超声微泡介导反义磷酸受纳蛋白基因转染效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分超声微泡增加心肌血管通透性并提高基因转染效率
     研究背景:
     近几十年来,心脏病的诊治方法有了长足的发展,但是心血管病仍然是人类死亡的主要原因之一。基因治疗作为一种新的治疗手段正处于探索阶段。基因治疗能否成功不仅取决于作用靶点的正确选择,而且与载体以及传输系统是否奏效密切相关。直接心肌注射、心腔内注射或经冠状动脉传输基因都是常用的向心肌输送外源性基因的方法,但是它们或者需要开胸,或者需要短暂心脏停搏,或者需要结扎主动脉和肺动脉,有一定的创伤性。
     超声波的“声致孔”效应近年来被证实有利于基因的转染。细胞膜在超声的作用下可出现一过性的小孔,称为声致孔(sonoporation)效应,这些小孔可作为药物或基因进入细胞内的通道,而该效应在微泡的参与下得到加强。内含气体的微泡从静脉注射提供了理想的空化核,使超声介导的基因传输有了更广阔的发展空间。
     目的:
     本研究用超声破裂白蛋白氟碳气体微泡,以伊文思蓝为指示剂,研究增加心肌毛细血管通透性的优化超声参数,并应用该参数介导报告基因在心肌的转染,观察超声破裂微泡增强报告基因转染效率的能力,为治疗性基因在心肌的转染提供实验基础。
     方法:
     构建含氟碳气体的白蛋白微泡,从小鼠尾静脉注射伊文思蓝-微泡混合液,研究目前已知的影响微泡破裂的参数对伊文思蓝渗出至心肌组织间隙的影响,包括超声探头频率和机械指数,选择伊文思蓝渗出最明显的组合进行报告基因pAAV-LacZ在心肌的转染。转染后进行X-gal染色和β-半乳糖苷酶活性定量,评价该基因在心肌的转染效果,并初步观察对小鼠心脏功能的影响以及在其他脏器的转染情况。
     结果:
     1.可引起伊文思蓝渗出明显增加的超声参数组合为S3探头,1.3 MHz,MI1.6,应用每8个心动周期触发。联合微泡注射,伊文思蓝渗出可较单纯注射伊文思蓝组增加(251.59±16.4比30.87±4.4.26,p<0.05),达8.15倍。组织切片观察未见红细胞渗出。
     2.以该超声参数设置联合微泡注射进行的报告基因转染显示,注射第10天,X-gal染色显示心肌细胞胞浆内有β-半乳糖苷酶表达,定量检测较单纯基因注射组明显增加,达6.56倍,亦明显高于基因注射加超声但不含微泡组。第20天时心肌内不能检测到β-半乳糖苷酶表达。
     3.肝脏、肺、脑均未见β-半乳糖苷酶表达,仅肾脏肾小管上皮细胞内可见β-半乳糖苷酶表达,定量检测显示超声破裂微泡组与对照组无明显差别,提示为肾脏内源性β-半乳糖苷酶。
     4.报告基因注射第10天、第20天超声心动图检查未见小鼠心脏收缩功能改变。
     结论:
     1.超声破裂微泡在合适的超声参数下能明显增强心肌毛细血管通透性。  
     2.采用S3探头,MI1.6,每8个心动周期触发的方式在增加心肌毛细血管通透性的同时,不影响健康大鼠的心脏收缩功能,不引起红细胞的渗出。
     3.经静脉注射的方法通过靶向超声破裂微泡能使报告基因在心脏成功转染,且基因转染具有器官特异性。
     第二部分超声微泡介导反义磷酸受纳蛋白基因转染效应的研究
     研究背景:
     磷酸受纳蛋白(PLB)是心肌细胞肌浆网钙ATP酶(SERCA_(2a))活性的最重要的调控蛋白。而PLB丝氨酸16(Ser16)残基的磷酸化下调是SERCA_(2a)活性下降的重要原因。体内和体外的研究已证实,抑制PLB蛋白的表达,提高PLB的磷酸化水平,能提高SERCA_(2a)的活性,从而改善心脏的收缩和舒张功能。
     反义PLB(asPLB)转染心肌细胞能有效抑制细胞内PLB的表达,增强SERCA活性,因而改善心肌梗死大鼠的心脏收缩功能。但是外源性基因导入活体心肌的常用方法是直接心肌注射或心腔注射,这对于心力衰竭病人无疑有极大的风险。超声破裂微泡进行靶向基因转染作为一种无创的手段正处于研究阶段。超声微泡作为空化内核聚焦了超声能量,降低了声致孔效应的阈值,使细胞膜或毛细血管壁通透性增加,从而让生物活性大分子物质能较容易地进入细胞或组织间隙,因而有利于外源性基因的成功转染。
     目的:
     本研究以超声破裂微泡介导asPLB质粒转染急性心肌梗死小鼠,观察该方法对急性心肌梗死小鼠心肌PLB、Ser16-PLB和SRECA蛋白水平以及SERCA活性和左室收缩功能的影响,为心力衰竭基因治疗提供一项实验依据。
     方法:
     构建含pAAV-asPLB质粒的氟碳气体白蛋白微泡,以结扎冠状动脉左前降支的方法制备急性心肌梗死(MI)小鼠模型。以编码β-半乳糖苷酶的pAAV-LacZ为报告基因指示转染是否成功。MI小鼠随机分组为只注射生理盐水的MI+生理盐水组(MI+saline);只注射LacZ质粒的MI+LacZ组;注射LacZ质粒和进行超声照射的MI+LacZ+US组;注射LacZ质粒-微泡混合液,同时进行超声照射的MI+lacZ+MB+US组;只注射asPLB质粒的MI+asPLB组;注射asPLB质粒和超声照射的MI+asPLB+US组;注射asPLB-微泡混合液,同时进行超声照射的MI+asPLB+MB+US组。设立正常对照和假手术组。术后经尾静脉进行相应的注射和超声照射。手术后三周超声心动图测定小鼠左室大小和左室短轴缩短率(FS)、左室射血分数(LVEF)。小鼠处死后,测定左室心肌组织PLB、Ser16-PLB和SERCA蛋白水平及SERCA活性。
     结果:
     1.各报告基因注射组,仅MI+LacZ+MB+US组心肌组织有β-半乳糖苷酶表达。肝、肺和脑组织均未见表达,肾小管上皮细胞内探及内源性β-半乳糖苷酶表达。
     2.与假手术组比,各组MI小鼠心肌SERCA蛋白水平未明显改变;PLB蛋白水平明显升高,Ser16-PLB蛋白水平下降;左室内径明显增大,FS、LVEF明显下降。除MI+asPLB+MB+US组SERCA活性与假手术组无明显差别外,其他各组均下降。
     3.与MI+saline组相比,MI+asPLB和MI+asPLB+US组心肌PLB、Ser16-PLB蛋白水平及SERCA蛋白水平和活性均无明显差别。左室内径及FS、LVEF无明显改善。
     4.与MI+saline相比,MI+asPLB+MB+US组左室心肌组织PLB蛋白水平明显较MI+saline降低(1.45±0.38比2.05±0.31,p<0.05),Ser16-PLB水平(0.8±0.25比0.46±0.18,p<0.05)和SERCA活性(3.00±0.29比2.12±0.30,p<0.05)明显较MI+saline升高。SERCA蛋白水平没有明显改变。左室FS (19.64±2.59%比16.04±2.29%,p<0.05)、LVEF(48.2±5.18%比39.14±5.38%,p<0.05)上升。
     结论:
     1.单纯超声照射不能使静脉注射的质粒在心肌组织有效表达。
     2.超声破裂微泡能增强外源性基因在心肌组织的转染。经静脉注射质粒和微泡混合液联合胸前区超声照射可以达到在心肌靶向性转染的效果。
     3.通过超声破裂微泡技术,pAAV-asPLB在心肌的转染能部分改善MI小鼠心脏收缩功能,抑制心肌PLB的过表达,提高SERCA活性,增加PLB在Ser16位的磷酸化水平,对SERCA蛋白表达水平无显著影响。
Part One Increase of capillary permeability and enhancement of naked plasmid DNA transfection in myocardium using ultrasound-mediated microbubble destruction in mice
     Background:
     Diagnostic methods and therapeutic means to heart diseases have great improvement in recent years. But it still remains the leading cause of death across all populations. Cardiac gene therapy has already been investigated in experimental and some clinical studies. The success of gene therapy was determined by the effect of therapeutic target genes, efficiency of vector and delivery system. Direct intramyocardium injection, left ventricular cavity injection or intracoronary perfusion was common used. Some of them need surgery to open chest wall, or induce cardiac arrest, or clamp the aorta and pulmonary artery for a brief period of time. They are limited by procedure related risks.
     Sonoporation was defined as creation of transient, non-lethal holes in the plasma membrane with the assistance of ultrasound. It was reported extracellular molecules are able to diffuse through these holes thus facilitate gene transfer. Intravenous injection of microbubble act as cavitation nuclei enhances sonoporation effect and aid in a wide range of ultrasound-mediated drug delivery applications.
     Objective:
     This study was taken to optimize ultrasound parameters of increase of capillary permeability in myocardium by ultrasound-mediated destruction of albumin perfluorocarbon microbubbles via systemic injection of Evans blue dye. We also extended the method for plasmid deoxyribonucleic acid (DNA) transfection.
     Methods:
     We constructed albumin perfluorocarbon microbubbles. Evans blue was injected intravenously into mice via tail vein. We evaluated the effects of ultrasound parameters known to influent microbubble destruction, including ultrasound probe, ultrasound frequency and ultrasound mechanical index, on Evans blue extraction. The parameters caused greatest extent of Evans blue extraction was used to perform plasmid DNA transfection. X-gal staining andβ-galactosidase quantification were made to detect gene expression. In addition, mice left ventricular systolic function evidenced by echocardiography and gene expression in liver, lung and kidney were evaluated.
     Results:
     1. Optimal ultrasound parameter of this instruction was S3 transduce, 1.3MHz and mechanical index 1.6, with electrocardiogram triggering. Evans blue dye extraction reached utmost extent in this condition combined with microbubbles compared with dye injection without ultrasound and microbubbles (251.59±16.4 vs 30.87±4.26, p<0.05). There was no red blood cells effusion in tissue sections.
     2. Expression ofβ-galactosidase was found in heart in the optimal parameter 10 days later, and the activity was markedly increased compared with plasmid injection olne or combined with ultrasound olne. Expression ofβ-galactosidase was not found 20 days later.
     3. Expression ofβ-galactosidase was not found in liver, lung and brain by X-gal staining, but found in tubular epithelial cells of kidney in each group, including the control group without plasmid injection, indicated endogenousβ-galactosidase activity in kidney .
     4. Mice left ventricular systolic function was not significantly altered 10 days and 20 days after insonation and injection of plasmid DNA.
     Conclusion:
     1. Ultrasound destruction of microbubbles can increase capillary permeability significantly in myocardium under optimal parameter.
     2. Although capillary permeability increased, mice were secure from normal left ventricular systolic function and no red blood cells effusion.
     3. Ultrasound mediated-microbubble destruction enhanced reporter gene transfection to myocardium by injection of plasmid-microbubble mixture with simultaneous sonication. Targeted transfection maybe achieved by sonication through chest wall.
     Part Two Effects of asPLB gene transfection using ultrasound-mediated microbubble destruction
     Background:
     Phospholamban (PLB) is a critical regulator of the cardiac sarcoplasmic reticulum Ca~(2+) ATPase (SERCA_(2a)) activity and cardiac contractility. Dephosphorylated PLB inhibits SERCA_(2a) activity, whereas phosphorylated PLB dissociates from SERCA_(2a) and leads to enhanced contractibility. PLB can be phosphorylated at the serine16 residue by cAMP-dependent protein kinase and at the threonine17 residue via CaMKⅡ. It has been shown that reduced serine16 phosphorylation of PLB (Serl6-PLB) in the failing rat myocardium is a major contributor to decreased SERCA_(2a) activity. In vitro and in vivo studies have demonstrated that inhibition of PLB expression, increase the phosphorylated PLB in myocardium can enhance SERCA_(2a) activity and then restore left ventricular systolic function in failing heart.
     Transfection of antisense PLB (asPLB) to myocardium of myocardial infarction rats can inhibit up-expression of PLB, and improve the cardiac function. But in vivo transfection of an exotic gene to heart usually requires surgical procedure or catheter-based endomyocardial approaches. They are invasive and expensive. Recently, ultrasound-mediated microbubble destruction has been proposed as a new technique for site-specific gene delivery as a noninvasive approach. Microbubbles act as the cavitation nuclei to focus ultrasound energy by lowering the threshold of sonoporation, which means transient ultrasound-induced increase in permeability of cell membrane or the capillary wall.
     Objective:
     We design to estimate the effect of gene transfer of pAAV-antisense phospholamban (pAAV-asPLB), using ultrasound mediated microbubble destruction, on the left ventricular function, PLB and Serl6-PLB protein expression, cardiac sarcoplasmic reticulum Ca~(2+) ATPase (SERCA_(2a)) protein level and activity in myocardial infarction (MI) mice.
     Methods:
     MI mice were generated by ligating the left anterior descending coronary artery. Microbubbles were prepared by sonicated perfluorocarbon gas with dextrose and albumin. pAAV-LacZ was used as a reporter gene to determine the efficiency and localization of transfection. A mixture of pAAV-asPLB plasmid and microbubbles was injected via tail vein while the heart was simultaneously exposed to ultrasound via transthoracic insonation. Mice were divided into 9 groups as follows: normal control, sham-operation, MI+saline, MI+LacZ, MI+LacZ+US, MI+LacZ+MB+US, MI+asPLB, MI+asPLB+US, MI+asPLB+MB+US. Three weeks later, left ventricular ejection fraction (LVEF) and fraction shortening (FS) were measured by echocardiography. PLB, Ser16-PLB, SERCA protein level and SERCA activity were examined.
     Results:
     1. Expression ofβ-galactosidase was found in heart in MI+LacZ+MB+US group, not found in liver, lung and brain in each LacZ group, but found in tubular epithelial cells of kidney in each LacZ group and Ml+saline group, indicated endogenousβ-galactosidase activity in kidney .
     2. Compared with sham-operation, SERCA protein level was not significantly altered in MI mice; but PLB protein level increased significantly, Serl6-PLB decreased significantly; left ventricular diameter enlarged, FS and LVEF markedly depressed in MI groups. SERCA activity was decreased significantly in MI groups except MI+asPLB+MB+US.
     3. Compared with Ml+saline, PLB, Serl6-PLB, SERCA protein level and SERCA activity were not changed markedly in MI+asPLB, MI+asPLB+US. No significant improvement in left ventricular diameter, FS and LVEF in these two groups.
     4. LVEF (48.2±5.18% vs 39.1±5.38%, p<0.05), FS (19.6±2.59% vs 16.0±2.29%, p<0.05), SERCA activity (3.00±0.29 vs 2.12±0.30, p<0.05) and Serl6-PLB protein level (0.8±0.25 vs 0.46±0.18, p<0.05) were increased in MI+asPLB+MB+US group while PLB protein level (1.45±0.38 vs 2.05±0.31, p<0.05) was decreased compared with MI+saline. SERCA protein level was not statistical difference.
     Conclutions:
     1. Ultrasound alone can not achieve effective gene transfer in myocardium by systemic injection of plasmid.
     2. Ultrasound-mediated microbubble destruction can enhance exotic gene transfer to myocardium. Targeted transfection maybe acquired by systemic injection of plasmid-microbubble mixture with simultaneous sonication through chest wall.
     3. asPLB gene transfection can be achieved by ultrasound-mediated microbubble destruction. Effective transfection can partly restore heart function in MI mice, which inhibited myocardial PLB protein expression, restored phosphorylation of PLB on Ser16 site, and restored myocardial SERCA activity. It had no effects on myocardium SERCA protein level.
引文
[1] Liu L.Cardiovascular diseases in China.Biochem Cell Biol,2007,85:157-163.
    [2]Graham GN,Guendelman M,Leong BS,Hogan S,Dennison A.Impact of heart disease and quality of care on minority populations in the United States.Natl Med Assoc,2006,98:1579-1586.
    [3]Iqbal MB,Westwood MA,Swanton RH.Recent developments in acute coronary syndromes.Clin Med,2008,8:42-48.
    [4]Moghbeli N,Pare E,Webb G.Practical assessment of maternal cardiovascular risk in pregnancy.Congenit Heart Dis,2008,3:308-316.
    [5]Papadopoulos DP,Papademetriou V.Aggressive blood pressure control and stroke prevention:role of calcium channel blockers.J Hypertens,2008,26:844-852.
    [6]Primatesta P,Allender S,Ciccarelli P,Doring A,Graff-Iversen S,Holub J,Panico S,Trichopoulou A,Verschuren WM; EUROCISS Research Group.Cardiovascular surveys:manual of operations.Eur J Cardiovasc Prev Rehabil,2007,14 Suppl 3:S43-46.
    [7]Muller OJ,Katus HA,Bekeredjian R.Targeting the heart with gene therapy-optimized gene delivery methods.Cardiovasc Res,2007,73:453-462.
    [8]Sboros V.Response of contrast agents to ultrasound.Adv Drug Deliv Rev,2008,60:1117-1136.
    [9]Newman CM,Bettinger T.Gene therapy progress and prospects:ultrasound for gene transfer.Gene Ther,2007,14:465-475.
    [10]Liu Y,Yang H,Sakanishi A.Ultrasound:mechanical gene transfer into plant cells by sonoporation.Biotechnol Adv,2006,24:1-16.
    [11]Miller DL,Pislaru SV,Greenleaf JE.Sonoporation:mechanical DNA delivery by ultrasonic cavitation.Somat Cell Mol Genet,2002,27:115-1134.
    [12]Chomas JE,Dayton P,May D,Ferrara K.Threshold of fragmentation for ultrasonic contrast agents J Biomed Opt,2001 Apr,6(2):141-150.
    [13]Porter TR,Hiser WL,Kricsfeld D,Deligonul U,Xie F,Iversen P,Radio S.Inhibition of carotid artery neointimal formation with intravenous microbubbles.Ultrasound Med Biol,2001,27:259-265.
    [14]Chuang YC,Yoshimura N,Wu M,Huang CC,Chiang PH,Tyagi P,Chancellor MB.Intraprostatic capsaicin injection as a novel model for nonbacterial prostatitis and effects of botulinum toxin A.Eur Urol,2007,51:1119-27.
    [15]Caruso G,Valentino B,Salvaggio G,Lipari EF,Lipari D,Brancatelli G,Lagalla R,Cardinale AE.Ultrastructural biologic effects of sonography with pulse inversion and microbubble contrast in rabbit liver.J Clin Ultrasound,2005,33:106-111.
    [16]Huang Q,Shao L,He M,Chen H,Liu D,Luo Y,Dai Y.Inhibitory effects of sasanquasaponin on over-expression of ICAM-1 and on enhancement of capillary permeability induced by burns in rats.Burns,2005,31:637-642.
    [17]Schiller NB,Shah PM,Crawford M,DeMaria A,Devereux R,Feigenbaum H,Gutgesell H,Reichek N,Sahn D,Schnittger I.Recommendations for quantitation of the left ventricle by two-dimensional echocardiography.Am Society of Echocardiography Committee on Standards,Subcommittee on Quantitation of Two-Dimensional Echocardiograms.J Am Soc Echocardiogr,1989,2:358-367.
    [18]Matsumoto R,Omura T,Yoshiyama M,Hayashi T,Inamoto S,Koh KR,Ohta K,Izumi Y,Nakamura Y,Akioka K,Kitaura Y,Takeuchi K,Yoshikawa J.Vascular endothelial growthfactor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction.Arterioscler Thromb Vase Biol,2005,25:1168-1173.
    [19]Pachori AS,Melo LG,Zhang L,Loda M,Pratt RE,Dzau VJ.Potential for germ line transmission after intramyocardial gene delivery by adeno-associated virus.Biochem Biophys Res Commun,2004,313:528-533.
    [20]Chu D,Sullivan CC,Weitzman MD,Du L,Wolf PL,Jamieson SW,Thistlethwaite PA.J Thorac Cardiovasc Surg.Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors,2003 Sep,126(3):671-9.
    [21]Morgan TK,Rohrwasser A,Zhao L,Hillas E,Cheng T,Ward KJ,Lalouel JM.Hypervolemia of pregnancy is not maintained in mice chronically overexpressing angiotensinogen.Am J Obstet Gynecol,2006,195:1700-1706.
    [22]Gore CJ,Hopkins WG,Burge CM.Errors of measurement for blood volume parameters:a meta-analysis.J Appl Physiol,2005,99:1745-1758.
    [23]Chuang PT,Cheng HJ,Lin SJ,Jan KM,Lee MM,Chien S.Macromolecular transport across arterial and venous endothelium in rats.Studies with Evans blue-albumin and horseradish peroxidase.Arteriosclerosis,1990,10:188-197.
    [24]Kong L,Caspall J,Duckworth M,Sprigle S.Assessment of an ultrasonic dermal scanner for skin thickness measurements.Med Eng Phys,2008,30:804-807.
    [25]Kitaoka M.Ultrasonographic diagnosis of parathyroid glands and percutaneous ethanol injection therapy.Nephrol Dial Transplant,2003,18 Suppl 3:ii27-30.
    [26]Bedi DG,Gombos DS,Ng CS,Singh S.Sonography of the eye.AJR Am J Roentgenol,2006,187:1061-1072.
    [27]Wei K,Skyba DM,Firschke C,Jayaweera AR,Lindner JR,Kaul S.Interactions between microbubbles and ultrasound:in vitro and in vivo observations.J Am Coll Cardiol,1997,29:1081-1088.
    [28]Chen S,Shohet RV,Bekeredjian R,Frenkel P,Grayburn PA.Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction.J Am Coll Cardiol,2003,42:301-308.
    [29]Chomas JE,Dayton P,Allen J,Morgan K,Ferrara KW.Mechanisms of contrast agent destruction.IEES Trans Ultrason Ferroelectr Freq Control,2001,48:232-248.
    [30]Bouakaz A,Versluis M,de Jong N.High-speed optical observations of contrast agent destruction.Ultrasound Med Biol,2005,31:391-399.
    [31]Postema M,van Wamel A,Lancee CT,de Jong N.Ultrasound Med Biol Ultrasound-induced encapsulated microbubble phenomena,2004,30:827-840.
    [32]Postema M,Bouakaz A,Versluis M,de Jong N.Ultrasound-induced gas release from contrast agent microbubbles.IEEE Trans Ultrason erroelectr Freq Control,2005,52:1035-1041.
    [33]Dayton PA,Morgan KE,Klibanov AL,Brandenburger GH,Ferrara KW.Optical and acoustical observations of the effects of ultrasound on contrast agents.IEEE Trans Ultrason Ferroelectr Freq Control,1999,46:220-232.
    [34]Postema M,Marmottant P,Lancee CT,Hilgenfeldt S,de Jong N.Ultrasound-induced microbubble coalescence.Ultrasound Med Biol,2004,30:1337-1344.
    [35]May DJ,Allen JS,Ferrara KW.Dynamics and fragmentation of thick-shelled microbubbles.IEEE Trans Ultrason Ferroelectr Freq Control,2002,49:1400-1410.
    [36]Miller DL,Quddus J.Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice.Proc Natl Acad Sci U S A,2000,97:10179-1084.
    [37]Bekeredjian R,Grayburn PA,Shohet RV.Use of ultrasound contrast agentsfor gene or drug delivery in cardiovascular medicine.J Am Coll Cardiol,2005,45:329-335.
    [38]Walther W,Minow T,Martin R,Fichtner I,Schlag PM,Stein U.Uptake,biodistribution,and time course of naked plasmid DNA trafficking after intratumoral in vivo jet injection.Hum Gene Ther,2006,17:611-624.
    [39]Beeri R,Guerrero JL,Supple G,Sullivan S,Levine RA,Hajjar RJ.New efficient catheter-based system for myocardial gene delivery.Circulation,2002,106:1756-1759.
    [40]Gruchala M,Roy H,Bhardwaj S,Yla-Herttuala S.Gene therapy for cardiovascular diseases.Curr Pharm Des,2004,10:407-423.
    [41]Cavazzana-Calvo M,Lagresle C,Hacein-Bey-Abina S,Fischer A.Gene therapy for severe combined immunodeficiency.Annu Rev Med,2005,56:585-602.
    [42]Couzin J,Kaiser J.Gene therapy.As Gelsinger case ends,gene therapy suffers another blow.Science,2005 Feb 18,307(5712):1028.
    [43]Kingsman SM,Mitrophanous K,Olsen JC.Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE).Gene Ther,2005,12:3-4.
    [44]Hoshijima M,Ikeda Y,Iwanaga Y,Minamisawa S,Date MO,Gu Y,Iwatate M,Li M,Wang L,Wilson JM,Wang Y,Ross J Jr,Chien KR.Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery.Nat Med,2002,8:864-871.
    [45]Young LS,Mautner V.The promise and potential hazards of adenovirus gene therapy.Gut,2001,48:733-736.
    [46]Bekeredjian R,Chen S,Frenkel PA,Grayburn PA,Shohet RV.Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart.Circulation,2003,108:1022-1026.
    [47]Zhigang W,Zhiyu L,Haitao R,Hong R,Qunxia Z,Ailong H,Qi L,Chunjing Z,Hailin T,Lin G,Mingli P,Shiyu P.Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats.Clin Imaging,2004,28:395-398.
    [48]Kondo I,Ohmori K,Oshita A,Takeuchi H,Fuke S,Shinomiya K,Noma T,Namba T,Kohno M.Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer The first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction.J Am Coll Cardiol,2004,44:644-653.
    [49]Hayat SA,Senior R.Myocardial contrast echocardiography in ST elevation myocardial infarction:ready for prime time? Eur Heart J,2008,29:299-314.
    [50]Cosyns B,Weytjens C,Vanderhoogstrate M,Daniels C,Schoors D,Van Camp G.Tissue Doppler imaging does not show infraclinical alteration of myocardial function after contrast echocardiography.Eur J Echocardiogr,2005,6:238-242.
    [51]Lafitte S,Higashiyama A,Masugata H,Peters B,Strachan M,Kwan OL,DeMaria AN.Contrast echocardiography can assess risk area and infarct size during coronary occlusion and reperfusion:experimental validation.J Am Coll Cardiol,2002,39:1546-1554.
    [52]Duffield JS,Bonventre JV.Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury.Kidney Int,2005,68:1956-1961.
    [53]Roufosse C,Bou-Gharios G,Prodromidi E,Alexakis C,Jeffery R,Khan S,Otto WR,Alter J,Poulsom R,Cook HT.Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis.J Am Soc Nephrol,2006,17:775-782.
    [54]Tsunoda S,Mazda O,Oda Y,Iida Y,Akabame S,Kishida T,Shin-Ya M,Asada H,Gojo S,Imanishi J,Matsubara H,Yoshikawa T.Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart.Biochem Biophys Res Commun,2005,336:118-127.
    [1]Liu T,O'Rourke B.Enhancing mitochondrial Ca~(2+)uptake in myocytes from failing hearts restores energy supply and demand matching.Circ Res,2008,103:279-288.
    [2]Diaz ME,Graham HK,O'neill SC,Trafford AW,Eisner DA.The control of sarcoplasmic reticulum Ca content in cardiac muscle.Cell Calcium,2005,38:391-396.
    [3]Gupta RC,Mishra S,Rastogi S,Sharov VG,Sabbah HN.Improvement of cardiac sarcoplasmic reticulum calcium cycling in dogs with heart failure following long-term therapy with the Acorn Cardiac Support Device.Heart Fail Rev,2005,10:149-155.
    [4]Mishra S,Sabbah HN,Rastogi S,Imai M,Gupta RC.Reduced sarcoplasmic reticulum Ca~(2+)uptake and increased Na~+-Ca~(2+)exchanger expression in left ventricle myocardium of dogs with progression of heart failure.Heart Vessels,2005,20:23-32.
    [5]Jiang MT,Lokuta AJ,Farrell EF,Wolff MR,Haworth RA,Valdivia HH.Abnormal Ca~(2+)release,but normal ryanodine receptors,in canine and human failure.Circ Res,2002,91:1015-1022.
    [6]Koss KL,Kranias EG Phospholamban:a prominent regulator of myocardial contractility.Circ Res,1996,79:1059-1063.
    [7]Frank KF,Bolck B,Brixius K,Kranias EG,Schwinger RH.Modulation of SERCA:implications for the failing human heart.Basic Res Cardiol,2002,97 Suppl 1:172-178.
    [8]Schmidt AG,Zhai J,Carr AN,Gerst MJ,Lorenz JN,Pollesello P,Annila A,Hoit BD,Kranias EG.Structural and functional implications of the phospholamban hinge domain:impaired SR Ca~(2+)uptake as a primary cause of heart failure. Cardiovasc Res,2002,56:248-259.
    [9]Frank K,Kranias EG.Phospholamban and cardiac contractility.Ann Med,2000,32:572-578.
    [10]Zhai J,Schmidt AG,Hoit BD,Kimura Y,MacLennan DH,Kranias EG.Cardiac-specific overexpression of a superinhibitory pentameric phospholamban mutant enhances inhibition of cardiac function in vivo.J Biol Chem,2000,275:10538-10544.
    [11]Traaseth NJ,Ha KN,Verardi R,Shi L,Buffy JJ,Masterson LR,Veglia G.Structural and Dynamic Basis of Phospholamban and Sarcolipin Inhibition of Ca(2+)-ATPase.Biochemistry,2008,47:3-13.
    [12]Periasamy M,Bhupathy P,Babu GJ.Regulation of sarcoplasmic reticulum Ca ATPase pump expression and its relevance to cardiac muscle physiology and pathology.Cardiovasc Res,2008,77:265-273.
    [13]Koss KL,Grupp IL,Kranias E.The relative phospholamban and SERCA2 ratio:a critical determinant of myocardial contractility.Basic Res Cardiol,1997,92 Suppl 1:17-24.
    [14]Pantano S,Carafoli E.The role of phosphorylation on the structure and dynamics of phospholamban:a model from molecular simulations.Proteins,2007,66:930-940.
    [15]Chu G,Kranias EG.Functional interplay between dual site phospholambam phosphorylation:insights from genetically altered mouse models.Basic Res Cardiol,2002,97 Suppl 1:143-48.
    [16]Mattiazzi A,Mundiiia-Weilenmann C,Vittone L,Said M.Phosphorylation of phospholamban in ischemia-reperfusion injury:functional role of Thr17 residue.Mol Cell Biochem,2004,263(1-2):131-136.
    [17]Simmerman HKB,Jones LR.Phospholamban:protein structure,mechanism of action and role in cardiac function.Physiol Rev,1998,78:921-947.
    [18]Sande JB,Sjaastad I,Hoen IB,Bokenes J,Tonnessen T,Holt E,Lunde PK,Christensen G.Reduced level of serine 16 phosphorylated phospholamban in the failing rat myocardium:a major contributor to reduced SERCA2 activity.Cardiovasc Res,2002,53:382-391.
    [19]Sun YL,Hu SJ,Wang LH,Hu Y,Zhou JY.Comparison of low and high doses of carvedilol on restoration of cardiac function and calcium-handling proteins in rat failing heart.Clin Exp Pharmacol Physiol,2005,32:553-560.
    [20]Zhao XY,Hu SJ,Li J,Mou Y,Bian K,Sun J,Zhu ZH.rAAV-asPLB transfer attenuates abnormal sarcoplasmic reticulum Ca(2+)-ATPase activity and cardiac dysfunction in rats with myocardial infarction.Eur J Heart Fail,2008,10:47-54.
    [21]Yao L,Chen GP,Lu X,Zheng LR,Mou Y,Hu SJ.Effects of atorvastatin on calcium-regulating proteins:a possible mechanism to repair cardiac dysfunction in spontaneously hypertensive rats.Basic Res Cardiol,2008 Oct 3 [Epub ahead of print].
    [22]Zhao XY,Hu SJ,Li J,Mou Y,Chen BP,Xia Q.Decreased cardiac sarcoplasmic reticulum Ca-ATPase activity contributes to cardiac dysfunction in streptozotocin-induced diabetic rats.J Physiol Biochem,2006,62(1):1-8.
    [23]Watanuki S,Matsuda N,Sakuraya F,Jesmin S,Hattori Y Protein kinase C modulation of the regulation of sarcoplasmic reticular function by protein kinase A-mediated phospholamban phosphorylation in diabetic rats.Br J Pharmacol,2004,141:347-359.
    [24]Luo W,Grupp IL,Harrer J,Ponniah S,Grupp G,Duffy JJ,Doetschman T,Kranias EG.Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of P-agonist stimulation.Circ Res,1994,75:401-409.
    [25]Kadambi VJ,Ponniah S,Harrer JM,Hoit BD,Dorn GW 2nd,Walsh RA,Kranias EG.Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocytes mechanics in transgenic mice.J Clin Invest,1996,97:53-59.
    [26]Li J,Hu SJ,Sun J,Zhu ZH,Zheng X,Wang GZ,Yao YM,Chen NY,Zhao XY Construction of phospholamban antisense RNA recombinant adenoassociated virus vector and its effects in rat cardiomyocytes.Acta Pham Sinica,2005,26:51-55.
    [27]He H,Meyer M,Martin JL,McDonough PM,Ho P,Lou X,Lew WY,Hilal-Dandan R,Dillmann WH.Effects of mutant and antisense RNA of phospholamban on SR Ca(2+)-ATPase activity and cardiac myocyte contractility.Circulation,1999,100:974-980.
    [28]Tsuji T,Del Monte F,Yoshikawa Y,Abe T,Shimizu J,Nakajima-Takenaka C,Taniguchi S,Hajjar RJ,Takaki M.Rescue of Ca overload-induced left ventriclur dysfunction by targeted ablation of phospholamban.Am J Physiol Heart Circ Physiol,2009,296:H310-317.
    [29]Champion HC,Georgakopoulos D,Haldar S,Wang L,Wang Y,Kass DA.Robust Adenoviral and Adeno-Associated Viral Gene Transfer to the In Vivo Murine Heart Application to Study of Phospholamban.Physiology.Circulation,2003,108:2790-2797.
    [30]Ikeda Y,Gu Y,Iwanaga Y,Hoshijima M,Oh SS,Giordano FJ,Chen J,Nigro V,Peterson KL,Chien KR,Ross J Jr.Restoration of deficient membrane proteins in the cardiomyopathic hamster by in vivo cardiac gene transfer.Circulation,2002,105:502-508.
    [31]Chu D,Sullivan CC,Weitzman MD,Du L,Wolf PL,Jamieson SW.Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors.J Thorac Cardiovasc Surg,2003,126:671-679.
    [32]Svensson EC,Marshall DJ,Woodard K,Lin H,Jiang F,Chu L,Leiden JM.Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adenoassociated virus vectors.Circulation,1999,99:201-205.
    [33]Miller DL,Pislaru SV,Greenleaf JE.Sonoporation:mechanical DNA delivery by ultrasonic cavitation.Somat Cell Mol Genet,2002,27:115-134.
    [34]Miller DL,Quddus J.Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice.Proc Natl Acad Sci U S A,2000,97:10179-10184.
    [35]Hernot S,Klibanov AL.Microbubbles in ultrasound-triggered drug and gene delivery.Adv Drug Deliv Rev,2008,60:1153-1166.
    [36]Porter TR,Hiser WL,Kricsfeld D,Deligonul U,Xie F,Iversen P,Radio S.Inhibition of carotid artery neointimal formation with intravenous microbubbles.Ultrasound Med Biol,2001,27:259-265.
    [37]van Rooij E,Sutherland LB,Thatcher JE,DiMaio JM,Naseem RH,Marshall WS,Hill JA,Olson EN.Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.Proc Natl Acad Sci U S A,2008,105:13027-13032.
    [38]Li TS,Hayashi M,Ito H,Furutani A,Murata T,Matsuzaki M,Hamano K.Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells.Circulation,2005,111:2438-2445.
    [39]Bekeredjian R,Chen S,Frenkel PA,Grayburn PA,Shohet RV.Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart.Circulation,2003,108:1022-1026.
    [40]Kondo I,Ohmori K,Oshita A,Takeuchi H,Fuke S,Shinomiya K,Noma T,Namba T,Kohno M.Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer The first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction.J Am Coll Cardiol,2004,44:644-653.
    [41]Sheehan FH,Bolson EL,Dodge HT,Mathey DG,Schofer J,Woo HW.Advantages and applications of the centerline method for characterizing regional ventricular function.Circulation,1986,74:293-305.
    [42]Nozawa E,Kanashiro RM,Murad N,Carvalho AC,Cravo SL,Campos O,Tucci PJ,Moises VA.Performance of two-dimensional Doppler echocardiography for the assessment of infarct size and left ventricular function in rats.Braz J Med Biol Res,2006,39:687-695.
    [43]Schiller NB,Shah PM,Crawford M,DeMaria A,Devereux R,Feigenbaum H,Gutgesell H,Reichek N,Sahn D,Schnittger I.Recommendations for quantitation of the left ventricle by two-dimensional echocardiography.Am Society of Echocardiography Committee on Standards,Subcommittee on Quantitation of Two-Dimensional Echocardiograms.J Am Soc Echocardiogr,1989,2:358-367.
    [44]Matsumoto R,Omura T,Yoshiyama M,Hayashi T,Inamoto S,Koh KR,Ohta K,Izumi Y,Nakamura Y,Akioka K,Kitaura Y,Takeuchi K,Yoshikawa J.Vascular endothelial growthfactor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction.Arterioscler Thromb Vase Biol,2005,25:1168-1173.
    [45]Pachori AS,Melo LG,Zhang L,Loda M,Pratt RE,Dzau VJ.Potential for germ line transmission after intramyocardial gene delivery by adeno-associated virus.Biochem Biophys Res Commun,2004,313:528-533.
    [46]Tang T,Gao MH,Roth DM,Guo T,Hammond HK.Adenylyl cyclase type Ⅵ corrects cardiac sarcoplasmic reticulum calcium uptake defects in cardiomyopathy.Am J Physiol Heart Circ Physiol,2004,287:H1906-1912.
    [47]Duffield JS,Bonventre JV.Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury.Kidney Int,2005,68:1956-1961.
    [48]Roufosse C,Bou-Gharios G,Prodromidi E,Alexakis C,Jeffery R,Khan S,Otto WR,Alter J,Poulsom R,Cook HT.Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis.J Am Soc Nephrol,2006,17:775-782.
    [49]Freeman K,Lerman I,Kranias EG,Bohlmeyer T,Bristow MR,Lefkowitz RJ,Iaccarino G,Koch WJ,Leinwand LA.Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy.J Clin Invest,2001,107:967-974.
    [50]del Monte F,Harding SE,Dec GW,Gwathmey JK,Hajjar RJ.Targeting phospholamban by gene transfer in human heart failure.Circulation,2002,105:904-907.
    [51]Hoshijima M,Ikeda Y,Iwanaga Y,Minamisawa S,Date MO,Gu Y,Iwatate M,Li M,Wang L,Wilson JM,Wang Y,Ross J Jr,Chien KR.Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery.Nat Med,2002,8:864-871.
    [52]Iwanaga Y,Hoshijima M,Gu Y,Iwatate M,Dieterle T,Ikeda Y,Date MO,Chrast J,Matsuzaki M,Peterson KL,Chien KR,Ross J Jr.Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats.J Clin Invest,2004,113:727-736.
    [53]Eizema K,Fechner H,Bezstarosti K,Schneider-Rasp S,van der Laarse A,Wang H,Schultheiss HP,Poller WC,Lamers JM.Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction:comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter.Circulation,2000,101:2193-2199.
    [54]Sjaastad I,Wasserstrom JA,Sejersted OM.Heart failure—a challenge to our current concepts of excitation-contraction coupling.J Physiol,2003,546:33-47.
    [55]Schwinger RH,Munch G,Bolck B,Karczewski P,Krause EG,Erdmann E.Reduced Ca-sensitivity of SERCA 2a in failing human myocardium due to reduced serine-16 phospholamban phosphorylation.J Mol Cell Cardiol,1999,31:479-491.
    [56]Gaudron P,Hu K,Schamberger R,Budin M,Walter B,Ertl G.Effect of endurance training early or late after coronary artery occlusion on left ventricular remodeling,hemodynamics,and survival in rats with chronic transmural myocardial infarction.Circulation,1994,89:402-412.
    [57]He HB,Yang XZ,Shi MQ,Zeng XW,Wu LM,Li LDComparison of cardioprotective effects of salvianolic acid B and benazepril on large myocardial infarction in rats.Pharmacol Rep,2008,60:369-381.
    [58]Sallinen P,Manttari S,Leskinen H,lives M,Ruskoaho H,Saarela S.Time course of changes in the expression of DHPR,RyR(2),and SERCA2 after myocardial infarction in the rat left ventricle.Mol Cell Biochem,2007,303:97-103.
    [59]Bekeredjian R,Grayburn PA,Shohet RV.Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine.J Am Coll Cardiol,2005,45:329-335.
    [60]Walther W,Minow T,Martin R,Fichtner I,Schlag PM,Stein U.Uptake,biodistribution,and time course of naked plasmid DNA trafficking after intratumoral in vivo jet injection.Hum Gene Ther,2006,17:611-624.
    [61]Guzman RJ,Lemarchand P,Crystal RG,Epstein SE,Finkel T.Efficient gene transfer into myocardium by direct injection of adenovirus vectors.Circ Res,1993,73:1202-1207.
    [62]Svensson EC,Marshall DJ,Woodard K,Lin H,Jiang F,Chu L,Leiden JM.Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors.Circulation,1999,99:201-205.
    [63]French BA,Mazur W,Geske RS,Bolli R.Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors.Circulation,1994,90:2414-2424.
    [64]Barr E,Carroll J,Kalynych AM,Tripathy SK,Kozarsky K,Wilson JM,Leiden JM.Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus.Gene Ther,1994,1:51-58.
    [65]Ding Z,Fach C,Sasse A,Godecke A,Schrader J.A minimally invasive approach for efficient gene delivery to rodent hearts.Gene Ther,2004,11:260-265.
    [66]Lawrie A,Brisken AF,Francis SE,Tayler DI,Chamberlain J,Crossman DC,Cumberland DC,Newman CM.Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro.Circulation,1999,20:2617-26204.
    [67]Zarnitsyn VG,Kamaev PP,Prausnitz MR.Ultrasound-enhanced chemotherapy and gene delivery for glioma cells.Technol Cancer Res Treat,2007,6:433-4.
    [68]Huber PE,Pfisterer P.In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound.Gene Ther,2000,7:1516-1525.
    [69]Sato M,O'Gara P,Harding SE,Fuller SJ.Enhancement of adenoviral gene transfer to adult rat cardiomyocytes in vivo by immobilization and ultrasound treatment of the heart.Gene Ther,2005 Jun,12(11):936-941.
    [70]Taniyama Y,Tachibana K,Hiraoka K,Namba T,Yamasaki K,Hashiya N,Aoki M,Ogihara T,Yasufumi K,Morishita R.Local delivery of plasmid DNA into rat carotid artery using ultrasound.Circulation,2002,105:1233-1239.
    [71]Shohet RV,Chen S,Zhou YT,Wang Z,Meidell RS,Unger RH,Grayburn PA Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium.Circulation,2000,101:2554-2556.
    [72]Tsunoda S,Mazda O,Oda Y,Iida Y,Akabame S,Kishida T,Shin-Ya M,Asada H,Gojo S,Imanishi J,Matsubara H,Yoshikawa T.Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart.Biochem Biophys Res Commun,2005,336:118-127.
    [73]Young LS,Mautner V.The promise and potential hazards of adenovirus gene therapy.Gut,2001,48:733-736.
    [74]McTiernan CF,Frye CS,Lemster BH,Kinder EA,Ogletree-Hughes ML,Moravec CS,Feldman AM.The human phospholamban gene:structure and expression.J Mol Cell Cardiol,1999,31:679-692.
    [75]Cornwell TL,Pryzwansky KB,Wyatt TA,Lincoln TM.Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells.Mol Pharmacol,1991,40:923-931.
    [76]Eggermont JA,Wuytack F,Verbist J,Casteels R.Expression of endoplasmic-reticulum Ca2(+)-pump isoforms and of phospholamban in pig smooth-muscle tissues.Biochem J,1990,271:649-653.
    [77]Ferguson DG,Young EF,Raeymaekers L,Kranias EG.Localization of phospholamban in smooth muscle using immunogold electron microscopy.J Cell Biol,1988,107:555-562.
    [78]Raeymaekers L,Eggermont JA,Wuytack F,Casteels R.Effects of cyclic nucleotide dependent protein kinases on the endoplasmic reticulum Ca pump of bovine pulmonary artery.Cell Calcium,1990,11:261-268.
    [79]Raeymaekers L,Jones LR.Evidence for the presence of phospholamban in the endoplasmic reticulum of smooth muscle.Biochim Biophys Acta,1986,882:258-265.
    [80]Chen S,Shohet RV,Bekeredjian R,Frenkel P,Grayburn PA.Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction.J Am Coll Cardiol,2003,42:301-308.
    [1] Frenkel V,Li KC.Potential role of pulsed-high intensity focused ultrasound in ene therapy.Future Oncol,2006,2:111-119.
    [2]Habash RW,Bansal R,Krewski D,Alhafid HT.Thermal therapy,Part Ⅲ:ablation techniques.Crit Rev Biomed Eng,2007,35:37-121.
    [3]Alexandrov AV.Ultrasound enhanced thrombolysis for stroke.Int J Stroke,2006,1:26-29.
    [4]Tsivgoulis G,Culp WC,Alexandrov AV.Ultrasound enhanced thrombolysis in acute arterial ischemia.Ultrasonics,2008,48:303-311.
    [5]Mitragotri S.Healing sound:the use of ultrasound in drug delivery and other therapeutic applications.Nat Rev Drug Discov,2005,4:255-260.
    [6]Pine JL,Smith LJ,Haws MJ,Gingrass MK.Ultrasound-assisted lipoplasty.Plast Surg Nurs,2003,23:101-108.
    [7]Lawrence N,Coleman WP 3rd.Ultrasonic-assisted liposuction.Internal and external.Dermatol Clin,1999,17:761-771.
    [8]Siegel RJ,Luo H.Ultrasound thrombolysis.Ultrasonics,2008,48:312-20.
    [9]9 Donnelly RF,McCarron PA,Woolfson D.Drug delivery systems for photodynamic therapy.e Rcent Pat Drug Deliv Formul,2009,3:1-7.
    [10]10 Barth RF,Coderre JA,Vicente MG,Blue TE.Boron neutron capture therapy of cancer:current status and future prospects.Clin Cancer Res,2005,11(11):3987-4002.
    [11]Winter PM,Caruthers SD,Wickline SA,Lanza GM.Molecular imaging by MRI.Curr Cardiol Rep,2006,8:65-69.
    [12]Torchilin VP.Drug targeting.Eur J Pharm Sci,2000,11:S81-91.
    [13]ter Haar G.Prog Biophys Mol Biol.Therapeutic applications of ultrasound,2007,93:111-129.
    [14]Egerton IB,Vella G,Barnett S.Experimental test of harmonic contribution to the thermal index for soft tissue.J Ultrasound Med,1999,18:81-86.
    [15]Dubinsky TJ,Cuevas C,Dighe MK,Kolokythas O,Hwang JH.High-intensity focused ultrasound:current potential and oncologic applications.AJR Am J Roentgenol,2008,190:191-199.
    [16]Paliwal S,Mitragotri S.Ultrasound-induced cavitation:applications in drug and gene delivery.Expert Opin Drug Deliv,2006,3:713-726.
    [17]Leighton TG.What is ultrasound? Prog Biophys Mol Biol,2007,93:3-83.
    [18]Coussios CC,Farny CH,Haar GT,Roy RA.Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU).Int J Hyperthermia,2007,23:105-120.
    [19]Wu J,Nyborg WL.Ultrasound,cavitation bubbles and their interaction with cells.Adv Drug Deliv Rev,2008,60:1103-1116.
    [20]Sboros V.Response of contrast agents to ultrasound.Adv Drug Deliv Rev,2008,60:1117-1136.
    [21]Newman CM,Bettinger T.Gene therapy progress and prospects:ultrasound for gene transfer.Gene Ther,2007,14:465-475.
    [22]Liu Y,Yang H,Sakanishi A.Ultrasound:mechanical gene transfer into plant cells by sonoporation.Biotechnol Adv,2006,24:1-16.
    [23]Miller DL,Pislaru SV,Greenleaf JE.Sonoporation:mechanical DNA delivery by ultrasonic cavitation.Somat Cell Mol Genet,2002,27:115-34.
    [24]Gramiak R,Shah S.Echocardiagraphy of the aotic root.Invest Radio,1968,93:365-366.
    [25]Feinstein SB,Shah PM,Bing RJ,Meerbaum S,Corday E,Chang BL,Santillan G,Fujibayashi Y.Microbubble dynamics visualized in the intact capillary circulation.J Am Coll Cardiol,1984,4:595-600.
    [26]Kabalnov A,Klein D,Pelura T,Schutt E,Weers J.Dissolution of multicomponent microbubbles in the bloodstream:1.Theory.Ultrasound Med Biol,1998,24:739-749.
    [27]Sarkar K,Shi WT,Chatterjee D,Forsberg F.Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation.J Acoust Soc Am,2005 Jul,l 18(1):539-550.
    [28]Hernot S,Klibanov AL.Microbubbles in ultrasound-triggered drug and gene delivery.Adv Drug Deliv Rev,2008,60:1153-1166.
    [29]Bouakaz A,Versluis M,de Jong N.High-speed optical observations of contrast agent destruction.Ultrasound Med Biol,2005,31:391-399.
    [30]Postema M,van Wamel A,Lancee CT,de Jong N.Ultrasound-induced encapsulated microbubble phenomena.Ultrasound Med Biol,2004,30:827-840.
    [31]van Wamel A,Bouakaz A,Versluis M,de Jong N.Micromanipulation of endothelial cells:ultrasound-microbubble-cell interaction.Ultrasound Med Biol,2004,30:1255-1258.
    [32]Keyhani K,Guzman HR,Parsons A,Lewis TN,Prausnitz MR.Intracellular drug delivery using low-frequency ultrasound:quantification of molecular uptake and cell viability.Pharm Res,2001,18:1514-1520.
    [33]Nie F,Xu HX,Tang Q,Lu MD.Microbubble-enhanced ultrasound exposure improves gene transfer in vascular endothelial cells.World J Gastroenterol,2006,12:7508-7513.
    [34]Hallow DM,Mahajan AD,Prausnitz MR.Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries.J Control Release,2007,118:285-293.
    [35]Kipshidze NN,Porter TR,Dangas G,Yazdi H,Tio F,Xie F,Hellinga D,Wolfram R,Seabron R,Waksman R,Abizaid A,Roubin G,Iyer S,Colombo A, Leon MB,Moses JW,Iversen P.Novel site-specific systemic delivery of Rapamycin with perfluorobutane gas microbubble carrier reduced neointimal formation in a porcine coronary restenosis model.Catheter Cardiovasc Interv,2005,64:389-394.
    [36]van Wamel A,Bouakaz A,Bernard B,ten Cate F,de Jong N.Radionuclide tumour therapy with ultrasound contrast microbubbles.Ultrasonics,2004,42:903-906.
    [37]Skyba DM,Price RJ,Linka AZ,Skalak TC,Kaul S.Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue.Circulation,1998,98:290-293.
    [38]Price RJ,Skyba DM,Kaul S,Skalak TC.Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound.Circulation,1998,98:1264-1267.
    [39]Xie F,Boska MD,Lof J,Uberti MG,Tsutsui JM,Porter TR.Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model.Ultrasound Med Biol,2008,34:2028-2034.
    [40]Wu J,Nyborg WL.Ultrasound,cavitation bubbles and their interaction with cells.Adv Drug Deliv Rev,2008 Jun 30,60(10):1103-16.
    [41]Paliwal S,Mitragotri S.Therapeutic opportunities in biological responses of ultrasound.Ultrasonics,2008,48:271-278.
    [42]Siegel RJ,Luo H.Ultrasound thrombolysis.Ultrasonics,2008,48:312-20.
    [43]Yoshida J,Ohmori K,Takeuchi H,Shinomiya K,Namba T,Kondo I,Kiyomoto H,Kohno M.Treatment of ischemic limbs based on local recruitment of vascular endothelial growth factor-producing inflammatory cells with ultrasonic microbubble destruction.J Am Coll Cardiol,2005,46:899-905.
    [44]Song J,Qi M,Kaul S,Price RJ.Stimulation of arteriogenesis in skeletal muscle by microbubble destruction with ultrasound.Circulation,2002,106:1550-1555.
    [45]Imada T,Tatsumi T,Mori Y,Nishiue T,Yoshida M,Masaki H,Okigaki M,Kojima H,Nozawa Y,Nishiwaki Y,Nitta N,Iwasaka T,Matsubara H.Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response.Arterioscler Thromb Vase Biol,2005,25:2128-2134.
    [46]Zen K,Okigaki M,Hosokawa Y,Adachi Y,Nozawa Y,Takamiya M,Tatsumi T,Urao N,Tateishi K,Takahashi T,Matsubara H.Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response.J Mol Cell Cardiol,2006,40:799-809.
    [47]Miyake Y,Ohmori K,Yoshida J,Ishizawa M,Mizukawa M,Yukiiri K,Kohno M.Granulocyte colony-stimulating factor facilitates the angiogenesis induced by ultrasonic microbubble destruction.Ultrasound Med Biol,2007,33:1796-804.
    [48]Jones JM,Koch WJ.Methods Mol Med.Gene therapy approaches to cardiovascular disease,2005,112:15-35.
    [49]Kim HJ,.Greenleaf JF,Kinnick RR,Bronk JT,Bolander ME.Ultrasound-mediated transfection of mammalian cells.Hum Gene Ther 1996,7:1339—1346.
    [50]Liu Y,Yang H,Sakanishi A.Ultrasound:mechanical gene transfer into plant cells by sonoporation.Biotechnol Adv,2006,24:1-16.
    [51]Koch S,Pohl P,Cobet U,.Rainov NG.Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects.Ultrasound Med.Biol,2000,26:897-903.
    [52]Frenkel PA,Chen S,Thai T,Shohet RV,Grayburn PA.DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro.Ultrasound Med.Biol,2002,28:817-822.
    [53]Lawrie A,Brisken AF,Francis SE,Tayler DI,Chamberlain J,Crossman DC,Cumberland DC,Newman CM.Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro.Circulation,1999,99:2617-2620.
    [54]Shohet RV,Chen S,Zhou YT,Wang Z,Meidell RS,Unger RH,Grayburn PA.Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium.Circulation,2000,101:2554-2556.
    [55]Chen S,Shohet RV,Bekeredjian R,Frenkel P,Grayburn PA.Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction.J Am Coll Cardiol,2003,42:301-308.
    [56]Korpanty G,Chen S,Shohet RV,Ding J,Yang B,Frenkel PA,Grayburn PA.Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles.Gene Ther,2005,12:1305-1312.
    [57]Kondo I,Ohmori K,Oshita A,Takeuchi H,Fuke S,Shinomiya K,Noma T,Namba T,Kohno M.Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer The first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction.J Am Coll Cardiol,2004,44:644-653.
    [58]Leong-Poi H,Kuliszewski MA,Lekas M,Sibbald M,Teichert-Kuliszewska K,Klibanov AL,Stewart DJ,Lindner JR.Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle.Circ Res,2007,101:295-303.
    [59]Taniyama Y,Tachibana K,Hiraoka K,Aoki M,Yamamoto S,Matsumoto K,Nakamura T,Ogihara T,Kaneda Y,Morishita R.Development of safe and efficient novel nonviral gene transfer using ultrasound:enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle.Gene Ther, 2002,9:372-380.
    [60]Taniyama Y,Tachibana K,Hiraoka K,Namba T,Yamasaki K,Hashiya N,Aoki M,Ogihara T,Yasufumi K,Morishita R.Local delivery of plasmid DNA into rat carotid artery using ultrasound.Circulation,2002,105:1233-1239.
    [61]Erikson JM,Freeman GL,Chandrasekar B.Ultrasound-targeted antisense oligonucleotide attenuates ischemia/reperfusion-induced myocardial tumor necrosis factor-alphaJ Mol Cell Cardiol,2003,35:119-130.
    [62]Kheirolomoom A,Dayton PA,Lum AF,Little E,Paoli EE,Zheng H,Ferrara KW.Acoustically-active microbubbles conjugated to liposomes:characterization of a proposed drug delivery vehicle.J Control Release,2007,118:275-284.
    [63]Lum AF,Borden MA,Dayton PA,Kruse DE,Simon SI,Ferrara KW.Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles.J Control Release,2006,111:128-134.
    [64]Rychak JJ,Lindner JR,Ley K,Klibanov AL.Deformable gas-filled microbubbles targeted to P-selectin J Control Release,2006,114:288-299.
    [65]Lindner JR,Song J,Christiansen J,Klibanov AL,Xu F,Ley K.Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin.Circulation,2001,104:2107-2112.
    [66]Schumann PA,Christiansen JP,Quigley RM,McCreery TP,Sweitzer RH,Unger EC,Lindner JR,Matsunaga TO.Targeted-microbubble binding selectively to GPⅡb Ⅲa receptors of platelet thrombi.Invest Radiol,2002,37:587-593.
    [67]Mayer CR,Bekeredjian R..Ultrasonic gene and drug delivery to the cardiovascular system.Adv Drug Deliv Rev,2008,60:1177-1192.
    [68]Li P,Cao LQ,Dou CY,Armstrong WF,Miller D.Impact of myocardial contrast echocardiography on vascular permeability:an in vivo dose response study of delivery mode,pressure amplitude and contrast dose.Ultrasound Med Biol, 2003,29(9):1341-1349.
    [69]Li P,Armstrong WF,Miller DL.Impact of myocardial contrast echocardiography on vascular permeability:comparison of three different contrast agents.Ultrasound Med Biol,2004,30:83-91.
    [70]Miller DL,Quddus J.Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice.Proc Natl Acad Sci U S A,2000,97:10179-10184.
    [71]Miller DL,Li P,Gordon D,Armstrong WF.Histological characterization of microlesions induced by myocardial contrast echocardiography.Echocardiography,2005,22:25-34.
    [72]Miller DL,Li P,Dou C,Gordon D,Edwards CA,Armstrong WF.Influence of contrast agent dose and ultrasound exposure on cardiomyocyte injury induced by myocardial contrast echocardiography in rats.Radiology,2005,237:137-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700