regulates HER3 in human breast cancer[J]. Cancer Res 2009; 69:(6):2195-2200.
    [65]Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol.2008 May;10(5):593-601.
    [66]Song H, Bu G. MicroRNA-205 inhibits tumor cell migration through down-regulating the expression of the LDL receptor-related protein 1[J]. Biochem Biophys Res Commun.2009 Oct 16;388(2):400-5.
    [1]O'Hara S P, Mott J L, Splinter P L, et al. MicroRNAs:Key modulators of posttranscriptional gene expression. Gastroenterology,2009,136:17-25.
    [2]Zhang B, Pan X, Cobb G P, et al. MicroRNAs as oncogenes and tumor suppressors. Dev Biol,2007,302:1-12.
    [3]Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs[J].RNA 2004;10:185-191.
    [4]Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors[J].Science 2004;303:95-98.
    [5]Lai EC. MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative posttranscriptional regulation[J].Nat Genet,2002;30:363-364.
    [6]L. He, J. M. Thomson, M. T. Hemann, et al.A microRNA polycistron as a potential human oncogene. Nature,2005,435:828-833.
    [7]C.-Z. Chen. MicroRNAs as oncogenes and tumor suppressors.The New England Journal ofMedicine,2005,353:1768-1771.
    [8].MireoCastoldi, VladimirBenes, MattlliasW.miChiP:Amieroarray Platform for expression Profiling of miRNA based on loekednueleieaeid(LNA) Oligonueleotide capture Probes Methods, RNA,2006,12(5):913-920.
    [9]J. Lu, G. Getz, E. A. Miska, et al., "MicroRNA expression profiles classify human cancers," Nature, vol.435, no.7043, pp.834-838,2005.
    [10]Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez 1'Homme. C R Acad Sci Paris,1948,142(3):241-243.
    [11]Kamm R C, Smith A G. Nucleic acid concentrations in normal human plasma. Clin Chem,1972,18(6):519-522.
    [12]Taylor D D, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol,2008,110(1):13-21.
    [13]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res,2008, 18(10):997-1006.
    [14]Chim ss, Shing TK, Hung EC, et al. Detection and characterizeation of placental microRNA in maternal plasma[J]. Chin Chem,2008,54:482-490.
    [15]Mitchell P S,, Parkin R K,, Kroh E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci USA,2008,105(30):10513-10518.
    [16]Benner S A. Extracellular communicator RNA. FEBS Lett,1988,233(2): 225-228.
    [17]Benner S A. The return of pancreatic ribonucleases. TIBS,1989,14(10): 396-397.
    [18]Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic ex-change between cells. Nat Cell Biol,2007,9(6):654-659.
    [19]Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers [J].PLoS ONE,2008,3(9):e3148.
    [20]Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol,2002, (12):735-739.
    [21]Hafner M, Landgraf P, Ludwig J, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods,2008,44(1): 3-12.
    [22]Fu H, Tie Y, Xu C, et al. Identification of human fetal liver miRNAs by a novel method. FEBS Lett,2005,579(17):3849-3854.
    [23]Pall G S, Hamilton A J. Improved northern blot method for enhanced detection of small RNA[J]. Nat Protoc,2008,3(6):1077-1084.
    [24]Liu C G, Calin G A, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues[J]. Proc Natl Acad Sci USA,2004,101(26):9740-9744.
    [25]Resnike KE, Alde H, Hagan J P, et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform[J]. Gynecologic Oncology,2009,112:55-59.
    [26]Ahn K, Huh J W, Park S J, et al. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta)tissues. BMC Mol Biol,2008,9:78.
    [27]Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (REST(?)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res,2002,30:e36.
    [28]Lusi E A, Passamano M, Guarascio P, et al. Innovative electrochemical approach for an early detection of microRNAs. Anal Chem,2009,81:2819-2822.
    [29]Driskell J D, Seto A G, Jones L P, et al. Rapid microRNA(miRNA) detection and classification via surface-enhanced Raman spec-troscopy (SERS). Biosens Bioelectron,2008,24(4):923-928.
    [30]Kato Y. An efficient fluorescent method for selective detection of mature miRNA species. Nucleic Acids Symp Ser(Oxf),2008,52(1):71-72.
    [31]Lawrie C H, Gal S, Dunlop H M, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol,2008,141:672-675.
    [32]Lawrie C H, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer,2007,121:1156-1161.
    [33]Zhu W, Qin W, Atasoy U, et al. Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes,2009,2:89.
    [34]Ng E K, Chong W W, Jin H, et al. Differential expression of microRNAs in plasma of colorectal cancer patients:a potential, marker for colorectal cancer screening. Gut,2009,58:1375-1381.
    [35]Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs[J]. Nat Genet,2005,37:766-770.
    [36]Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues [J]. BMC Genomics,2007(8):166.
    [37]Wang k, Zhang SL, Marzolf B, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury[J]. Proceedings of the National Academy of Sciences of the United States of America.2009,106(11):4402-4407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700