化学链燃烧技术中铁基氧载体的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以煤为主的化石燃料在满足了电力生产和能源需求的同时,燃烧过程中排放的CO_2也引起大气中CO_2浓度不断增加,而CO_2等温室气体的排放是引起全球气候变暖的重要原因。因此减少以煤炭利用过程中CO_2的排放刻不容缓,非常必要。化学链燃烧技术是一种新颖的燃烧技术,由于具有较高的燃烧效率、彻底消除NOx排放以及CO_2内分离的特点而受到了广泛的关注。因此,研究以煤为燃料的化学链燃烧技术对于CO_2的减排和煤炭的高效利用具有重要的意义。本文依托华中科技大学煤燃烧国家重点实验室和新加坡南洋理工大学环境科学工程研究院的国际交流合作项目,对Fe_2O_3基氧载体与以煤为燃料的化学链燃烧技术进行了详细的研究,并对CO_2的化工利用进行了创新性的探索。主要研究内容与成果如下:
     采用热力学分析方法对煤合成气与构成氧载体的活性金属氧化物的反应进行了模拟计算,对减小氧载体碳沉积和固相硫组分的影响因素进行计算并发现,在相同条件下,压力的增加会导致更多沉积碳和固相硫组分的形成;而温度的增加则会抑制沉积碳的产生以及更多SO_2气体的产生;而煤合成气中水蒸汽和CO_2对碳沉积以及气相SO_2的产生的作用与温度的影响类似,尽管影响程度不同。
     采用质能平衡方程对不同类型的氧载体与煤合成气的反应系统进行计算,结果表明,NiO、CoO基氧载体会导致燃料反应器温度降低;而Fe_2O_3、Mn_3O_4则对燃料反应器温度的保持有利;对于CuO,由于其放热特性,CuO的含量增加会导致反应器温度急剧增加。进一步地,就各种惰性载体对燃料反应器温度的影响而言,其最优选择顺序为:MgAl_2O_4>Al_2O_3>SiO_2>TiO_2>ZrO_2。
     设计并建立以尿素为燃料、硝酸盐为氧化剂的溶胶一凝胶燃烧合成法(SGCS)制备Fe_2O_3/Al_2O_3氧载体,优化了SGCS法的工艺参数,并对其反应性能、抗烧结和碳沉积性能进行了详细的研究;进一步地,研究了惰性载体Al_2O_3的含量对Fe_2O_3/Al_2O_3氧载体性能的影响,发现质量比为8:2的Fe_2O_3/Al_2O_3氧载体不仅具有较好的反应性能,而且具有良好的抗烧结以及抗碳沉积能力。此外,以质量比为8:2的Fe_2O_3/Al_2O_3氧载体为基础,对添加CuO、MgO的复合氧载体的反应性能、抗烧结以及抗碳沉积能力进行研究,发现对Fe_2O_3-CuO/Al_2O_3复合氧载体,CuO的加入能够有效地提高氧载体的反应性和抗碳沉积能力,而MgO的加入则对氧载体的抗烧结和抗碳沉积能力有利。值得注意的是,CuO和MgO的加入量均以不超过Fe_2O_3以及Al_2O_3质量比的30%为宜。
     Fe_2O_3基氧载体与不同煤种的热重研究表明,Fe_2O_3的还原产物为不低于Fe_3O_4价态的氧化物;煤与金属氧载体的反应并不是氧载体与煤的直接反应,而是与其热解和气化产物的气固反应。因此,直接以煤为燃料的化学链燃烧技术是可行的,而且CuO-Fe_2O_3/Al_2O_3氧载体与煤反应具有一定的反应协同性。此外,由于CuO的放热反应特性,对于燃料反应器能量平衡非常有利。
     最后,对氢气活化的Fe_2O_3、CuFe_2O_4与CO_2的氧化反应制CO的可行性进行了初步的试验和热力学研究,发现该方法与化学链燃烧技术耦合用于CO_2分解是可能的。
Fossil fuels, especially coal, are used as fuel to generate electricity and meet energy demand, but they also emits a large amount of CO_2 and causes the great increase of CO_2 concentration in the atmosphere along with ever-increasing effect from the CO_2-related greenhouse effect. Therefore, it is of great necessity to decrease CO_2 emission into the atmosphere from fossil combustion. Compared to various kinds of present existing technologies to combat CO_2 emission from fossil combustion, chemical looping combustion receives great attraction and intensive research for its three distinguished advantages, such as high combustion efficiency by decreasing the combustion irreversibility, eradication of NOx formation as well as CO_2 inherent separation without extra instrument and energy consumption. Obviously, it would be greatly meaningful and advantageous if fossil fuels, especially coal were adopted as the fuel for chemical looping combustion. Under the project of the related research cooperation between State Key Laboratory of Coal Combustion in Huazhong University of Science and Technology and Institute of Environmental Science and Engineering in Nanyang Technological University (Singapore), a detailed research on chemical looping combustion with coal as the fuel and Fe_2O_3-based oxides as the oxygen carriers are performed. Meanwhile, the chemical utilization of CO_2 emitted from the system of chemical looping combustion were also innovatively explored. Based on all the related researches, the meaningful results are summarized as follows:
     The reaction of active metal oxides (the main component for oxygen carriers) with syngas derived from coal gasification are simulated by means of thermodynamics on the principle of the minimization of Gibbs energy, with focus on the various influencing factors on the carbon deposition and the formation of solid sulfur compounds. The simulation results indicated that under the fixed condition, the increase of pressure would lead to more carbon and solid sulfur compounds deposited on the oxygen carriers. On the contrast, the increase of temperature can inhibit carbon deposition and produce more SO_2 in gas state. In terms of H_2O and CO_2 function in the syngas, similar to the function of temperature, the increase of the two gas fractions will decease the formation of solid carbon and produce more gas SO_2, though the inhibition function of carbon deposition and the oxidization capacity of the two fractions in the syngas are different.
     The investigation of the effect on the temperature of fuel reactor (FR) from the reaction between different oxygen carriers (including various active metal oxides and inert supports) and syngas using mass and energy balances demonstrates, NiO and CoO based oxygen carriers lead to the decrease of FR temperature, while the Fe_2O_3 and Mn_3O_4 based oxygen carriers are beneficial to maintain the FR temperature, but due to the exothermal specialty, the increase of CuO content in CuO based oxygen carriers will cause dramatical increase of FR temperature. With regard to the supports' effect on FR temperature, the optimal selection option in descending order should be: MgAl_2O_4 > Al_2O_3> SiO_2 > TiO_2 >ZrO_2.
     Oxygen carrier preparation is the basis of the investigation and application of chemical looping combustion. The novel sol-gel combustion synthesis method (SGCS) for the preparation of Fe_2O_3/Al_2O_3 oxygen carrier is designed and optimized. Different mass ratios of Fe_2O_3 to Al_2O_3 oxygen carriers are produced and experimentally researched, indicating the mass ratio of 8 to 2 for Fe_2O_3/Al_2O_3 is the best whether for the reactivity or the resistance to sintering and carbon deposition. Furthermore, the CuO and MgO stabilized Fe_2O_3/Al_2O_3 oxygen carrier were synthesized and indicated that the addition of CuO was conductive to the improvement of the reactivity and resistance to carbon deposition, while MgO-stabilized oxygen carrier is better in its resistance to sintering and carbon deposition.
     The reaction of variety of coals with Fe_2O_3 based oxygen carriers performed on TGA indicates that the product of the reduction of Fe_2O_3 with coals is oxides with valence no lower than Fe_3O_4.Oxygen carriers actually react with the products from the pyrolysis and gasification of coal instead of coal in itself when coal is directly used as the fuel. Furthermore, CuO-Fe_2O_3 mixed oxygen carriers really demonstrate the synergistic effect on the oxidization of coal along with less heat demand for the CuO exothermal specialty.
     Finally, preliminary experimental and thermodynamic research of reduction between the hydrogen-activated Fe_2O_3 and CuFe_2O_3 with CO_2 emitted from the chemical looping combustion to produce CO are performed. The feasibility of producing CO from such process is validated to reach the decrease the goal of emission of CO_2.
引文
[1] Carapellucci R., Milazzo A. Membarane systems for CO_2 capture and theirintegration with gas turbine plants [J]. Journal of Power and Energy, 2003, 217: 505-517.
    
    [2] Raghuvanshi S.P., Chandra A., Raghav A.K., Carbon dioxide emissions from coalbased power generation in India[J]. Energy Conversion and Management, 2006, 47:427-441.
    
    [3] 郑楚光等.温室效应及其控制对策[M].北京:中国电力出版社,2001.
    
    [4] 张洪涛, 文冬光,张家强.CO_2地质埋存技术[C].GCEP清洁煤技术国际研讨会 CO_2减排、富集、利用与埋存.2005,北京.
    
    [5] Yamasaki A. An overview of CO_2 mitigation options for global warming-emphasizing CO_2 sequestration options.[J]. Journal of Chemical Engineering ofJapan, 2003, 36(4): 361-375.
    
    [6] Pacala S., Socolow R. Stabilization wedges: solving the climate problem for the next50 years with current technologies [J]. Science, 2004, 205(5686): 968-972.
    
    [7] Herzog H.J., Drake E.M., Carbon dioxide capture and disposal from large energysystem[J]. Annual Review of Energy and the Environment, 1996, 21: 145-166.
    
    [8] Abu-Khader M.M. Recent progress in CO_2 capture/sequestration: a review[J].Energy Sources, Part A: Recovery,Utilization, and Environmental Effects, 2006, 28:1261-1279.
    
    [9] Yang H.Q., Xu Z.H., Fan ML., Gupta R., Slimande R.B., Bland A.E., Wright I.Progress in carbon dioxide separation and capture: a review[J]. Journal ofEnvironemtal Sciences, 2008, 20: 14-27.
    
    [10] Buhre B.J.P., Elliott L.K., Sheng C.D., Gupta R.P., Wall T.F. Oxy-fuel combustiontechnology for coal-fired power generation [J]. Progress in Energy and CombustionScience, 2005, 31:283-307.
    
    [11] Caleb S., Mir-Akbar H. A Study of methods of carbon dioxide capture andsequestration-the sustainability of a photosynthetic bioreactor approach [J]. EnergyConversion and Management, 2005, 45: 403-420.
    [12] Rao A.B.Technical, economic, and environmental assessment of amine-based CO_2 capture technology for power plant greenhouse gas control [J]. Environmental Science & Technology, 2002, 36: 4467-4475.
    [13] Alan M.W., Edward J.D., Bassam J.J. Recovering CO_2 from large and medium-size stationary combustor [J]. Journal of Waste Management Association, 1991, 41: 449-454.
    [14] Gottlicher G., Pruschek R. Comparision of CO_2 removal systems for fossil-fuelled power plant processes [J]. Energy Conversion and Management, 1997, 38: 173.
    [15] Audus H. Leading options for the capture of CO_2 at power plants[C]. Proceedings of 5th International Conference on Greenhouse Gas Control Technologies. 2000, Cairns, Australia.
    [16] Bolland O., Undrum H. A novel methodology for comparing CO_2 capture options for natural gas-fired combined cycle plants[J]. Advances in Environmental Research, 2003,7:901-911.
    [17] Davidson J., Thambimuthu K. Technologies for capture of carbon dioxide[C]. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies 2004, Vancouver, Canada.
    [18] Holloway S. Carbon dioxide capture and geological storage [J]. Philosophical Transactions of the Royal Society,A: Mathematical, Physical and Engineering Sciences, 2007, 365(1853): 1095-1107.
    [19] Eide L.I., Anheden M., Lyngfelt A., Abanades C., Younes M., Clodic D., Bill A.A., Feron P.H.M., Rojey A., Giroudiere F. Novel CO_2 capture processes [J]. Oil&Gas Science and Technology, 2005, 60(3): 497-508.
    [20] Richter H.J. and K.F. Knoche Reversibility of Combustion Process, Efficiency and Costing, Second Law Analysis of Processes. In: R A Gaggioli, ed. ACS Symposium Series 235. Washington, DC: 1983[J]. 71-85.
    [21] Beretta G.P., Lezzi A.M., Niro A., Silvestri M. On the concept of a reversible flame[C]. Proceedings of the Florence World Energy Research Symposium. 1992, Firenze,Italy: Nova Science Publishers,Inc.
    [22] Bisio G., Rubatto G. Thermodynamic analysis of combined system with two-step reaction-comparision among them[C]. 37th Intersociety Energy Conversion Engineering Conference (IECEC). 2002.
    
    
    [23] Richter H.J., Knoche K.F. Reversibilty of combustion process, efficiency andcosting, second law analysis of processes[C]. ACS Symposium Series 235. 1983,Washington D.C., 1983, 71-85.
    
    [24] Ishida M, Jin H.G. Novel chemical-looping combustor without NOx formation [J].Industrial Engineering Chemistry Research, 1996, 35: 2469-2472.
    
    [25] Ryu H.-J., Jin G.-T.,Yin C.-K. Demonstration of inherent CO_2 separation and noNOx emission in a 50kW chemical-looping combustor: continuous reduction andoxidization experiment[C].Proceedings of 7th International Greenhouse Gas ControlTechnologies. 2004, Vancouver, Canada.
    
    [26] Ishida ML, Jin H. A new advanced system power-generation system using chemical-looping combustion [J]. Energy 1994, 19(4): 415-422.
    
    [27] Ishida M., Zheng D., Akehata T. Evaluation of a chemical-looping combustionpower-generation system by graphic exergy analysis [J]. Energy, 1987, 12(2): 147-154.
    
    [28] Ishida M., Jin H. A novel combustor based on chemical-looping reactions and itsreaction kinetics [J]. Journal of Chemical Engineering of Japan, 1994, 27(296-301).
    
    [29] Ishida M., Jin H., Okamoto T. A fundamental study of a new kind of mediummaterial for chemical-looping combustion [J]. Energy and Fuels, 1996, 10: 958-963.
    
    [30] Ishida M., Jin H. CO_2 recovery in a power plant with chemical-looping combustion[J]. Energy Conversion and Management, 1997, 38: 944-948.
    
    [31] Ishida M., Jin FL, Okamoto T. Kinetic behavior of solid particle in chemical-loopingcombustion:supressing carbon deposition in reduction [J]. Energy and Fuels, 1998,12: 223-229.
    
    [32] Johansson M. Screening of oxygen-carrier particles based on iron-, manganese-,copper- and nickel oxides for use in chemical-looping technologies. [PhDThesis] .Reserved: Chalmers University of Technology: Goteberg, Sweden, 2007.
    
    [33] Berguerand N., Lyngfelt A. Design and operation of a 10 kWth chemical-loopingcombustor for solid fuels-testing with South African coal [J]. Fuel, 2008, 87(12):2713-2726.
    
    [34] Adanez J., de Diego L.F., Garcia-Labiano F., Gayan P., Abad A. Selection of oxygencarriers for chemical-looping combustion [J]. Energy and Fuels, 2004, 2004(18):371-377.
    [35] Brandvoll O. Chemical looping combustion: fuel conversion with CO_2 capture. [PhD Thesis]. Reserved: Norwegian University of Science and Technology: Trondheim, Norwey, 2005.
    [36] Naqvi, R. Analysis of natural gas-fired power cycles with chemical looping combustion for CO_2 capture. [PhD Thesis]. Reserved: Norwegian University of Science and Technology: Trondheim, Norwey, 2006.
    [37] Anheden M. Analysis of gas turbine systems for sustainable energy conversion. [PhD Thesis]. Reserved: Royal Institute of Technology (KTH): Stockholm, Sweden, 2000.
    [38] Jens W. CO_2 mitigation in advanced power cycles-chemical looping combustion and steam-based gasification. [PhD Thesis]. Reserved: Royal Institute of Technology: Stockholm, Sweden, 2004.
    [39] Hossain M.M. Fluidized bed checmial-looping combustion: development ofa bimetallic oxygen carrier and kinetic modeling. [PhD Thesis]. Reserved: The University of Western Ontario: Ontario, Canada, 2007.
    
    [40] Kronberger B. Modelling analysis of fluidized bed reactor systems for chemical- looping combustion. [PhD Thesis]. Reserved: Vienna University of Technology: Austria, 2005.
    [41] Gupta P. Regernerable metal oxide composite particles and their use in novel chemical processes. [PhD Thesis]. Reserved: The Ohio State University: Columbus, USA, 2006.
    [42] Erri P.R. Solution combustion synthesis for catalytic and power generation applications. [PhD Thesis]. Reserved: Purdue University Indiana, USA, 2007.
    [43] Liu T. Process intensification through multifunctional reactor concepts: reverse-flow reactor and nanocomposite materials. [PhD Thesis]. Reserved: University of Pittsburgh: Pittsburgh, 2007.
    [44] Brandvoll (?)., Bolland O., Vestol S. Chemical looping combustion- fuel energy conversion with inherent CO_2 capture [C]. International conference power generation and sustainable development. October 8-10, 2001, Liege, Belgium.
    [45] Brandvoll (?). Fuel conversion with inherent CO_2 capture. [PhD Thesis].Reserved: Norwegian University of Science and Technology: Norway,2005.
    
    
    [46] Johansson M., Mattisson T., Ryden M., Lyngfelt A. Carbon catpure via chemical-looping and reforming [C].International Seminar on Carbon Sequestration and Climate Change. October 24-27,2006, Rio de Janeiro, Brazil.
    
    [47] Abad A., García-Labiano F., de Diego L., Gayan, P., Adanez J. Reduction kinetics of Cu-, Ni-, and Fe-based oxgyen carriers using syngas (CO+H2) for chemical looping combustion [J]. Energy and Fuels, 2007, 21(4): 1843-1853.
    
    [48] Cao Y., Pan W.-P. Investigation of chemical looping combustion by solid fuels. 1. process analysis [J]. Energy and Fuels, 2006, 20: 1836-1844.
    
    [49] Anthony E.J. Solid looping cycles: a new technology for coal conversion[J]. Industrial Engineering Chemistry Research, 2008, 47: 1747-1754.
    
    [50] Johansson M, Mattisson T., Lyngfelt A. Comparision of oxygen carriers for chemical-looping combustion [J]. Thermal Science, 2006, 10(3): 93-107.
    
    [51] Readman J.E., Olafsen A., Larring Y., Blom R. La_(0.8)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3-δ) as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study [J]. Journal of Materials Chemistry, 2005, 15: 1931-1937.
    
    [52] Ryden M., Lyngfelt A., Mattisson T., Chen D., Holmen A., Bjorgum,E. Novel oxygen carrier materials for chemical-looping cobustion and chemical-looping reforming; La_xSr_(1-x)FeyCo_(1-y)O_(3-δ) perovskites and mixed-metal oxides of NiO,Fe_2O_3 and Mn_3O_4 [J]. International Journal of Greenhouse Gas Control 2008, 2: 21-36.
    
    [53] Adanez J., Garcia-Labiano F., de Diego L.F., Gayan P., Celaya J., Abad A. Nickel-copper oxygen carrier to reach zero CO and H2 emissions in chemical-looping combustion [J]. Industrial Engineering Chemistry Research, 2006, 45: 2617-2625.
    
    [54] Jin H.-G., Okamoto T., Ishida M. Development ofa novel chemical-looping combustion: Synthesis of a looping material with a double metal oxide of CoO-NiO [J]. Energy and Fuels, 1998, 12(6): 1272-1277.
    
    [55] Hossain M.M., de Lasa H.I., Reactivity and stability of CO-Ni/Al_2O_3 oxygen carrier in a multicycle CLC [J]. AIChE Journal, 2007, 53(6): 1817-1829.
    
    [56] Hossain M.M., Sedor, K.E., de Lasa H.I. CO-Ni/Al_2O_3 oxygen carrier for fluidized bed chemical-looping combustion: desorption kinetics and metal support interaction [J]. Chemical Engineering Science 2007, 62(18-20): 5464-5472.
    
    [57] Son S.R., Kim S.D. Chemical-looping combustion with NiO and Fe_2O_3 in a thermalbalance and circulating fluidized bed reactor with double loops [J]. Industrial Engineering Chemistry Research, 2006, 45: 2689-2696.
    
    [58] Johansson M., Mattisson T., Lyngfelt A. Creating a synergy effect by using mixed oxides of iron- and nickel oxides in the combustion of methane in a chemical-looping combustion reactor [J]. Energy and Fuels, 2006, 20(6): 2399-2407.
    
    [59] Beal C, Andrus H., Mohn N. Putting combustion and gasification in the loop [J]. Modern Power System, 2005, 25(11): 15-18.
    
    [60]郑瑛,王保文,宋侃,郑楚光.化学链燃烧技术中新型氧载体CaSO_4的特性研 究[J].工程热物理学报,2006,27(3):531-533.
    
    [61] Wang B.-W., Yan R., Zheng Y., Zhao H.-B., Zheng C.-G. Simulation of sulfur distribution in chemical looping combustion (CLC) using CaSO_4 as the oxygen carrier[C] .Proceedings of 6th International Symposium Coal Combustion. 2007, Wuhan, China.
    
    [62] Wang J.S., Anthony E.J. Clean combustion of solid fuels [J]. Applied Energy 2008, 85: 73-79.
    
    [63]周树理.非混合燃烧中CaSO_4氧载体的研究.[PhD Thesis].Reserved:中科院工 程热物理研究所:北京,2007.
    
    [64] Shen L.H., Zheng M., Xiao J., Xiao R. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion [J]. Combustion and Flame, 2008,154:489-506.
    
    [65] Song Q.L., Xiao R., Deng Z.Y., Zhang H.Y., Shan L.H., Xiao J., Zhang M.Y. Chemcial-looping combustion of methane with CaSO4 oxygen carrier in a fixed bed reactor [J]. Energy Conversion and Management, 2008, 49: 3178-3187.
    
    [66] Song Q.L., Xiao R., Deng Z.Y., Zheng W.G., Shen L.H., Xiao J. Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO4 oxygen carrier in a fluidized bed reactor [J]. Energy and Fuels, 2008, in press.
    
    [67] Diego L.F., Garcia-Labiano F., Adanez J., et al. Development of Cu-based Oxygen Carriers for Chemical-looping Combustion [J]. Fuel, 2004, 83(13): 1749-1757.
    
    [68] Cho P., Mattisson T., and Lyngfelt A. Comparison of Iron-, Nickel-, Copper- and Manganese-based Oxygen Carriers for Chemical-looping Combustion [J]. Fuel, 2004, 83(9): 1215-1225.
    
    [69] Blendell J.E., Bowen H.K., Coble R.L. High purity alumina by controlled precipitation from aluminum sulfate solutions [J]. American Ceramic Society Bulletin, 1987, 63(6): 797-802
    
    [70]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.
    
    [71]殷声主编.燃烧合成[M].北京:冶金工业出版社,2004.
    
    [72]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,2001.
    
    [73] Zhao H.-B., Liu L.-M, Xu D., Zheng C.-G., Liu G.-J., Zhang L.-L. NiO/NiAl_2O_4oxygen carriers prepared by sol-gel for chemical-looping combustion fueled by gas[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 261-266.
    
    [74] Ishida M., Jin H.G., and Okamoto T. A fundamental study of a new kind of mediummaterial for chemical-looping combustion [J]. Energy & Fuels, 1996, 10(4): 958-963.
    
    [75] Lee J.B., Park C.S., Choi S., et al. Redox characteristics of various kinds of oxygencarriers for hydrogen fueled chemical-looping combustion [J]. Journal of Industrialand Engineering Chemistry, 2005, 11(1): 96-102.
    
    [76] Song Y.W., Lee J.B., Park C.S., et al. Synthesis and redox properties ofNiO/NiAl_2O_4 oxygen carriers for hydrogen-fueled chemical-looping combustion [J].Journal of Industrial and Engineering Chemistry, 2006, 12(2): 255-260.
    
    [77] Erri P., Varma A. Spinel-supported oxygen carriers for inherent CO_2 separationduring power generation [J]. Industrial Engineering Chemistry Research, 2007,46(25): 8597-8601.
    
    [78] Erri P., Varma A. Solution combustion synthesized oxygen carriers for chemicallooping combustion [J]. Chemical Engineering Science, 2007, 62(18-20): 5682-5687.
    
    [79] Ishida M. and Jin H. A novel combustor based on chemical-looping reactions and itsreaction kinetics [J]. Journal of Chemical Engineering of Japan, 1994, 27(3): 296-301.
    
    [80] Ishida M. and Jin H. A novel chemical-looping combustor without NOx formation[J]. Industrial & Engineering Chemistry Research, 1996, 35(7): 2469-2472.
    
    [81] Ishida M. and Jin H. CO_2 ecovery in a power plant with chemical loopingcombustion [J]. Energy Conversion and Management. 1997, 38(9999): 187-192.
    
    [82] Ishida M., Takeshita K., Suzuki K., et al. Application of Fe_2O_3-Al_2O_3 compositeparticles as solid looping material of the chemical-loop combustor [J]. Energy andFuels, 2005, 19(6): 2514-2518.
    
    [83] Son S.R. and Kim S.D. Reactivity and attrition characteristics of oxygen carrierparticles for chemical-looping combustion [C]. The 3rd International Symposium onTwo-Phase Flow Modelling and Experimentation. 2004, Pisa, Italy.
    [84] Mattisson T., Jardnas A., and Lyngfelt A. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen - Application for chemical-looping combustion [J]. Energy & Fuels, 2003, 17(3): 643-651.
    [85] Mattisson T., Johansson M., and Lyngfelt A. Multicycle reduction and oxidation of different types of iron oxide particles-application to chemical-looping combustion [J]. Energy &Fuels, 2004,18(3): 628-637.
    [86] Mattisson T., Lyngfelt A., Cho P. Possibility of using iron oxide as an oxygen carrier for combustion of methane with removal of CO_2: application of chemical looping combustion[C] .Fifth International Conference on Greenhouse Gas Control Technologies. 2001, Cairns, Australia, 205-210.
    [87] Cho P., Mattisson T., and Lyngfelt A. Reactivity of iron oxide with methane in a laboratory fluidized bed - application of chemical-looping combustion[C].Proceedings of the 7th International Conference on Circluating Fluidized Beds. 2002, Niagara Falls, Ontario, Canada, 599-606.
    [88] Johansson M., Mattisson T., and Lyngfelt A. Investigation of Fe_2O_3 with MgAl_2O_4 for chemical-looping combustion [J]. Industrial and Engineering Chemistry Research, 2004,43(22): 6978-6987.
    [89] Cho P., Mattisson T., and Lyngfelt A. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion [J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 668-676.
    [90] Villa R., Cristiani C, Groppi G., et al. Ni based mixed oxide materials for CH_4 oxidation under redox cycle conditions [J]. Journal of Molecular Catalysis A: Chemical, 2003, 204-205: 637-646.
    [91] Readman J.E., Olafsen A., Larring Y., et al. La_(0.8)Sr_(0.2)Co_(0.2)Fe_(0.8)O_(3-δ) as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study [J]. Journal of Materials Chemistry, 2005, 15(19): 1931-1937.
    [92] Adanez J., Diego L.F., Garcia-Labiano F., et al. Selection of Oxygen Carriers for Chemical-looping Combustion [J]. Energy and Fuels, 2004, 18(2): 371-377.
    [93] Jin H., Okamoto T., and Ishida M. Development of a Novel Chemical-looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of CoO-NiO [J]. Energy and Fuels, 1998, 12(6): 1272-1277.
    [94] Abad A., Mattisson T., Lyngfelt A., et al. Chemical-looping Combustion in a 300W Continuously Operating Reactor System Using a Manganese-based Oxygen Carrier [J]. Fuel, 2006, 85(9): 1174-1185.
    [95] Johansson E., Mattisson T., Lyngfelt A., et al. A 300W Laboratory Reactor System for Chemical-looping Combustion with Particle Circulation [J]. Fuel. 2006, 85(10- 11): 1428-1438.
    [96] Goula M.A. Characterization of Carbonaceous Species Formed during Reforming of CH_4 with CO_2 over Ni/CaO-Al_2O_3 Catalysts Studied by Various Transient Techniques [J]. Journal of Catalysis, 1996, 161(2): 626.
    [97] Lyngfelt A., Leckner B., Mattisson T. A fluidized-bed combustion process with inherent CO_2 separation; application of chemical-looping combustion [J]. Chemical Engineering Science, 2001, 56: 3101-3113.
    [98] Lyngfelt A., Leckner B., Mattisson T. A fluidized-bed combustion process with inherent CO_2 separation; application of chemical-looping combustion[J]. Chemical Engieering Science, 2001, 56: 3101-3113.
    [99] Jukkola G., Levasseur A., Turek D., Teigen B., Suresh J., Thibeault P. Performance results with ALSTOM's circulating moving bed combustor[C].The 17th International Conference on Fluidized Bed Combustion. 2003, Florida, USA.
    [100] Shimomura Y. The CO_2 wheel: a revolutionary approach to carbon dioxide capture [J]. Modern Power System, 2003, 20(1): 15-17.
    [101] Noorman S., Annaland M.V.S., Kuipers H. Packed bed reactor techonology for chemical-looping combustion [J]. Industrial Engineering Chemistry Research, 2007, 46: 4212-4220.
    [102] Kronberger B., Johansson E., Loffer G., Mattisson T., Lyngfelt A., Hofbauer H. A two-compartment fluidized bed reactor for CO_2 capture by chemical-looping combustion [J]. Chemical Engineering and Technology, 2004, 27(12): 1318-1326.
    [103] Kronberger B., Lyngfelt A., Loffler G., Hofbauer H. Design and fludid dynamic analysis of a bench-scale combustion system with CO_2 separation-chemical looping combusiton [J]. Industrial Engineering Chemistry Research, 2005, 44(3): 546-556.
    [104] Reichhold A.., Friedl G., Kronberger B., Hofbauer H. Temporary defluidization in fine powder fludized bed caused by changing the fluidiziation gas [J]. Chemical Engineering and Technology, 2002, 25(4): 363-368.
    
    
    [105] Hayashi S., Iguchi Y. Factors affecting the sticking of fine ores during fluidized bed reduction [J]. The Iron and Steel Institute of Japan, 1992, 32(9): 962-971.
    
    [106] Cho P., Mattisson T., Lyngfelt A. Defluidization conditions for a fluidized bed of iron oxide-,nickel oxide-,and manganese oxide-containing oxygen carriers for chemical-looping combustion [J]. Industrial Engineering Chemistry Research, 2006, 45(3): 968-977.
    
    [107] Cao Y., Casenas B., Pan W.-P. Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier [J]. Energy and Fuels, 2006,20: 1845-1854.
    
    [108] Jin H.-G., Ishida M. A new type of coal gas fueled chemical-looping combustion[J]. Fuel, 2004, 83: 2411-2417.
    
    [109] Ishida M., Jin H.G, Okamoto T. A fundamental study of a new kind of medium material for chemical-looping combustion [J]. Energy and Fuels, 1996, 10: 958-963.
    
    [110] Ryu H.-G., Bae D.-H., Han K.-H., Lee S.-Y.,Jin G.-T.,Choi J.-H. Oxidization and reduction characteristics of oxygen carrier particles and reaction kinetics by unreacted core model [J]. Korean Journal of Chemical Engineering 2001, 8: 738-743.
    
    [111] García-Labiano F., de Diego L.F., Adanez J., Abad A., Gayan P. Reduction and oxidization kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion [J]. Industrial Engineering Chemistry Research, 2004, 43: 8168-8177.
    
    [112] Abad.A. A.J., Garcia-Labiano F., de Diego L.F., Gayan P., Celaya J. Mapping of the range of operational conditiosn for Cu-,Fe-,and Ni-based oxygen carriers in chemical-looping combustion [J]. Chemical Engineering Science, 2007, 62(1-2): 533-549.
    
    [113] Abad.A. G.-L.F., de Diego L.F., Gayan P., Adanez J., Reduction kinetics of Cu-,Ni-,and Fe-based oxygen carriers using syngas ( CO+H_2 ) for chemical-looping combustion [J]. Energy and Fuels, 2007, 21(4): 1843-1853.
    
    [114] García-Labiano F. d.D.L.F., Adanez J.,Abad.A., Gayan P. Temperature variations in the oxyen carrier particles during their reduction and oxidizaiton in a chemical-looping combusiton system [J]. Chemical Engineering Science, 2005, 60: 851-862.
    [115] Kolbitsch P., Proll T., Hofbauer H. Modelling of a 120 kW chemical looping combustion reactor system using a NiO oxygen carrier [J]. Chemical Engineering Science, 2008, in press.
    [116] Pavone D. CO_2 capture by means of chemical looping combustion[C].Conference FEMLAB 2005. 2005, Paris, France.
    [117] Jung, J.W. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling [J]. Powder Technology, 2008, 183: 401-409.
    [118] Brandvoll (?)., Bolland O.,Vest(?)l S. Chemical looping combustion- fuel energy conversion with inherent CO_2 capture[C].Proceedings of the International Conference Power Generation and Sustainable Development 2001, Liege,Belgium.
    [119] Naqvi R., Wolf J., Bolland O. Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO_2 capture [J]. Energy, 2007, 32: 360-370.
    [120] Ishida M., Zheng D., Akehata T. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis [J]. Energy, 1987, 12: 147-154.
    [121] Harvey S.P., Richter H.J. A high efficiency gas turbine power genearation cycle with solid oxide fuel cell technology and chemical looping combustion[C]. Thermodynamics and the Design,Analysis and Improvement of Energy Systems. 1994, Dartmouth, USA.
    [122] Anheden M., Svedberg G. Chemical-looping combustion in combination with integrated coal gasification[C].31~(st) Intersociety Energy Conversion Engineering Conference. 1996, Washington,D.C.
    [123] Wolf J., Yan J. Cogeneration of hydrogen and electrical power in an extended chemical-looping combusiton[C].Proceedings of Cost-effective and Environmentally-Sustainable Systems and Process. 2004, Guanajuato,Mexico.
    [124] Hatano H., Matsuoka K.,Ishitsuka M, Morita M., Suzuki Y., Matsuda S., Kuramoto K. Effect of lattice oxygen on low temperature gasification in fluidized bed, GLO[C].The 10th Asian Pacific Conference of Chemical Engineering(APCChE). 2004, Tokyo,Japan.
    [125] Son S.R., Go K.S., Kim S.D. Water splitting by copper oxide for chemical-looping hydrogen production with synthesis gas[C].The 18th Symposium on Chemial Engineering 2005, Daejon, South Korea.
    [126] Fan L.-S., Li F.-X., Ramkumar S., Utilization of chemical looping strategy in coal gasification processes [J]. Particuology 2008, 6: 131-142.
    [127] Anderson S., Newell R. Prospects for carbon capture and storage technologies [J]. Annual Review of Environmental Resources, 2004,29: 109-142.
    [128] Yang H.Q., Xu Z.H., Fan M.H., Gupta R., Slimane R.B., Bland A.E., Wright I. Progress in carbon dioxide separation and capture: A review [J]. Journal of Environmental Sciences, 2008,20: 14-27.
    [129] Yamasaki A. An overview of CO_2 mitigation options for gloal warming-Emphasizing CO_2 sequestration options [J]. Journal of Chemical Engineering of Japan, 2003, 36(4): 361-375.
    [130] Maroto-Valer M.M., Fauth D.J., Kuchta M.E., Zhang Y., Anderson J.M. Activation of magnesium rich minerals as carbonation feedstock materials for CO_2 sequestration [J]. Fuel Processing Technology 2005, 86: 1627-1645.
    [131] Herzog H.J. CO_2 capture and storage: cost and market potential[C].Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. 2004, Vancouver, Canada.
    [132] Svensson R., Odenberger M., Johnsson F., Stroemberg L. Transporation systems for CO_2-application to carbon capture and storage [J]. Energy Conversion and Management, 2004, 45(15-16): 2343-2353.
    [133] Halmann M.M. Chemical fixation of carbon dioxide: methods for recycling CO_2 into useful products[M]. CRC press, 1993. 172.
    [134] Herzog H., Drake E., Adams E. CO_2 capture, reuse, and storage technologies for mitigating global climate change. A white paper Washington,D.C.,1997.
    [135] Garcia-Labiano F., Adanez J.,de Diego L.F., Gayan P. ,Abad A. Effect of pressure on the behavior of copper-,iron-,and nickel-based oxygen carriers for chemical-looping combustion [J]. Energy and Fuels, 2006, 20(1): 26-33.
    [136] Anheden M., Svedberg G. Chemcial-looping combustion combination with integrated coal gasification-a way to avoid CO_2 emission from coal fired power plants without a significant decrease in net power efficiency[C].Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. 1996, Washington,DC.
    [137] Abad A., Garcia-Labiano F., de Diego L., Gayan, P., Adanez J. Reduction kinetics of Cu-,Ni-,and Fe-based oxygen carrier using syngas (CO+H_2) for chemical looping combustion [J]. Energy and Fuels, 2007, 21(4): 1843-1853.
    [138] Mattisson T. G.-L., F., Kronberger B., Lyngfelt A.,Adanez J., Hofbauer H. Chemical-looping combustion using syngas as fuel [J]. Internatioanl Journal of Greenhouse Gas Control, 2007,1(2): 158-169.
    [139] Siriwardane R., Poston J. Chemical-looping combustion of simulated synthesis gas using nickel oxide oxygen carriers supported bentonite [J]. Energy and Fuels, 2007, 21(3): 1582-1591.
    [140] Ishida M., Jin H.G.,Okamoto T. Kinetic behavior of solid particles in chemcial-looping combustion: suppressing carbon deposition in reduction [J]. Energy and Fuels, 1998, 12: 223-229.
    [141] Ryu H.-J. Lee N.-Y., Bae D.-H., Jin G.-T. Carbon deposition characteristics and regenerative ability of oxygen carrier particles for chemical-looping combusiton [J]. Korean Journal of Chemical Engineering, 2003, 20(1): 157-162.
    [142] Cho P., Mattisson T., Lyngfelt A. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion [J]. Industrial Engineering Chemistry Research, 2005, 44: 668-676.
    [143] Jerndal E., Mattisson T., Lyngfelt A. Thermal analysis of chemical-looping combustion [J]. Chemical Engineering Research and Design, 2006, 84(9A): 795-806.
    [144] Mattisson T. J.M., Lyngfelt A. The use of NiO as an oxygen carrier in chemical-looping combustion [J]. Fuel, 2006, 85: 736-747.
    [145] Harrisson D. Greenhouse projiect report[C].First National Conference on Carbon Sequestration. 2001, Pittsburgh,USA.
    [146] Kronberger B., Loffler G., Hofbauer H. Simulation of mass and energy balances of a chemical-looping combustion system [J]. International Journal on Energy for a Clean Environment, 2005, 6(1): 1-14.
    [147] Cho P., Mattisson T., Lyngfelt A. Defluidization conditions for a fluidized bed of iron oxide-,nickel oxide-, and manganese oxide-containing oxygen carriers for chemical-looping combustion [J]. Industrial Engineering Chemistry Research, 2006, 45(3): 968-967.
    [148] Corbella B.M., de Diego, L., Garcia-Labiano F., Adanez J.,Palacios J.M. Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane [J]. Energy and Fuels, 2006, 20(1): 148-154.
    [149] Johansson M., Mattisson T., Lyngfelt A. Investigation of Mn_3O_4 with stabilized ZrO_2 for chemical-looping combustion [J]. Chemical Engineering Research and Design, 2006, 84(9A): 807-818.
    
    [150] Mattisson T. J.M., Lyngfelt A. CO_2 capture from coal combustion using chemical-looping reactivity investigation of Fe, Ni and Mn based oxygen carrierrs using syngas.[C].The 2006 Clearwater Coal Conference. 2006, Clearwater, Florida,USA.
    [151] HSC (?)4.0 fow Windows, chemical reaction and equilibrium software with extensive thermochemical database, Outokumpu Research Oy.1999
    [152] De Diego L.F., Garacia-Labiano F., Adanez J.,Gayan P., Abad A., Corbella B.M., Palacios J.M. Development of Cu-based oxygen carriers for chemcial-looping combustion [J]. Fuel, 2004, 83(13): 1749-1757.
    [153] Copeland R.J., Alptekin G., Cesario M., Gershanovich Y. Sorbent energy transfer sysem (SETS) for CO_2 separation with high efficiency[C].Proceedings of the 27th International Technical Conference on Coal Utilization&Fuels Systems. 2002, Florida, USA, 719-729.
    [154] de Diego L.F., Gayan P., Garacia-Labiano F., Celaya J., Abad A., Adanez J. Impregnated CUO/Al_2O_3 oxgyen carriers for chemical-looping combustion: avoiding fluidized bed agglomeration [J]. Energy and Fuels, 2005, 2005(19): 1850-1856.
    [155] Abad A., Mattisson T., Lyngfelt A., Johansson M. The use of iron oxide as oxygen carrier in a chemical-looping combustor [J]. Fuel, 2007, 86(7-8): 1021-1035.
    [156] Ishida M., Takeshita K., Suzuki K., Ohba T. Application of Fe2O3-Al2O3 composite particles as solid looping material of the chemical-loop combustor[J]. Energy and Fuels, 2005, 19(6): 2514-2518.
    [157] He F., Wang H., Dai Y.-N. Application of Fe_2O_3/Al_2O_3 composite particles as oxgyen carrier of chemical looping combustion [J]. Journal of Natural Gas Chemistry, 2007, 16(2): 155-161.
    [158] Cho P., Mattisson T., Lyngfelt A. Comparision of Iron-,nickel-,copper-and manganese-based oxygen carriers for chemcial-looping combustion [J]. Fuel, 2004, 83(9): 1215-1225.
    [159] Ravindranathan P., Patil K.C. One-step process for the preparation of gamma-Fe_2O_3 [J]. Journal of Materials Science Letter, 1986, 5(2): 221-222.
    [160] Mallikarjuna N.N., Govindaraj B., Lagashetty A., Venkataraman A. Combustion derived ultrafine γ-Fe_2O_3 structure,morphology and thermal studies[J]. Journal of Thermal Analysis and Calorimetry,, 2003, 71: 915-925.
    [161] Deshpande K., Mukasyan A., Varma A. Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties.Chemical Materials [J]. Chemistry Materials, 2004, 16(24): 4896-4904.
    [162] Deshpande K., Nersesyan M., Mukasyan A.,Varma A. Novel ferrimagnetic iron oxide nanopowders [J]. Industrial Engineering Chemistry Research, 2005, 44(16): 6196-6199.
    [163] Apte S.K., Naik S.D., Sonawane R.S., Kale B.B. Synthesis of nanosize-necked structure a-and γ-Fe_2O_3 and its photocatalytic activity [J]. Joural of American Ceramic Society, 2007, 90(2): 412-414.
    [164] Toniolo J., Takimi, A.S., Andrade,M.J., Bonadiman,R., Bergmann,C.P. Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and alfa-Fe_2O_3) particles [J]. Joural of Materials Science, 2007, 42(4785-4791).
    [165] Kingsley J.J., Patil K.C. A novel combustion process for the synthesis of fine particle a-alumina and related oxide materials [J]. Joural of Materials Science Letter, 1988, 6(11-12): 427-432.
    [166] Bhaduri S., Zhou E., Bhaduri S.B. Auto ignition processing of nanocrystal α-Al_2O_3 [J]. Nanostructure Materials, 1996, 7(5): 487-496.
    [167] Floz D.C., Clark D.E. Microwave synthesis of alumina powders [J]. The American Ceramic Society Bulletin, 2000, 2: 63-67.
    [168] Mimani T., Patil K.C. Solution combustion synthesis of oxides and their composites [J]. Materials Physics and Mechanics 2001, 4: 134-137.
    [169] Chen C.-C., Huang,K.-T. Parametric effects of low-temperature combustion synthesis of alumina [J]. Journal of Materials Research, 2005, 20(2): 423-431.
    [170] Pathak L.C., Singh T.B., Das S., Verma A.K., Ramachandrarao P. Effect of PH on the combustion synthesis of nano-crystalline alumina powder [J]. Materials Letter, 2002, 57: 380-385.
    [171] Li J., Pan Y.B., Xiang C.S., Ge Q.M., Guo J.K. Low temperature synthesis of ultrafine α-Al_2O_3 powder by a simple aqueous sol-gel process [J]. Ceramics International, 2006, 32: 587-591.
    
    
    [172] Toniolo J.C. L.M.D., Takimi A.S., Bergmann C.P. Synthesis of alumina powders bythe glycine-nitrate combustion process [J]. Materials Research Bulletin, 2005, 40:561-571
    
    [173] Prieto M.d.C, amores, J.M.G., Escribano V.S., Busca, G. Characterization ofcoprecipitated Fe_2O_3-Al_2O_3 powders [J]. Joural of Materials Chemistry, 2004, 4(7):1123-1130.
    
    [174] Kakos J., Baca L., Veos P., Pach L. Photoluminescence spectra and crystallization ofθ-Al_2O_3 and a-Al_2O_3 from AlOOH-Fe(NO_3)_3 gels [J]. Journal of Sol-Gel Science andTechnology, 2001, 21: 167-172.
    
    [175] Tartaj P., Tartaj J. Preparation, characterization and sintering behavior of sphericaliron oxide doped alumina particles [J]. Acta Materialia, 2002, 50(1): 5-12.
    
    [176] Liu M., Li H.B, Xiao L., Yu W.X., Lu Y., Zhao Z.D. XRD and Mossbauerspectroscopy investigation of Fe_2O_3-Al_2O_3 nano-composite [J]. Journal ofMagnetism and Magnetic Materials 2005, 294(3): 294-297.
    
    [177] Wolska E., Szajda W. The effect of cationic and anionic substitution on the a-(Al,Fe)_2O_3 lattice parameters [J]. Solid State Ionics 1988, 28-30: 1320-1323.
    
    [178] Villafuerte-Castrejón M.E., Castillo-Pereyara,E., Tartaj J., Fuentes L., Bueno-Baques D., Gonzalez G., Matutes-Aquino J.A. Synthesis and AC magneticsusceptibility measurements of Fe(_(2-x))Al_xO_3 compounds [J]. Journal of Magnetismand Magnetic Materials, 2004, 272-276: 837-839.
    
    [179] Polli A., Lange F.F., Levi C.G. Crystallization behavior and microstructure evolutionof (Al,Fe)_2O_3 synthesized from liquid precursors [J]. Joural of American CeramicSociety, 1996, 79(7): 1996.
    
    [180]王欣宇,韩颖超,李世普,闫玉华.自燃烧法制备纳米羟基磷灰石粉的机理探 讨及影响因素[J].硅酸盐学报,2002,30(5):564-568.
    
    [181]天津化工研究院等编.无机盐工业手册(上册)[M].北京:化学工业出版社,1988.
    
    [182] Erri P., Pranda P.,Varma A. Oxidizer-fuel interactions in aqueous combustion synthesis. 1. iron(Ⅲ) nitrate-model fuels[J]. Industrial Engineering Chemistry Research, 2004, 43(12): 3092-3096.
    
    [183] Wieczorek-Ciurowa K., kozak A.J. The thermal decomposition of Fe(NO_3)_3.9H_2O[J]. Journal of Thermal Analysis and Calorimetry, 1999, 58: 647-651.
    [184] Pederson L.R., Maupin G.D., Weber W.J., Mccready D.J., Stephens, R.W. Combustion synthesis of YBa_2Cu_3O_(7-x): Glycine/metal nitrate method [J]. Materials Letter, 1991, 10(9): 437-443.
    [185] Qiu Y., Gao L. Metal-urea complex-a precursor to metal nitrides [J]. Joural of American Ceramic Society, 2004, 87(3): 352-357.
    [186] Carp O., Patron, L., Diamandescu, L., Reller, A. Thermal decomposition study of the coordination compound [Fe(urea)_6](NO_3)_3 [J]. Thermochimica Acta 2002, 390(1-2): 169-177.
    [187] Hwang C.-C., Wu T.-Y., Wan J., Tsai J.-S. Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders [J]. Materials Science and Engineering B, 2004, 111: 49-56.
    [188] Shea L.E., McKittrick J., Lopez O.A. Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process [J]. Journal of American Ceramic Society, 1996, 79(12): 3257-3265.
    
    [189] Fumo D.A., Jurado J.R., Segadaes A.M., Frade J.R. Combustion synthesis of iron- substituted strontium titanate perovskites [J]. Materials Research Bulletin, 1997, 32(10): 1459-1470.
    [190] Chick L.A., Pederson L.R., Maupin G.D., Bates J.L.,Thomas L.E., Exarhos G.J. Glycine-nitrate combustion synthesis of oxide ceramic powders [J]. Matterials Letters, 1990, 10(12): 6-12.
    [191] Patil K.C., Aruna S.T., Mimani T. Combustion synthesis: an update J]. Current Opinion in Solid State and Materials Science, 2002, 6(6): 507-512.
    [192] Pacurariu C., Lazau I., Ecsedi Z., Lazau R., Barvinschi P., Marginean G. New synthesis methods of MgAl_2O_4 spinel [J]. Journal of European Ceramic Society. 2007,27(707-710).
    [193] Jain S.R., Adiga K.C., Vemeker V.R.P. A new appoach to thermochemical calculation of condensed fuel-oxidizer mixtures [J]. Combustion and Flame, 1981, 40(1): 71-76.
    [194] Hong C.S., Ravindranathan P., Agrawal D.K., Roy R. Synthesis and Sintering of Ca_(0.5)Sr_(0.5)Zr_4P_6O_(24) powders by the decomposition/combustion of Ca-,Sr-,nitrate- ammonium dihydrogen phosphate-urea mixtures [J]. Journal of Materials Research, 1994, 9(9): 2398-2403.
    [195] Kakade M.B., Ramanathan S., Ravindran P.V. Yttrium aluminum garnet powders by nitrate decomposition and nitrate-urea solution combustion reactions-a comparative study [J]. Journal of Alloys and Compounds, 2003, 350: 123-129.
    [196] del Carmen Prieto M., Gallardo Amores J.M., Escribano V.S., Busca G. Characterizaiton of coprecipitated Fe_2O_3-Al_2O_3 powders [J]. Joural of Materials Chemistry, 1994,4(7): 1123-1130.
    [197] Penland R.B., Mizushima,S., Curran,C, Quagliano,J.V. Infrared absorption spectra of inorganic coordination complexes. X. Studies of some metal-urea complexes [J]. Joural of American Chemistry Society, 1957, 79(7): 1575-1578.
    [198] Carp O., Patron L., Reller A. Coordination compounds containing urea as precursors for oxides-A new route of obtaining nanosized CoFe_2O_4 [J]. Materials Chemistry and Physics,, 2007, 101(1): 142-147.
    [199] Macedo M.I.F., Bertran, C.A., Osawa C.C. Kinetics o the γ→α-alumina phase transformation by quantitative X-ray diffraction [J]. Journal of Materials Science, 2007, 42(8): 2830-2836.
    [200] Liu X.-M., Zhang X.-G., Fu S.-Y. Preparation of urchlike NiO nanostructures and their electrochemical capacitive behaviors [J]. Materials Research Bulletin, 2006, 41(3): 620-627.
    [201] Xin X.S., Lu,Z., Zhou B.B., Huang X.Q., Zhu R.B., Sha X.Q.,Zhang Y.H.,Su,W.H. Effect of synthesis conditions on the performance of weakly agglomerated nanocrystalline NiO [J]. Journal of Alloys and Compounds, 2007, 427(1-2): 251-255.
    [202] Shek C.H., Lai J.K.L., Gu T.S., Lin G.M. Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al_2O_3 powders [J]. Nanostructured Materials, 1997, 8(5): 605-610.
    [203] Pfeifer P., Liu K. Multilayer adsorption as a tool to investigate the fractal nature of porous adsorbents [J]. Studies in Surface Science and Catalysis, 1997, 104: 625-677.
    [204] Ismail I.M.K., Pfeifer P. Fractal analysis and surface roughness of nonporous carbon fibers and carbon blacks [J]. Langmuir, 1994, 10: 1532-1538.
    [205] Wang C.M., Wu H., Chung S.L. Optimization of experimental conditions based on Taguchi roubust design for the preparation of nano-sized TiO_2 particles by solution combustion method [J]. Joural of Porous Materials, 2006, 13(3): 317-314.
    
    
    [206] Kim K.D., Han D.N., Kim H.T. Optimization of experimental conditions based on the Taguchi roubust design for the formation of nano-sized silver particles by chemical reduction method [J]. Chemical Engineering Journal 2004, 104(1-3): 55-61.
    
    [207] Chuang S.Y., Dennis J.S., Hayhurst A.N., Scott S.A. Development and performance of Cu-based oxygen carriers for chemical-looping combustion [J]. Combustion and Flame, 2008, 154(1-2): 109-121.
    
    [208]何少华,文竹青,娄涛.试验设计与数据处理[M].长沙:国防科技大学出版社, 2002.
    
    [209] Peng T.Y., Liu X., Dai K., Xiao J.R., Song H.B. Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystaline alumina powder [J]. Materials Research Bulletin, 2006, 41: 1638-1645.
    
    [210] Li J., Wu Y.S., Pan Y.B., Guo J.K. Alumina precursors produced by gel combustion [J]. Ceramics International 2007, 33(3): 361-363.
    
    [211]陈永红, 童悦, 魏亦军,刘杏琴,孟广耀.Pr_(0.6)Sr_(0.4)FeO_(3-δ)钙钛矿结构材料的 制备与表征[J].稀有金属,2007,31(1):57-62.
    
    [212] Jerndal E., Mattisson T., Lyngfelt A. Thermal analysis of chemical-loopingcombustion [J]. Chemical Engineering Research and Design, 2006, 84(A9): 795-806.
    
    [213] Eastman P.F., Cutter I.B. Effects of water vapour on initial sintering of magnesia[J].Journal of American Ceramic Society, 1966, 49(10): 526-536.
    
    [214] Apostolescu N., Geiger B., Hizbullah K., Jan M.T., Kureti S. Selective catalyticreduction of nitrogen oxides by ammonia on iron oxide catalysts [J]. AppliedCatalysis B: Environmental 2006, 62(1-2): 104-114.
    
    [215] Kodama T. F.A., Shimizu K., Kitayama Y. Kinetics of metal oxide-catalyzed CO_2gasification of coal in a fluidized-bed reactor for solar thermochemical process [J].Energy and Fuels, 2001, 15: 1200-1206.
    
    [216] Li X.G., Ma B.G., Xu L., Luo Z.T., Wang K. Catalytic effect of metallic oxides oncombustion behavior of high ash coal [J]. Energy and Fuels, 2007, 21(5): 2669-2672.
    
    [217] Liu H.Z., Li X.N. Relationship between precursor phase composition andperformance of catalyst for ammonia synthesis [J]. Industrial Engineering ChemistryResearch, 1997, 36(2): 335-341.
    
    [218] Nielsen A. Ammonia synthesis: exploratory and applied research [J]. CatalysisReviews Science and Engineering 1981, 23(1-2).
    
    [219] Garcia-Labiano F., de Diego L.F.,Adanez J., Abad A.,Gayan P. Temperaturevariations in the oxygen carrier particles during their reduction and oxidization in achemical-looping combustion system [J]. Chemical Engineering Science, 2005, 60:851-862.
    
    [220] Son S.R., Kim S.D. Chemical-looping combustion with NiO and Fe_2O_3 in athermobalance and circulated fluidized bed reactor with double loops [J]. IndustrialEngineering Chemistry Research, 2006,45: 2689-2696.
    
    [221] Ryu H.-J. B.D.-H., Han K.-H.,Lee S.-Y., Jin G.-T., Choi J.-H. Oxidization andreduction characteristics of oxgyen carrier particles and reaction kinetics byunreacted core model [J]. Korean Chemical Engineering Research, 2001,18(6): 831-837.
    
    [222] Abad A., Garcia-Labiano F., de Diego L.F., Gayan, P., Adanez J. Reduction kineticsof Cu-,Ni-,and Fe-based oxygen carriers using syngas (CO+H_2) for chemical-loopingcombustion [J]. Energy and Fuels, 2007, 21(4): 1843-1853.
    
    [223] Abad A., Adanez J., Garcia-Labiano F., de Diego L., Gayan, P., Celaya J. Mappingof the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers inchemical-looping combustion [J]. Chemical Engineering Science, 2007, 62(1-2):533-549.
    
    [224] Garcia-Labiano F., de Diego L.F., Adanez J., Abad A., Gayan P. Reductionand oxidization kinetics of a copper-based oxgyen carrier prepared by impregantaionfor chemical-looping combustion [J]. Industrial Engineering Chemistry Research,2004, 43.
    
    [225] Ishida M., Jin H.G. A novel combustor based on chemical-looping reactions and itsreaction kinetics [J]. Journal of Chemical Engineering of Japan, 1994, 27(3): 296-301.
    
    [226] Ryu H.-J. B.D.-H., Jin G.-T. Effect of temperature on reduction reactivity of oxygencarrier particles in a fixed bed chemical-looping combustor [J]. Korean ChemicalEngineering Research, 2003, 20(5): 960-966.
    
    [227] Bartholomew C.H. Mechanisms of catalyst deactivation [J]. Applied Catalysis A:General 2001, 212: 17-60.
    
    [228] Forzatti P., Lietti L. Catalyst deactivation [J]. Catalysis Today 1999, 52: 165-181.
    
    [229] Cho P., Mattisson T., Lyngfelt A. Defluidization conditions for fluidized -bed of iron, nickel, and manganese oxide-containing oxygen-carriers for chemical-looping combustion [J]. Industrial Engineering Chemistry Research, 2006, 45(3): 968-977.
    
    [230] Claridge J.B., Green M.L.H., Trang S.C., York A.P.E., Ashcroft A.T., Battle P.D. A study of carbon deposition on catalyst during the partial oxidization of methane to synthesis gas [J]. Catalysis Letters, 1993, 22: 299-305.
    
    [231] Cho P., Mattisson T., Lyngfelt A. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion [J]. Industrial Engineering Chemistry Research, 2005, 25(4): 668-676.
    
    [232] Ishida M., Jin H.G.,Okamoto T. Kinetic behavior of solid particle in chemical-looping combustion: suppressing carbon deposition in reduction [J]. Energy and Fuels, 1998, 12(2): 223-229.
    
    [233] Ryu H.-J. L.N.Y., Bae D.H., Jin G.T. Carbon deposition characteristics and regenerative ability of oxygen carrier particles for chemical-looping combustion [J]. Korean Chemical Engineering Research, 2003, 20(1): 157-162.
    
    [234]胡志强.无机材料科学基础教程[M].北京:化学工业出版社,2004.
    
    [235] Muan A. Phase equilibria at high temperature in oxides systems involving changes inoxided states [J]. Am.J.Sci., 1958, 250: 420.
    
    [236] West A.R. Solid state chemistry and its application[M].New York: Wiley, 1984.
    
    [237] Hatanaka T., Matsuda S., Hatano H. A new-concept gas-solid combustion system'MERIT' for high combustion efficiency and low emissions[C].Intersociety energyconversion engineering conference. 1997, Honolulu, Hawaii, 944-948.
    
    [238] Mattisson T., Johansson M., Lyngfelt A. Multicycle reduction and oxidiation ofdifferent types of iron oxide particles-application to chemical-looping combustion [J].Energy and Fuels, 2004, 18: 628-637.
    
    [239] Zafar A., Abad A., Mattisson T., Gevert B. Reaction kinetics of freeze-granulatedNiO/MgAl_2O_4 oxygen carrier particles for chemical-looping combustion [J]. Energyand Fuels, 2007, 21(2): 610-618.
    
    [240] Satterfield C.N. Heterogeneous catalysis in industrial practice[M]. 2nd eded,Malabar, Florida, USA: Krieger Publishing, 1991.
    
    [241] Wang B.-W., Yan R., Lee D.H., Liang D.T., Zheng Y., Zhao H.-B.,Zheng C.-G.Thermodynamic investigation of chemical looping combustion(CLC) with syngas [J].Energy and Fuels, 2008.
    
    [242] Sinfelt J.H. Bimetallic catalysts: Discoveries, concepts and applications,An ExxonMonograph[M]. John Wiley & Sons, 1983.
    
    [243] Morales M.R., Barbero B.P., Cadus L.E. Evaluation and characterization of Mn-Cumixed oxide catalysts for ethanol total oxidization : Influence of copper content [J].Fuel, 2008, 87(7): 1177-1186.
    
    [244] Tanaka Y., Utaka T., Kikuchi R., Takeguchi T., Sasaki K., Eguchi K. Water gas shiftreaction over Cu-based mixed oxides for CO removal from the reformed fuels [J].Applied Catalysis A: General, 2003, 242(2): 287-295.
    
    [245] Shangguan W.F., Teraoka Y.,Kagawa, S. Simultaneous catalytic removal of NOxand diesel soot particulates over ternary AB_2O_4 spinel-type oxides [J]. AppliedCatalysis B:Environmental, 1996, 8(2): 217.
    
    [246] Tamhankar S.S., Bagajewicz M., Gavalas G.R., Sharma P.K., Flytzani-Stephanopouls M.J. Mixed-oxide sorbents for high-temperature of hydrogen sulfide[J]. Industrial Engineering Chemistry Process Design and Development, 1986, 25(2):429-437.
    
    [247] Gangwal S.K., Harkins S.M., Stonger J., Bossart S.I. Testing of novel sorbents forH2S removal from coal gas [J]. Environmental Progress, 1989, 8(1): 26-34.
    
    [248] Kobayashi M.S.H., Nunokawa M. High-temperature sulfidation behavior of reducedzinc ferrite in simulated coal gas revealed by in situ X-ray diffraction analysis andmossbauer spectroscopy [J]. Energy and Fuels, 2002, 16(3): 601-607.
    
    [249]黄传敬, 郑小明,费金华.甲烷二氧化碳重整制合成气镍-钴双金属催化剂[J]. 应用化学,2001,18(9):741-744.
    
    [250] Villa R., Cristiani C, Groppi G., Lietti L., Forzatti P., Cornaro U., Rossini S. Nibased mixed oxide materials for CH_4 oxidization under redox cycle conditions [J].Journal of Molecular Catalysis: Chemical, 2003, 204-205: 637-646.
    
    [251] Erri P., Varma A. Spinel-supported oxygen carrier for inherent CO_2 separationduring power generation [J]. Industrial Engineering Chemistry Research, 2007, 46:8597-8601.
    
    [252] Erri P., Varma A. Solution combustion synthesized oxygen carriers for chemicallooping combustion [J]. Chemical Engineering Science, 2007, 62: 5682-5687.
    
    [253]李玉敏.工业催化原理[M].天津大学出版社,2001.
    
    [254]王文祥, 徐杰,马福勤.氧化铁(Ⅲ)还原动力学研究[J].物理化学学报,1988, 4(3):332-336.
    
    [255]陈镜泓,李传儒.热分析及应用[M].科学出版社,1985.
    
    [256]张春雷,李爽,余加,徐静,吴通好,张密林,彭少逸.铁酸盐MFe_2O_4的氢 气还原热失重分析和氧缺位铁酸盐MFe_2O_(4-δ)的制备条件[J].无机化学学报, 1999,15(2):211-217.
    
    [257] Nakano Y., Ishida M., Akehata T., Shirai T. Pressure increase and dynamic effective diffusivity' within a powder bed during reaction-reduction of iron oxide powders by hydrogen at 900 ℃ [J]. Metallurgical Transactions B, 1975, 6B(3): 429-34.
    
    [258] Bolt P.H., Habraken F.H.P.M., Geus J.W. Formation of nickel, cobalt, copper, and iron aluminates from α- and γ-alumina-supported oxides; A comparative study [J]. Journal of Solid State Chemistry, 1998, 135: 59-69.
    
    [259] Patrick V., Gavalas G.R., Sharma P.K. Industrial Engineering Chemistry Research, 1993,32:519-532.
    
    [260] Svoboda K., Slowinski G., Rogut J., Baxter D. Thermodyanmic possibilities and constraints for pure hydrogen production by iron based chemical looping process at low temperatures [J]. Energy Conversion and Management, 2007, 48(12): 3063-3073.
    
    [261] Vernon C.F.H., Clark A. Journal of Catalysis, 1968, 11: 305.
    
    [262]徐杰,王文祥.CuO-Fe_2O_3体系的相互作用[J].催化学报,1992,13(6):420-424.
    
    [263] Cao Y., Casenas B., Pan W.-P. Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal,biomass, and solid waste as solid fuels and CuO as an oxygen carrier[J]. Energy and Fuels, 2006, 20: 1845-1854.
    
    [264] Garcia-Labiano, Gayan P., F., Adanez J., de Diego L.F.,Forero C.R. Solid waste managment of a chemical-looping combustion plant using Cu-based oxygen carriers[J]. Environmetal Science & Technology, 2007, 41: 5882-5887.
    
    [265]傅利勇, 吕绍洁, 邱发礼.CH_4、CO_2和O_2制合成气反应中载体对Ni催化剂 抗氧化性能的影响[J].分子催化,1999,13(5):367-372.
    
    [266] Schulze K., Makowski W., Chyzy R., Dziembaj R., Geismar G. Nickel doped hydrotalcites as catalyst precursors for the partical oxidization of light paraffins [J]. Applied Clay Science, 2001,18: 59-69.
    
    [267]杨立英,陈曙.不同结构铁酸盐尖晶石催化性能研究[J].北京服装学院学报, 1997,17(1):7-12.
    
    [268] Mattisson T. J.M., Lyngfelt A. Multicycle reduction and oxidizaiton of differenttypes of iron oxide particles-application to chemical-looping combustion [J]. Energyand Fuels, 2004,18:628-637.
    
    [269] Horiuchi T., Sakuma K., Fukui T., Kubo, Y. Suppression of carbon deposition in theCO_2-reforming of CH4 by adding basic metal oxides to a Ni/Al_2O_3 catalyst [J].Applied Catalysis A:Genera, 1996,144(1-2): 111.
    
    [270]纪敏,周美娟,毕颖丽,甄开吉,吴越.Ni/γ-Al_2O_3,Ni/MgO,Ni/SiO_2催化剂 上甲烷与二氧化碳重整反应的研究[J].分子催化,1997,11(1):6-12.
    
    [271] Johansson E., Mattisson T., Lyngfelt A., Thunman H. Combustion of Syngas andNatural Gas in a 300 W Chemical-Looping Combustor [J]. Chemical EngineeringResearch and Design, 2006, 84(9): 819-827.
    
    [272] Lyon R.K., Cole J.A. Unmixed combustion : an alternative to fire[J]. Combustionand Flame, 2000, 121(1-2): 249-261.
    
    [273] Yang J.-B., Cai N.-S., Li Z.-S. Reduction of iron oxide as an oxygen carrier by coalpyrolysis and steam char gasification intermediatee products [J]. Energy and Fuels,2007,21:3360-3368.
    
    [274] Dennis J.S., Scott S.A., Hayhurst A.N. In situ gasification of coal using steam withchemical looping: a technique for isolating CO_2 from burning a solid fuel [J]. Journalof the Energy Institure, 2006, 79(3): 187-190.
    
    [275] Scott S.A., Dennis J.S., Hayhurst A.N. In situ gasification of a solid fuel and CO_2separation using chemcial looping [J]. AIChE Journal, 2006, 52(9): 3325-3328.
    
    [276] Berguerand N., Lyngfelt A. The use of petroleum coke as fuel in a 10 kWthchemical-looping combustor [J]. Internatioanl Journal of Greenhouse Gas Control,2008,2(2): 169-179.
    
    [277] Leion H., Mattisson T., Lyngfelt A. The use of petroleum coke as fuel in chemical-looping combustion [J]. Fuel, 2007, 86(12-13): 1947-1958.
    
    [278] Leion H., Mattisson T., Lyngfelt A. Solid fuels in chemcial-looping combustion [J].Intematioanl Journal of Greenhouse Gas Control, 2008, 2(2): 180-193.
    
    [279] Shen L.-H., Wu J.-H., Xiao J. Experiments on chemical looping combustion of coalwith NiO based oxygen carrier [J]. Combustion and Flame, 2008, in press.
    
    [280] Gupta P., Velazquez-Vargas L.G., Fan L.-S. Syngas redox (SGR) process to producehydrogen from coal derived syngas [J]. Energy and Fuels, 2007, 21(5): 2900-2908.
    
    [281] Gupta P., Velazquez-Vargas L.G., Thomas T., Fan L.-S. Chemical loopingcombustion of coal to produce hydrogen[C].Proceedings of the 30th InternationalTechnical Conference on Coal Utilization&Fuel Systems. 2005, 379-382.
    
    [282] Yang J.-B., Cai N.-S., Li Z.-S. Hydrogen production from the steam-iron processwith direct reduction of iron oxide by chemical looping combustion of coal char [J].Energy and Fuels, 2008, 22(4): 2570-2579.
    
    [283] Zhao H.-B., Liu L.-M., Wang B.-B., Xu D., Zheng C.-G. Sol-gel derivedNiO/NiAl_2O_4 oxygen carriers for chemical-looping combustion by coal char [J].Energy and Fuels, 2008, 22: 898-905.
    
    [284] Yang H.P., Chen H.P., Ju F.D., Yan R., Zhang S.H. Influence of pressure on coalpyrolysis and char gasification [J]. Energy and Fuels, 2007, 21(6): 3165-3170.
    
    [285] Tanaka S., U-emura T., Ishizaki K., Nagayoshi K., Ikenaga N., Ohme H., Suzuki T.CO_2 gasification of iron-loaded carbons:activation of the iron catalyst with CO [J].Energy and Fuels, 1995, 9: 45-52.
    
    [286] Yu J.-L., Tian F.-J., Chow M.C., Mckenzie L.J., Li C.-Z. Effect of iron on thegasification of Victorian brown coal with steam: enhancement of hydrogenproduction [J]. Fuel, 2006, 85: 127-133.
    
    [287] James CM. Observations of steam chemical-looping gasification using hematite(iron oxide,Fe_2O_3)and illinois basin coals. [PhD Thesis].Reserved: Southern IllinoisUnversity 2000.
    
    [288]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    
    [289]王俊琪,方梦祥,骆仲泱,岑可法.煤的快速热解动力学研究[J].中国电机工程 学报,2007,27(17):18-22.
    
    [290] Gale T.K., Bartholomew H.C., Fletcher T.H. Effect of pyrolysis heating rate on intrinsic reactivates of coal chars [J]. Energy and Fuels, 1996, 10: 766-775.
    
    [291]崔洪,朱珍平,刘振宇, 顾永达.程序升温热重法研究扎赍诺尔煤的气化动力 学[J].燃料化学学报,1996,24(5):399-403.
    
    [292]周静,龚欣,于遵宏.煤焦二氧化碳气化动力学研究(Ⅱ)非等温热重法[J].煤炭转 化,2003,26(1):78-81.
    
    [293] Sacco A.J., Reid R.C. Morphological changes in an iron catalysts and the formationof carbon fibers in the C-H-O-Fe system [J]. Carbon, 1979, 17(6): 459-464.
    
    [294] Ishihara T. F.T., Mizuhara T. Chemistry Letters, 1991: 2237-2240.
    
    [295] Tamaura Y., Tabata M. Complete reduction of carbon dioxide to carbon usingcataion-excess magnetite [J]. Nature, 1990, 346: 255-256.
    
    [296] Kodama T., Tabata M., Sano T., Tsuji M., Tamaura Y. XRD and Mossbauer studieson oxygen-deficient Ni(II)-bearing ferrite with a high reactivity for CO2decomposition to carbon [J]. Journal of solid state Chemistry, 1995, 120(1): 64-69.
    
    [297] Kodama T., Sano Y., Yoshida T., Tsuji M., Tamaura Y. CO_2 decomposition tocarbon with ferrite-derived metallic phase at 300 ℃[J]. Carbon, 1995, 33(10): 1443-1447.
    
    [298] Zhang C.-L., Li S., Wang L.-J., Wu T.-FL, Peng,S.-Y. Studies on the decompositionof carbon dioxide into carbon with oxygen-deficient magnetite II. The effects ofproperties of magnetite on activity of decomposition CO_2 and mechanism of thereaction [J]. Materials Chemistry and Physics, 2000, 62: 52-61.
    
    [299] Zhang C.-L., Li S., Wang L.-J., Wu T.-FL, Peng,S.-Y. Studies on the decompositionof carbon dioxide into carbon with oxygen-deficient magnetite I.Preparation,characterizaiton of magnetite, and its activity of decomposing carbondioxide [J]. Materials Chemistry and Physics, 2000, 62: 42-51.
    
    [300] Shin H.C., Choi S.C. Mechanism of M ferrites (M=Cu and Ni) in the CO_2decomposition reaction [J]. Chemistry of Materials, 2001, 13(4): 1238-1242.
    
    [301] Shin H.C., Oh J.H., Han S.H., Choi S.C. The carbon dioxide decomposition reactionwith (Ni_xCu_(1-x))Fe_2O_4 solid solution [J]. Physica Status Solidi(a), 2002, 189(3): 741-745.
    
    [302] Khedr M.H., Farghali A.A. Microstructure,kinetics and mechanisms of CO_2 catalyticdecomposition over freshly reduced nano-crystallite CuFe_2O_4 at 400-600 ℃ [J].Applied Catalysis B: Environmental, 2005, 61: 219-226.
    
    [303]陈林深,冯春木,傅毛生,陈诵英.掺杂铬对NiFe_2O_4的磁性和结构稳定性影响 [J].化学物理学报,2003,16(6):487-490.
    
    [304] Tang Z.X., Sorensen C.M.,Klabunde, K.J., Hadjipanayis G.C. Size-dependent curie temperature in nanoscale MnFe_2O_4 particles [J]. Physical Review Letters, 1991, 67(25): 3602-3605.
    
    [305] Kameoka S., Tanabe T., Tsai A.P. Spinel CuFe_2O_4: a precursor for copper catalyst with high thermal stability and activity [J]. Catalysis Letters, 2005, 100(1-2): 89-93.
    
    [306]张平,于波,张磊.铁酸铜在形成氧缺位体过程中的失氧机理[J].中国科学B 辑:化学,2008,38(7):624-630.
    
    [307] Zhang C.-L., Li S.,Wu T.-H., Peng S.-Y. Reduction of carbon dioxide into carbon bythe active wustite and the mechanism of the reaction [J]. Materials Chemistry andPhysics, 1999, 58: 139-145.
    
    [308] Farghali A., Khedr M.H., Addel Khalek A.A. Catalytic decomposition of carbondioxide over freshly reduced activated CuFe_2O_4 nano-crystals [J]. Journal ofmaterials Processing Technology, 2007, 18: 81-87.
    
    [309] Khedr M.H., Bahgat M., Nasr M.I., Sedeek E.K. CO_2 decomposition over freshlyreduced nanocrystalline Fe_2O_3 [J]. Colloids and Surfaces A: PhysicochemistryEngineering Aspects, 2007, 302: 517-524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700