毛竹根部可培养细菌种群多样性及其促生功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国特色植物毛竹为研究材料,采用传统的分离培养方法,对毛竹根部内生细菌的多样性进行了研究。利用LB和KB两种培养基对温室毛竹野生株和温室毛竹航天诱变株根部的内生细菌进行分离和计数,发现毛竹野生株内生细菌菌落数在两种培养基上分别为1.68×106 cfu/g FW和1.95×106 cfu/g FW,毛竹诱变株内生细菌菌落数分别为9.7×106 cfu/g FW和1.355×107 cfu/g FW,诱变株内生细菌菌落数大于野生株内生细菌菌落数。根据细菌菌落形态特征,共得到126株细菌,通过ARDRA及16S rDNA序列系统发育分析表明,毛竹野生株的66株内生细菌分属于6大类群,15个菌属;毛竹诱变株的60株内生细菌分属于5大类群,8个菌属。其中,Alphaproteobacteria、Gammaproteobacteria、Firmicutes、Actinobacteria、Bacteroidetes是共同存在的5大类群,毛竹野生株和诱变株内生细菌中优势类群均为Alphaproteobacteria,最优势种群均为根瘤菌属(Rhizobium)。另外,在毛竹诱变株根内得到了1株Betaproteobacteria类群的细菌,而毛竹野生株根内未分离到此类群的细菌。
     本文发现一株Parapedobacter属的细菌,通过生物学特性和系统发育上的研究确定为一个新种并命名为Parapedobacter phyllostachys sp. nov.。
     此外,本文对387株毛竹根部细菌解磷、产IAA及分泌铁载体的功能进行了初步测定,结果表明具有解磷活性的内生细菌为36株,菌株BK24的解磷活性最高,为369.06 mg/L;产IAA的菌株为58株,菌株AP 5-2产IAA的活性最高,为4.08μg/mL;分泌铁载体的菌株为78株,菌株H87的分泌能力最强,达到了+++++的极高量水平。
The diversity of culturable endophytic bacteria in the roots of greenhouse moso bamboo (Phyllostachys edulis) plants was investigated by culture-dependent methods. The endophytic bacterial strains isolated from the roots of wild plants are less than that of the space mutant plants. 126 strains with different colony characteristics were isolated with Luria-Bertani and King′s B media. Amplified ribosomal DNA restriction analysis (ARDRA) and partial sequence analysis of 16S rDNA gene indicated that the population diversity of culturable endophytic bacteria was abundant in the roots of greenhouse moso bamboo plants. 66 strains isolated from wild plants were grouped into six groups and fifteen genera, while 60 strains isolated form mutant plants were clustered into five groups and eight genera. The members of Alphaproteobacteria, Gammaproteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were found both in the roots of wild and mutant plants. The majority of root endophytic bacteria were the members of Alphaproteobacteria, while the most dominant genera was Rhizobium. The members of Betaproteobacteria were only found in the roots of space mutant plants. Several potential novel strains were found at the same time.
     A novel endophytic strain AK43 6.1T was studied on the basis of morphological, phylogenetic and chemotaxonomic data, for which the name Parapedobacter phyllostachys sp. nov. is proposed.
     Plant-growth promotion fuctions of 387 bacterial strains isolated from the roots of moso bamboo plants were analyzed. Results showed that there were 36 strains with phosphate-solubilizing activity, 58 strains with IAA producing activity, and 78 strains with siderophore-producing activity. The strain with highest phosphate-solubilizing activity was BK24, 369.06 mg/L; the strain with maximal IAA concentration was AP5-2, 4.08μg/mL; the strain with highest siderophore producing activity was H87.
引文
[1] Sorensen J. The rhizosphere as a habitat for soil microorganisms[J]. Modern soil ecology, 1997, 21-46.
    [2]陈国民.从植物根际分离到的8株细菌的促生作用及初步鉴定[D].武汉:华中农业大学, 2007.
    [3] Kloepper G K, Schroth M N. Plant growth promoting rhizobacteria on radishes[J]. In proceedings of fourth international conference on plant pathogenic bacteria, 1978, 2: 879-892.
    [4] Gnanamanickam S S. Plant-associated bacteria[M]. The Netherlands, 2006.
    [5] Tilak K V B R, Ranganayaki N, Pal K K, et al. Diversity of plant growth and soil health bacteria[J]. Current science, 2005, 50: 233-237.
    [6] Bashan Y, Gina H, de-Bachan L E. Azosirillum-plant relationships: physiological, molecular, agriculture, and environmental advances[J]. Canadian journal of microbiology, 2004, 50: 521-577.
    [7] Xie H, Pasternak J J, Glick B R. Isoloation and characterization of mutants of the plant growth- promoting rhizobacterium Pseudomonas putida 30-84 in the wheat rhizoshere[J]. Journal of bacteriology, 1996, 32: 67-71.
    [8] Peck S C, H Kende. Sequential induction of the ethylene biosynthetic enzymes by indole-3- acetic acid inetiolated peas[J]. Plant molecular biology, 1995, 28: 293-301.
    [9] Gaudin V, Vrain D, Jouanin L. Bacterial genes modifying hormonal banance in plant[J]. Plant physiology and biology, 1994, 32, 11-29.
    [10]夏娟娟.植物促生内生细菌的筛选及其强化油菜富集土壤铅镉重金属的研究[D].南京:南京农业大学, 2007.
    [11] Wang C, Knill E, Glick B R, et al. Effcet of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities[J]. Journal of microbiology, 2000, 46: 898-907.
    [12] Sridevi M, Mallaiah K V. Phosphate solubilization by rhizobium strains[J]. Indian journal microbiol, 2009, 49: 98-102.
    [13] Gyaneshwar P, Parekh L J, Archana G P, et al. Involvement of a phosphate-starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae[J]. FEMS microbiologt letters, 1999, 171: 223-229.
    [14] Idriss E E, Makarewicz O, Frarouk A, et al. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth-promoting effect[J]. Microbiology, 2002, 148: 2097-2109.
    [15] Popavath R N, Gurusamy R, Kannan B N, et al. Assessment of genetic and functional diversity of phosphate solubilizing Fluorescent pseudomonads isolated from rhizospheric soil[J]. BMC microbiology, 2008, 8: 230-243.
    [16] Masalha J, Kosegarten H, Elmaci O, et al. The central role of microbial activity for iron acquisition in maize and sunflower[J]. Biology and fertility of soils, 2000, 30: 433-439.
    [17] Buyer J S, Kratzke M G, Sikora L J. A method for detection of pseudobactin, the siderophore produced by a plant-growth-promoting Pseudomonas strains, in the barley rhizosphere[J]. Applied and environmental microbiology, 1993, 59, 677-681.
    [18]余贤美.海南岛橡胶根际嗜铁细菌B.subtilis CAS15筛选及嗜铁素基因dhbC克隆、表达与功能分析[D].泰安:山东农业大学, 2002.
    [19] David C, Herve C, Nicolas F, et al. The crystal structure of the pyoverdine outer membrance FpyA from Pseudomonas aeruginosa at 3.6。A resolution[J]. Journal of molecular, 2005, 347: 121-134.
    [20] Duffy B K, Defago G. Environmental factors modulating antibiotic and siderophore by Pseudomonas fluorescens biocontrol strains[J]. Applied and environmental microbiology, 1999, 65: 2429-2438.
    [21] Neilands J B, Nakamura K. Detectiom, determination, isolation, characterization and of nicrobial iron chelates[M]. In G. Winkelmann (Eds.) CRC handbook of microbial iron chelates. London: CRC Press, 1991.
    [22] Ryu C M, Farag M A, Hu C H, et al. Bacterial volatiles induce systemic resistance in Arabidopsis[J]. Plant physiology, 2004, 134: 1017-1026.
    [23] Whipps J M. Microbial interactions and biocontrol in the rhizosphere[J]. Journal of experimental biology, 2001, 52: 487-511.
    [24] Honyou Z, Hailei W, Xili L, et al. Improving biocontrol activity of Pseudomonas fluorscens through chromosomal integration of 2,4-diacetyl-phloroglucinol biosynthesis genes[J]. Chinese science bulletin, 2005, 50: 775-781.
    [25] Ongena M, Daayf F, Jacques P, et al. Protection of cucumber against pythium root rot byPseudomonas fluorescent: predominant role of induced resistance over siderophores and antibiosis [J]. Plant pathology, 1999, 48: 66-76.
    [26] Voisard C, Keel C, Haas D, et al. Cyanide production by Pseudomonas fluorscens helps black root rot of tobacco under gnotobiotic conditions[J]. EMBO Journal, 1989, 8: 351-358.
    [27] Walsh U F, Morrissey J P, O’Gara F, et al. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation[J]. Current opinion in biotechnology, 2001, 12: 289-295.
    [28] Tanaka H, Watanabe T. Glucanases and chitinases of bacillus circulans WL-12[J]. Journal of industrial microbiology, 1995, 114: 478-438.
    [29] Kisore G K, Pande S, Rao J N, et al. Pseudomonas aeruginosa inhibits the plant cell wall degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot[J]. European journal of plant pathology, 2005.
    [30] Pieterse C M J, Van P J A, Van W S C M, et al. Rhizobacteria-nediated induced systenic resistance: triggering, signaling and expression[J]. European journal of plant pathology, 2001, 107: 51-61.
    [31] Kobayashi D Y, Palumbo J D. Bacterial endophytes and their effects on plants and uses in agriculture [M]. Microbial endophytes. New York: Marcel Dekker, Inc, 2000, 199-233.
    [32] Hallmann Q A, Hallmann J, Kloepper J W. Bacterial endophytes in cotton: location and interation with other plant-associated bacteria[J]. Canadian journal of microbiology, 1997: 43, 254-259.
    [33] Mcinroy J A, Kloepper J W. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton[J]. Canadian journal of microbiology, 1995: 41, 895-901.
    [34]韩继刚.一株新的水稻植物内生固氮细菌Delftia tsuruhatensis HR4的鉴定及其生物学特性[D].北京:首都师范大学, 2004.
    [35] Adams P D, Kloepper J W. Effects of plant genotype on populations of indigenous bacterial endophytes on nine cotton cultivars grown under filed conditions[J]. Phytopathology, 1998, 88: 2.
    [36] Sturz A V, Christie B R, Matheson B G, et al. Endophytic bacterial communities in the periderm of potato tuber and their potential to improve resistance to soil-borne plant pathogens[J]. Plant pathology, 1999, 48: 360-369.
    [37] Hallmann J, Hallmann Q A, Kloepper J W, et al. Chitin-mediated changes in bacterial communities ofsoil, rhizosphere and within roots of cotton in relation to nematode control[J]. Soil biology and biochemistry, 1999, 31: 551-560.
    [38] Hallmann J. Biotic interaction in plant-pathogen association[M]. Germany, 2001.
    [39] Benhamou N, Kloepper J W, Tuzun s. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant physiology, 1996, 112, 919-929.
    [40] Nowak J, Asiedu S K, Lazarovits G, Pillay V, et al. Enhancement of in vitrogrowth and transplant stress tolerance of potatoand vegetable plantlets co-cultured with a plant growth promoting pseudomonad bacterium[J]. Plant and soil, 1998, 111, 149-150.
    [41] Krishnamurthy K, Gnanamanickam S S. Biological control of sheath blight of rice: induction of systenic restance in rice by plant-associated Pseudomonas spp.[J]. Current science, 1997, 72, 331-334.
    [42] Pleban S, Ingel F, Chet I. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp.[J]. European journal of plant pathology, 1995, 101, 665-672.
    [43] Beooks D S, Gonzales C F, Apple D N, et al. Evaluation of endophytic bacteria as potential biological control agents for oak wilt[J]. Biological control, 1994, 4, 373-381.
    [44] Hallmann J, Hallmann Q A, Kloepper J W, et al. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber[J]. Soil biology and biochemistry, 1998, 30: 925-937. [45马冠华.烟草内生细菌种群动态及拮抗活性研究[D].重庆:西南农业大学, 2003.
    [46]冯永君,宋未.植物内生细菌[J].自然杂志, 2001, 23(5): 249-252.
    [47]冉国华.柑桔内生细菌对油菜菌核病菌的拮抗作用研究[D].长沙:湖南农业大学, 2005.
    [48]李明.热带太平洋深海可培养细菌多样性与新种Oceanicola eastpnp sp.nov.鉴定[D].厦门:国家海洋局第三海洋研究所, 2007.
    [49]林万明,郭兆彪,高树德.热变性温度法测定细菌DNA中G+C比值在细菌分类鉴定上的应用[J].江西医药, 1982, 3: 10-14.
    [50]陈文新.细菌系统发育[J].微生物学报, 1998, 38(3): 240-243.
    [51] Stefan Weidner, Walter Arnold, Alfred Pühler. Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes[J]. Applied and Environmental Microbiology, 1996, 62 (3): 766-771.
    [52] Lei Sun, Fubin Qiu, Xiaoxia Zhang, et al. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis[J]. Microbial Ecology, 2008, 55: 415-424.
    [53]沈萍,范秀荣,李广武.微生物学实验[M].第三版.北京:高等教育出版社, 2004, 221.
    [54]何红,邱思鑫,蔡学清,等.辣椒内生细菌BS-1和BS-2在植物体内的定殖及鉴定[J].微生物学报, 2004, 1(1): 13-18.
    [55] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
    [56] Han J G, Xia D L, Li L B, et al. Diversity of culturable bacteria isolated from root domains of Moso Bamboo (Phyllostachys edulis)[J]. Microbial ecology, 2009, 58(2): 363-373.
    [57]余贤美,王义,沈奇宾,等.解磷细菌PSB3的筛选及拮抗作用的研究[J].微生物学通报, 2008, 35(9): 1398-1403.
    [58]王平,董飚,李阜棣,等.小麦根圈细菌铁载体的检测[J].微生物学通报, 1994, 21(6): 323-326.
    [59]吴瑛,席琳乔.燕麦根际固氮菌分泌IAA的动态变化研究[J].安徽农业科学, 2007, 35(15): 4424-4425.
    [60]冯月红.苜蓿和小麦根际高效解磷细菌筛选及其解磷效果的初步研究[D].兰州:甘肃农业大学, 2003.
    [61]武金霞.生物化学实验原理与技术[M].保定:河北大学出版社, 2005, 71-73.
    [62] Eric G, Yves D. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and environmental microbiology, 1995, 2: 793-796.
    [63]杨慧,范丙全,龚明波,等.一株新的解磷草生欧文氏菌的分离、鉴定及其解磷效果的初步研究[J].微生物学报, 2008, 48(1): 51-56.
    [64]田宏,李凤霞,张德罡,等.草坪草解磷菌筛选及解磷能力的初步研究[J].草业科学, 2005, 22(10): 92-96.
    [65] Kim Y A. Identification of bacteria by gas chromatography of cellular fatty acids[M]. MIDI Technical Note Newark. DE: MIDI Inc, 1990, 101.
    [66] Minnikin D E, O’Donnell A G, Goodfellow M, et al. An integrated procedure for the extraction of isoprenoid quinines and polar lipids[J]. Microbiol methods, 1984, 2: 233-241.
    [67] Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria[J]. Systappl microbiol, 1988, 11: 1-8.
    [68] Shin Y K, Lee J S, Chun C O, et al. Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T[J]. Journal of microbiology and biotechnology, 1996: 6, 68-69.
    [69] Kim M K, Kim Y A, Kim Y J, et al. Parapedobacter soli sp. nov. isolated from soil of a ginseng field[J]. Int J Syst Evol Microbiol, 2008, 58, 337-340.
    [70] Kim M K, Na J R, Cho D H, et al. Parapedobacter koreensis gen. nov., sp. nov[J]. Int J Syst Evol Microbiol, 2007, 57, 1336-1341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700