遮阴与土壤水分对结果期辣椒果实及叶片生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西北地区大部分处于干旱、半干旱地带,降水稀少,水资源短缺,已成为影响西北农业发展的一个关键因素。光照是植物进行光合作用的最重要能量来源,它可直接影响光合碳循环中光调节酶的活性,也可影响植物生长环境,如温度、湿度等来间接影响植物的生理生化过程。辣椒属耐弱光果菜,夏季晴天中午过高的太阳辐射极易导致光抑制现象,同时,辣椒根系较浅,再生能力弱,木栓化程度高,其生长期又正值高温季节,耗水量大,遮阴和水分供应就成为辣椒正常生长发育及果实成熟的关键因素。因此,研究遮阴和土壤水分对辣椒生长及叶片生理特性的影响,对于提高辣椒光能和水分利用效率,改善果实品质以及进一步了解辣椒对于光照和土壤水分逆境的抗性机制具有重要的理论和现实意义。
     本试验以辣椒为试材,在陕西杨凌西北农林科技大学水土保持研究所试验场内隔水小区中进行,2008年设计了4个土壤水分水平(土壤含水量分别为田间持水量(θ田)的40 %~55 %、55 %~70 %、70 %~85 %和85 %~100 %,分别用W1、W2、W3、W4表示)的随机区组试验,研究了土壤水分含量对辣椒生长、果实品质、干物质分配、水分利用效率(WUE)以及叶片光合生理特性和保护酶系统的影响;2009年设计了3个光照水平(分别为露地全自然光照、露地自然光照的70%和30%,分别用S0%、S30%和S70%表示)和4个土壤水分水平(同2008年水分设计)共12个处理组合的区组试验,分析了遮阴和土壤水分对辣椒果实生长和品质以及叶片生理特性的影响,优化确定出较佳遮阴和土壤水分组合,为大田生产中提高辣椒光能和WUE提供理论参考。主要研究结果如下:
     1.在土壤含水量为田间持水量的70 %~85 %条件下,同化物在地上和地下部分之间的分配更趋合理,产量最高,为6.05 kg·m-2;在土壤含水量为田间持水量的55 %~70 %条件下果实品质各项指标均达到最大值,其中Vc、游离氨基酸、可溶性总糖和可溶性蛋白质含量分别为1.16 mg·g-1、363.6 ug·g-1、19.4 mg·g-1、19.7 mg·g-1,此时WUE也最大,为28.66 kg·m-3,分别比W1、W3、W4提高了19.5 %,30.3 %和51.3 %。土壤含水量从田间持水量的70 %~85 %降低到55 %~70 %时,产量虽有一定的下降,但差异不显著,同时辣椒果实品质较优,水分利用效应较高,有利于节水。
     2.随着土壤含水量的减少,叶片叶绿素含量、净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)均相应降低,而游离脯氨酸和丙二醛(MDA)含量增加,Pn的下降主要是由气孔限制引起的;与W3处理相比,在W1、W2和W4处理下,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性均有不同程度的提高,表明叶片受到逆境伤害,产生应激反应,且CAT和POD的活性随土壤水分变化表现出相反趋势;WUE在土壤相对含水量为55%~70%时最大。在田间持水量的70 %~85 %条件下,辣椒叶片叶绿素含量较高,光合能力较强,同时叶片受伤害较小,不易早衰。
     3.自然光照及遮阴30 %条件下,随着土壤水分含量增加,叶干质量、茎干质量增加,而根干质量则呈下降趋势,辣椒果实果长、果径及单果重增加,但是,土壤含水量超过田间最大持水量的70 %~85 %,辣椒果实生长呈下降趋势;遮阴30 %、土壤相对含水量为55 %~70 %处理维生素C、可溶性糖,游离氨基酸和可溶性蛋白质含量均较其他处理高;在相同光照条件下,随着土壤水分含量的上升,耗水量上升,产量呈先升后降的趋势,适当的降低土壤含水量有利于WUE的提高;土壤水分相同,遮阴30 %利于产量的提高,减少无效水分消耗。遮阴70 %及土壤相对含水量为40 %~55 %条件下均不利于辣椒植株营养生长和果实形态建成。总的来看,遮阴30 %、土壤相对含水量为55 %~70 %条件下,能显著改善辣椒果实品质,提高WUE。
     4.随着遮阴程度和土壤水分的增加,叶片相对含水量(RWC),叶绿素含量均呈上升趋势,土壤水分增加主要有利于叶绿素a含量的增加,遮阴主要有利于叶绿素b含量的增加;类胡萝卜素含量随遮阴程度的增加和土壤水分的降低而下降;MDA含量在干旱胁迫条件(土壤相对含水量为40 %~55 %和55 %~70 %)下升高,随着遮阴程度的增加呈先降后升的趋势;光照相同,在干旱(土壤相对含水量为40 %~55 %和55 %~70 %)和高水(土壤相对含水量为85 %~100 %)条件下,保护酶活性和脯氨酸含量均表现出不同程度的上升,水分条件相同,保护酶活性和脯氨酸含量均随遮阴程度的增加而下降,且保护酶对光照强度的敏感性为SOD>CAT>POD;生理指标相关性分析表明,保护类物质(脯氨酸与保护酶)与伤害类物质(MDA)均达到了极显著正相关,膜保护酶与叶绿素含量达到了极显著负相关。在遮阴30 %和土壤相对含水量为70 %~85 %条件下,辣椒叶片RWC适宜,植株生长健壮;叶绿素、类胡萝卜素含量均较高,叶片光合潜力较大;MDA和脯氨酸含量较小,有利于SOD、CAT和POD活性的维持,叶片膜脂过氧化伤害较小。
     5.在自然光照和干旱胁迫(土壤相对含水量为40 %~55 %和55 %~70 %)条件下,净光合速率(Pn),Fv/Fm和Fv′/Fm′均呈降低趋势,而遮阴30 %则可以降低光化学伤害和光合系统Ⅱ(PSⅡ)的结构损伤,从而有利于辣椒果实有机质的积累;与其他处理相比,在遮阴30 %和土壤相对含水量为70 %~85 %的条件下,辣椒叶片叶绿素相对含量、光合能力和叶绿素荧光均较高;在遮阴70 %条件下,Fv/Fm和Fv′/Fm′虽有所增加,但是叶片光合能力和光子通量密度均显著降低。Pn,Fo和Fv/Fm光照和水分互作达到了显著性差异,其他指标互作效应不明显。总体来看,遮阴30%和土壤相对含水量为70 %~85 %条件下叶片叶绿素含量较高,PSⅡ反应中心受到的伤害较小,光合能力较强。
Most of the Northwest regions in the arid and semi-arid zones, where precipitation is scarce while evaporation capacity is 4 to 10 times more than that of the precipitation. Therefore, water shortage is significant, which has become a key factor in Northwest agricultural development. Light is the most important energy source for photosynthesis of plants, which directly affects the activities of photosynthetic enzymes in the carbon cycle and also affects plant growth environment, such as: Temperature, humidity which indirectly influences the plant's physiological and biochemical processes. Pepper is a weak light-resistant fruit and vegetable and light saturation point is only 30klx, so solar radiation can easily lead to the phenomenon of photoinhabition in sunny summer afternoon. In addition pepper is shallow roots plants, which has weak regenerative capacity and a high degree of cork, the growing season is high water-consumption in high-temperature season. Therefore, shade and water supply will become critical factors in pepper’s normal growth fruit ripening period.
     Pepper was studied in this paper in Institute of Soil and Water Conservation District conducted test sites, Northwest A & F University, Yangling, Shaanxi. In 2008, four soil moisture levels (soil water holding capacity, respectively) were designed as 40% to 55%, 55% to 70%, 70% to 85% and 85% to 100%, respectively signed W1, W2, W3, W4 ) in randomized block experiment. The influences of soil water content on the growth of pepper, fruit quality, dry matter distribution, water use efficiency, leaf photosynthetic characteristics and protective enzyme system were studied; In 2009, group tests were designed as three light levels (open field full of natural light, exposed to natural illumination 70% and 30%, respectively signed S0%, S30% and S70% ) and four soil moisture levels (water with the 2008 design) with 12 treatment combinations. The affects of the shading and soil moisture on growth and pepper quality and physiological characteristics of leaves were analysed.The best combination of shade and soil moisture for the field was confirmed through the tests, which provided a theoretical reference to improve the production of solar energy and water use efficiency of pepper. The major results are as follows:
     The highest output was 6.05 kg·m2 and the assimilations of distribution on the ground and the underground sections was more reasonable.in the field capacity of soil moisture content 70 %—85 % conditions. When soil water was account for 55 %—70 % of the field capacity, quality indicators reached to the maximum .Vc was 1.16 mg/g, free amino acids was 363.6 ug·g, soluble sugar was 19.4 mg·g and soluble protein was 19.7 mg·g respectively. While water utility efficiency in the conditions was also the largest (28.66 kg/m3), respectively increased 19.5 %, 30.3 % and 51.3 % to compare with W1, W3, W4.The production of pepper had some decline because of soil moisture decline from field capacity of 70% ~85% to 55% ~ 70%, but the difference was not significant. Meanwhile pepper quality was better and WUE was higher so as to save water.
     with the reduction of soil moisture, SPAD readings, Pn, Gs, Ci and Tr depressed accordingly showing a clear positive correlation, howover, free proline and MDA content were on the rise,the decrease of net photosynthetic rate was considered as a result of stomatal restriction;Under W1、W2 and W4 treatment the activity of SOD,CAT and POD increased respectively to a certain extent compared with the W3 treatment indicated that: leaf damage by adversity resulted in stress response and CAT and POD activity were almost presented opposite trends by comparison with the change of soil moisture; The WUE was highest in 55-70% of field capacity.In the condition of 70% -85% field capacity, pepper chlorophyll content was higher and photosynthetic capacity was more effective .Meanwhile leaves were little injured and were not easy to premature senility.
     With the increase of soil water content, leaf relative water content, leaf dry mass and stem mass increased, while root dry mass was a declining trend, pepper fruit length, fruit diameter and fruit weight increased in natural light and shade 30%, but pepper fruit growth showed a downward trend in soil moisture content exceeding field maximum moisture holding capacity of 70-85%;Moderate shade and reduce soil moisture content are benefit for increasing fruit quality, which vitamin C, soluble sugar, free amino acids and soluble protein content in S30%W2 are higher than in other treatments; With the increase in soil moisture content, water consumption increased, the output was first increased and then falling trend in the same light conditions, and the appropriate reduction in soil moisture is conducive to the improvement of water use efficiency; the same soil moisture and moderate shade are conducive to enhance productivity and reduce invalid water consumption. Deep shade and extreme drought stress are not the use of pepper plant vegetative growth and fruit morphogenesis.Through comprehensive analysis, pepper fruit quality was significantly improved and WUE was increased in the condition of 30% shade and 55-70% relative soil water content.
     With the increased of shade and soil moisture levels, leaf RWC, chlorophyll content were on the rise. The increased of soil moisture was mainly beneficial to the increase of chlorophyll a, Shade was good to the increase of chlorophyll b; Carotenoids declined with the increase of shade and the decline of soil moisture; MDA content increased under drought stress, and it declined then increased with the increase of shade. In the same light, protective enzymes activity and proline content showed degrees of increase. In the same moisture conditions, protective enzyme activities and proline content were decreased with the increased of the shade, and the protective enzyme sensitivity to light intensity is:SOD> CAT> POD. Physiological correlation analysis showed that praline, protection of enzymes and MDA have reached a very significant positive correlation. Chlorophyll content and membrane protective enzyme reached a highly significant negative correlation. In the condition of shading 30% and 70%-85% relative soil water content, pepper leaves RWC was suitable and plants were robust; chlorophyll and carotenoid contents and leaves photosynthetic capacity were higher; MDA and proline content were less which was favorable to maintain the activities of SOD, CAT and POD, so the membrane lipid peroxidation was little injuried.
     The results indicated that pepper plants underwent photochemical damage due to decrease in Pn and in the ratio of variable to maximal fluorescence (Fv/Fm and Fv′/Fm′) in full sun-light (0% of shade degree) condition, especially under 40-55% and 55-70% of field moisture capacity. In contrast, appropriate shading can decrease photochemical damage and structural damage to the PSII reaction center complex so that profit the carbon accumulation of fruit. 30% shade-induced plants displayed high relative chlorophyll content, photosynthesis capacity and chlorophyll fluorescence during the reproductive stages, especially under 70-85% of field capacity, however, 70% shade-induce plant presented lowest photosynthesis capacity, qP and NQP indicating there was low photosynthetic photon flux density although Fv/Fm and Fv′/Fm′increased slightly. Furthermore, shade degree×water interactions were significant in Pn, Fo and Fv/Fm, but no significant in other parameters.Conclusively, in the condition of shading 30% and 70%-85% relative soil water content chlorophyll content was higher and PSⅡreaction center was suffered less damage, leaves photosynthetic capacity was superior.
引文
陈洪国,姜军权. 2006.遮光处理对盆栽桂花幼苗生长、水分、光合作用及微环境的影响.北方园艺,(2):27~29.
    陈建,张光灿,张淑勇,等. 2008.辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程.应用生态学报,19(6):1185~1190.
    蔡坤争,骆世明.不同生育期遮光对水稻生长发育和产量形成的影响.应用生态学报,1999,10(2):193~196.
    陈立松,刘星辉. 1998.水分胁迫对荔枝叶片活性氧代谢的影响.园艺学报25, 241~246.
    陈平,杜太生,王峰. 2009.西北旱区温室辣椒产量和品质对不同生育期灌溉调控的响应.中国农业科学42,3203~3208.
    崔淑芬,张中鹤. 2003.遮光处理对辣椒产量及叶绿素含量的影响.天津农业科学,(9)2:28~30.
    陈银华,蒋健箴. 1998.光照强度对辣椒光合特性与生长发育的影响.上海农业学报, 14(3):46~50.
    戴凌峰,崔令军,张志翔. 2008.遮阴处理对小桐子幼苗生长的影响.安徽农业科学, 36(14):5729~5731.
    杜社妮,梁银丽,翟胜,等. 2006.不同灌溉方式对茄子生长发育的影响.农业工程科学, 21 (6) : 430~432.
    邓胜兴,曾明,熊伟,等.2009.干旱胁迫对柑橘叶片保护酶系统的影响.西南农业大学学报31,31~64.
    董伊晨,刘悦秋. 2009.土壤水分对异株荨麻保护酶和渗透调节物质的影响极其与叶片光合和生物量的相关性.生态学报,29,2845~2851.
    方锋,黄占斌,俞满源. 2004.保水剂与水分控制对辣椒生长及WUE的影响研究.中国生态农业学报,12(2):73~76.
    冯富强,王春娟. 2006.关中西部线辣椒生态气候适应性分析.陕西农业科学,(6):70~72.
    付秋实,李红岭,崔健,等. 2009.水分胁迫对辣椒光合作用及相关生理特性的影响.中国农业科学,42(5):1859~1866.
    范叶萍,余让才,郭志华.1998.遮阴对匙叶天南星生长及光合特性的影响.园艺学报, (3):270~274. 郭峰,田纪春,孟庆伟,等.2008.遮阴后不同小麦品种(系)旗叶光系统II(PSII)对强光的响应.山东农业科学,8:40~43.
    高俊凤.2000.植物生理学试验技术.西安:世界图书出版公司.
    高丽红,凌丽娟,刘京琳,等. 1996.遮阳网覆盖对夏白菜产量与品质的影响.中国蔬菜,(6):11~15.
    郭相平,张烈君,王琴,等. 2005.作物水分胁迫补偿效应研究进展.河海大学学报:自然科学版, 33 (6): 634~637.
    霍海霞,牛文全,汪有科,等. 2008.灌水量对辣椒生长的影响.人民黄河,30(2):55~57.
    黄俊,郭世荣,蒋芳玲,等. 2008.遮阴处理机恢复光照对白菜生长及活性氧代谢的影响.园艺学报,35(5):753~756.
    华劲松,戴红燕,夏忠明. 2009.不同光照强度对芸豆光合特性及产量性状的影响.西北农业学报,18(2):136~140.
    黄科,刘明月,蔡雁平,等. 2008.氮磷钾施用量与辣椒品质的相关性研究.西南农业大学学报24(4):349~352.
    何科佳,王中炎,王仁才. 2007.夏季遮阴对猕猴桃园生态因子和光合作用的影响.果实学报, 24(5):616~619.
    胡田田,康邵忠. 2005.植物抗旱性中的补偿效应及其在农业节水中的应用.生态学报, 25 (4) : 885~891.
    胡文海,陈春霞,胡雪华,等. 2008.干旱胁迫对2种辣椒植株形态可塑性与持水力的影响.江西农业大学学报,30(4):643~647.
    侯艳锋,曲英华,等. 2007.闭锁温室内水分、养分及光照强度对番茄幼苗生长的影响.中国蔬菜,(5):18~20.
    江俊燕,汪有科. 2008.不同灌水量和灌水周期对滴灌马铃薯生长及产量的影响.干旱地区农业研究, 26 (2): 121~124.
    解淑贞,郑光华译. 1982.蔬菜和瓜类生理.北京:农业出版社, 329~333.
    刘兵,王程,金剑,等. 2009.生殖生长期光富集和遮阴对大豆干物质分配及产量品质的影响.干旱地区农业研究,27(2):103~106.
    吕长山,王金玲,等. 2005.光照强度对辣椒果实中辣椒素含量的影响.北方园艺,(4):69~70.
    刘金根,刘红霞,丁奎敏,等. 2006.遮阴对香根草生长发育的影响研究.草业科学,23(4):36~38.
    刘景辉,赵海超,任永峰,等. 2009.土壤水分胁迫对燕麦叶片渗透调节物质含量的影响.西北植物学报,29,1432~1436.
    李清明,邹志荣,郭晓东,等. 2005.不同灌溉上限对温室黄瓜初花期生长动态、产量及品质的影响.西北农林科技大学学报:自然科学版, 33 (4) : 47~51.
    李曙轩.1979.蔬菜栽培生理.上海:上海科技出版社.
    刘文海,高东升,赵海亮,等. 2006.不同光照强度对设施桃树活性氧代谢的影响.果树学报,23(2):186~190.
    刘向莉. 2005.亏缺灌溉提番茄高果实品质风味的基础性研究.陕西杨凌:西北农林科技大学.
    刘贤赵,康邵忠,夏卫生. 2002.水分胁迫与光照条件对棉花干物质和产量形成影响的数学模型.应用生态学报,13(9):1085~1090.
    梁银丽,康绍忠,张成娥. 1999.不同水分条件下小麦生长特性及氮磷营养的调节作用.干旱地区农业研究,17(4):58~63.
    刘悦秋,孙向阳,王勇,等. 2007.遮阴对异株荨麻光合特性和荧光参数的影响.生态学报,27(8):3457~3464
    马国成,张福墁.1995.日光温室不同光温环境对黄瓜光合产物运输机分配的影响.北京农业大学学报.21(1):34~38
    毛炜光,吴震,黄俊,郭世荣.2007.水分和光照对厚皮甜瓜苗期植株生理生态. 18(11):2475~2479.
    孟祥海,张跃进,皮莉,等.遮荫对半夏叶片光合色素与保护酶活性的影响.西北植物学报,2007,27(6):1167~1171.
    牛铁泉,田给林,薛仿正,等.2007.半根及半根交替水分胁迫对苹果幼苗光合作用的影响.中国农业科学,40:1463~1468.
    彭方仁,杨玉珍,朱振贤. 2007.干旱胁迫下不用种源香椿叶片膜脂过氧化和保护酶系统的影响.植物资源与环境学报,16:44~47.
    彭强,梁银丽,陈晨,等.土壤含水量对结果期温室辣椒生长及果实品质的影响[J].西北农林科技大学学报(自然科学版),38(1):152~160.
    潘瑞炽,1993.植物生理学(第四版),高等教育出版社.
    彭永宏,Etienne R.1998.遮阴处理对容器育柑桔幼苗生长与微环境的影响.果树科学,(4):306~311.
    曲晓斌,侯全刚,李莉,等. 2007.线辣椒主要农艺性状相关性分析及产量因素通径分析.西北农业学报,16(6):174~177.
    邵光成,刘娜,陈磊. 2008.温室辣椒时空亏缺灌溉需水特性与产量的试验.农业机械学报39,118~121.
    孙华银,康邵忠,胡笑涛,等. 2008.根系分区交替灌溉对温室辣椒不同灌水下限的响应.农业工程学报,24(6):78~84.
    眭晓蕾,毛胜利,王立浩,等. 2008.失水胁迫下辣椒幼苗离体叶片光合作用对弱光的响应.园艺学报,35(7):987~994.
    宋志荣.2003.干旱胁迫对辣椒生理机制的影响.西南农业学报,16(2):53~55.
    唐连顺,李广敏. 2000.水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化伤害的关系.植物学报,26,280~282.
    王健,梁运江,许广波,等. 2006.水肥耦合效应对保护地辣椒叶片叶绿素含量的影响.延边大学农学学报,28 (4) : 288~292.
    王久兴. 1998.蔬菜遮光栽培增产机理的研究进展.河北农业技术师范学院学报,12(3):64~67.
    王克磊,蒋芳玲,吴震,等.2009.水分和光照互作对番茄生长发育和生理特性的影响.西北农业学报18,208~212.
    王兰兰.2004.弱光处理对辣椒植株形态及生理指标的影响.甘肃农业科学,5:30~32.
    王丽萍,王鑫,邹春蕾. 2008.低温弱光胁迫下辣椒叶片光合特性研究.辽宁农业科学,(1):14~17.
    王秋菊,李明贤,赵宏亮,等.2008.控水灌溉对水稻根系生长影响的试验研究.中国农学通报, 24(8): 206~208.
    王三根,何立人,李正玮,等.1996.淹水对大麦与小麦若干生理生化特性影响的比较研究.作物学报,22,228~232.
    吴士章. 2004.不同灌溉方式对覆盖辣椒的效应研究.节水灌溉,(1): 7~8.
    吴夏蕊,彭世彰.2004.设施农业中水分调控与WUE关系研究.沈阳农业大学学报, 35(5~6): 604~606.
    吴正峰,王才斌,李新国,等. 2009.苗期遮阴对花生(Arachis hypogaea L.)光合生理特性的影响.生态学报,29(3):1366~1373.
    王振磊,陈海江,林敏娟,等. 2009.黄金梨和鸭梨叶片光合作用的光抑制及其恢复的比较研究.园艺学报,36(9):1261~1268.
    轩春香,牛俊义,张红萍,等. 2008.水分胁迫对豌豆根系生长及产量的影响.甘肃农业大学学报,43(5):45~49.
    徐冉,任旭琴.2007.低温对辣椒叶面积及生理指标的影响.安徽农业科学, 35(31) :9886~9887.
    徐坤,邹琦,赵燕.2003.土壤水分胁迫和遮阴对生姜生长特性的影. 14(10):1645~1648.
    夏秀波,于贤昌,高俊杰. 2007.水分对有机基质栽培番茄生理特性、品质及产量的影响.应用生态学报,18(12):2710~2714.
    闫成仕. 2002.水分胁迫下植物叶片抗氧化系统的响应研究进展.烟台师范学院学报18,220~225.
    于国华,茼辉民,罗文熹. 1994.不同光照强度对西洋参光合特性、营养成分和产量的影响.应用生态学报,5(1):57~61.
    杨渺,毛凯,马金星. 2004.遮阴生境下假俭草的形态变化与能量分配研究. 26(2):44~48.
    杨淑艳,李井会,朱丽丽. 2009.光照强度对干辣椒果实品质的影响.北方园艺,(2):65~67.
    杨兴有,叶协峰,刘国顺,等. 2007.光强对烟草幼苗形态和生理指标的影响.应用生态学报,18(11):2642~2645.
    姚占军.2004.限水灌溉与施氮方式对小麦光合生理及品质的调控研究.陕西杨凌:西北农林科技大学.
    杨再强,谢以萍,张旭东,等.2007.水分胁迫对琵琶果实发育阶段的光合特性和果实品质的影响.灌溉排水学报,26, 89~92.
    赵春江. 2004.数字农业信息标准研究-作物卷.北京:中国农业出版社:356~361.
    庄灿然,吕金殿,梁耀琦. 1995.中国制干辣椒.北京:北京农业科技出版社.
    张国斌,郁继华. 2006.低温弱光对辣椒幼苗光合特性与光合作用启动时间的影响.西北植物学报,26(9):1770~1775.
    曾化伟,张恩让,谭亮萍,等. 2007.土壤水分含量与施氮量对辣椒产量与品质的影响.安徽农业科学, 35 (12): 3614~3617.
    赵海燕.2008.线辣椒主要性状的动态变化及其相关性研究.陕西杨凌:西北农林科技大学.
    张莉,张兴昌. 2003.植物生长过程中水分、氮素、光照的互作效应.干旱地区农业研究,21(1):43~46.
    郑明,周冀衡,黄勇. 2009.光照强度度烤烟烟苗生长和代谢产物含量的影响.作物研究,23(3):181~183.
    赵瑞玲.1996.滴灌技术在高效节能温室中的应用前景.山西水利科技,114(12):81~83.
    郑若良,宋志荣. 2003.干旱胁迫对辣椒生理机制的影响研究.河北农业科学,7(1):11~15.
    翟胜,梁银丽,王巨媛,等. 2005.土壤水分对日光温室黄瓜生长发育及光合特性的影响.园艺园林科学, 21 (2):187~191.
    张宪法,于贤昌,张凌云,等.2000.水分对蔬菜生长动态和生理活动的影响.中国蔬菜, (4): 48~50.
    赵义涛,梁江运,许广波. 2007.水肥耦合对保护地辣椒WUE才影响.吉林农业大学学报,29(5):523~527.
    张真和,李建伟. 2000.我国设施蔬菜产业的发展态势及可持续发展对策探讨.沈阳农业走学学报,02,31(1):4~8.
    张周让,上官金虎. 2005.宝鸡市线辣椒产业市场营销现状与对策.陕西农业科学,(4):64~66.
    Akita K, Tanaka N. 1990. Effects of limited space on foliage development in rice plants. Science Reports of Faculty of Agriculture, Kobe University,20:71~78.
    Alscher R G, Donahue J L, Cramer C L. 1997. Reactive oxygen species and antioxidants: relationships in green cells. Physiologia Plantaurum, 100:224~233.
    Amutha R, Muthulaksmi S, Baby W,ea tl. 2007. Alleviation of High Temperature Stress in Sunflower (Helianthus Annus L.) By Plant Growth Regulators and Chemicals. Research Journal of Agriculture and Biological Sciences, 3(12): 1658~1662.
    Antony E, Singandhupe R B. 2004. Impact of drip and surface irrigation on growth, yield and WUE of Capsicum (Capsicum annum L). Agric. Water Manage, 65, 121~132.
    Araus J L, T Amaro, J Voltas, ea tl. 1998. Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Research 55:209~223.
    Attipal R R, Kolluru V C, Munusamy V. 2004.Drought~induced response of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiolohy, 161(11):1189~1202.
    Bajjii M, Lutts S, Kinet JM. 2001. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf aging in three durum wheat (Triticum durum Desf.) cultivars performing differently inarid conditions. Plant Sci,160:669~68.
    Beny Alonia, Mary Peet, Mason Pharr, ea tl. 2001. The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiologia Plantarum,112: 505~512.
    Bertamini M, K Muthuchelian, N Nedunchezhian.2006.Shade effect alters leaf pigments and photosynthetic responses in Norway spruce (Picea abies L.) grown under field conditions. Phtotsynthetica (2): 227~234.
    Blatt M R, Armstrong F. 1993. Potassium channels stomatal guard cells: abscisic acid~evoked control of the outward rectifier by cytoplasmic pH. Planta 191, 330~341.
    Brayea. 1993. Moleculer response to water deficit. Plant Physio 103, 1035~1040.
    Brouwer R.1962. Nutritive influences on the distribution of dry matter in the plant. Netherlands J.Agric. Sci.,10, 361~376.
    Cafer G., Iran E, Akincik K, ea tl. 2006. Response of red hot pepper plant (Capsicum annuum L.) to the deficit irrigation. Akdeniz Uuniversiteisi Zirrat Fakultesi Dergisi,19: 131~138.
    Chaturvedi G S,Ingrain K t. 1989.Growth and yied of lowland rice in response to shade and drainage. Crop Sei.,14:61~67.
    Climent. J M, I.Alonso J A,Pardos L Gil. 2006. Developmental constraints limit the response of Canary Island pine seedling to combined shade and drought. Forest Ecology and Management, 231:164~168.
    Cornic G. 2000. Drought stress inhibits photosynthesis is by decreased stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci, 5:187~188
    Dai Yajuan, Shen Zonggen, Liu Ying, ea tl. 2009. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65:177~182.
    Della Costa, Gianquinto G., 2002. Water stress and water table depth influence yield, water use efficiency, and nitrogen recovery in bell pepper: lysimeter studies. Aust. J. Agric. Res.,53: 201~210.
    Demetriades~Shah T. H., M.Fuchs, E.T.Kanemasu, ea tl. 1994. Further discussions on the relationship between cumulated intercepted solar radiation and crop growth. Agricultural and Forest Meteorology, 68: 231~242.
    Demmig Adams, B. & W.W.AdamsⅢ.1992.Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell and Environment, 15:411~419.
    Dingkuhn M, Cruz RT, Toole J C,et al. 1991.Response of seven diverse rice cultivars to water deficits.Ⅲ.Accumulation of abscisic acid and raline relation to leaf water~potential and osmotic adjustment. Field Crops Research, 27(1~2):103~107.
    Davies W J, Zhang J. 1999.Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physical Plant Mil Boil, 42:55~76
    Egli. D.B. 1997. Cultivar maturity and response of soybean to shade stress during seed filling. Field Crops Research, 52:1~8.
    Elstner EF. 1982. Oxygen activation and oxygen toxicity. Ann Rev Plant Physionl ,33,73~96.
    Farquhar G D, Sherkey T D. 1982. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 33,317.Fridovich I. 1975.The biology of oxygen radical, Science, 201:875~880.
    Fay P A.Knapp A K.1998.Responses to short-term reductions in light in soybean leaves:Effects of leaf position and drought stress.Plant Sci., 159:805~811.
    Graaf R, Esmeijer M H. 1998.Comparing calculated and measured water consumption in a study of the (minimal) transpiration of cucumbers Grown on rockwool. Acta Hort, 459: 103~111.
    George S, Bai S. 1992.The effect of shade on development and chlorophyll content in leaves of peanut. Abroad Agronomy-Oil Plants, (2):50~51.
    Gableman W H, Williams D F. 1960.Developmental studies with irrigated snap beans. Wisc Agr Expt Sta Res Bul, 221.45~86.
    Hegde. D.M. 1987. Growth Analysis of Bell Pepper (Capsicum annuum L.) in Relation to Soil Moisture and Nitrogen Fertilization. Scientia Horticulturae, 33:179~187.
    Ibaraki Y, Murakami J. 2007. Distribution of Chlorophyll Fluorescence Parameter Fv/Fm within Individual Plants under Various Stress Conditions. Acta Hort, 761: 255~258.
    Jaimez Ram?n E., Rada Ferlin. 2006. Flowering and Fruit Production Dynamics of Sweet Pepper (Capsicum chinense Jacq) Under Different Shade Conditions in a Humid Tropical Region. Journal of sustainable Agriculture, 27(4):97~108.
    Jason J.G., Thomas G.R., Pharr, D.M., 2004. Photosynthesis, chlorophyll fluorescence and carbohydrate content of illicium taxa grown under varied irradiance. J. Am. Soc. Hort. Sci., 129, 46~53.
    Josefa M. Navarro, Pilar Flores, Consuelo Garrido, ea tl. 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry, 96: 66~73.
    Jsnssen L H J, Wams H E, Hass E L T, ea tl. 1992. Temperature dependence in tomato as effected by temperature and light. Journal of plant physiology, 139(5):95~101.
    Kang Shaozhong, Lu Zhang, Xiaotao Hu, ea tl. 2001. An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots. Scientia Horticulturae 89:257~267.
    Kirda, C., Topcu, S., Cetin M., ea tl. 2007. Prospects of partial root zone irrigation for increasing irrigation water use efficiency of major crops in the Mediterranean region. Ann. Appl. Biol., 150, 281~291.
    Kornyeyev Dmytro, Scott Holaday, Barry Logan. 2003. Predicting the extent of photosystem II photoinactivation using chlorophyll a fluorescence parameters measured during illumination. plant cell physiol,44 (10): 1064~1070.
    Lambers H., Chapin III, F.S., ea tl.1998. Plant physiological Ecology. Springer, New York. Li Yansu, Xianchang Yu, Yumei Liu ea tl. 2007. Changs of Photosynthesis and Chlorophyll Fluorescence under High Temperature Stress in Cowpea Seedling Leaves. Acta Hort, 761:261~265.
    Lionel Humbert, Daniel Gagnon, Daniel Kneeshaw, ea tl. 2007. A shade tolerance index for common understory species of northeastern North America. Ecological Indicators, (7): 195~207.
    Lu C M, Zhang J H. 1999. Effects of waters on photosystemⅡphotochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 50:1199~1206.
    Lorenzo P, Medrano E. 1998.Greenhouse crop transpiration:an implement to soilless irrigation management.Acta Hort, 459: 113~119.
    Majken P, Claudia B, Hans B. 2005.Tolerance and physiological responses of Phragmites australis to water deficit. Aquatic Botany, In Press, Corrected Proof, Available online.
    Manfred Kiippers, Hans Schneider. 1993. Leaf gas exchange of beech (Fagus sylvatica L.) seedlings in lightflecks: effects of fleck length and leaf temperature in leaves grown in deep and partial shade. Trees, 7:160~168.
    Manoj Kulkarni, Swati Phalke. 2009. Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Scientia Horticulturae, 120:159~166.
    Manuela C, Agnete KK, Giulio M. 2004.Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comparative Biochemistry and Physiology~Part A. Molecular & Integrative Physiology,139,527~532.
    Maria Joao Correia, Maria Leonor Os′orio, J′ulio Os′orio,ea tl. 2006. Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. Environmental and Experimental Botany, 58:75~84.
    Marques da Silva J, Arrabaca MC. 2004. Photosynthesis in the water~stress C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiol Plant, 121:409~420.
    Martinez C A, Loureiroa M E, Oliva M A. 2001.Differerntial response of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitives Solanum tuberosum subjected to oxidative and water stress. Plant Science, 160:505~515.
    Maxwell Kate, Johnson Giles N. 2000. Chlorophyll fluorescence—a practical guide. Journal of Experiment Botany, 51(345):659~668.
    Maxwell M Butle,Johnson G N.2000.Quenching of cholorophyll–a practical guide .Jourmal of Experimental Botany ,51:659~668.
    Naftaly Zieslin, Yoram Mor. 1990. Light on roses: A review. Scientia Horticulturae, 43:1~14.
    Olle Bj?rk man, Stephen B. Powles. 1984. Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta, 161:490~504.
    Potter M J. 1988.Tree shelters improve survival and increase early growth rates. J. For, 6:39~41.
    Rylski. Spigelman M. 1986. Effect of shading on plant development, yield and fruit quality of sweet pepper grown under conditions of high temperature and radiation. Scientia Horticulture, 29:31~35.
    Rousset O, Lepart J. 2000. Positive and negative interactions at different life stages of a colonizing species (Quercus humilis).J Ecol, 88:401~412.
    Shao Guangcheng, Zhang Zhanyua, Liu Na, ea tl. 2008. Comparative effects of deficit irrigation (DI) and partial root zone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Scientia Horticulture, 119: 11~16.
    Showemimo F.A., Olarewaju J.D.2007.Drought tolerance indices in sweet pepper (Capsicum annum L.). Int. J. Plant Breed. Genet, 1 (1):29~33.
    Showler Allant. 2002. Effects of water deficit stress, shade, weed competition and kaolin particle film on selected foliar free amino acid accumulation in cotton, Gossypium hirsutum (L.). Journal of Chemical Ecology, 28, (3): 631~651.
    Souza R.P., E.C. Machado, J.A.B. Silva,ea tl. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 51:45~56.
    Starman Terri, Lombardini Leonardo. 2006. Growth, Gas Exchange, and Chlorophyll Fluorescence of FourOrnamental Herbaceous Perennial during Water Deficit Conditions. J. Amer. Soc. Hort. Sci., 131(4):469~475.
    Stiller Ibolya, Sa′ndor Dulai, Miha′ly Kondra′k, ea tl.2008.Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose~6~phosphate synthase gene of Saccharomyces cerevisiae. Planta, 227:299~308.
    Stirling C M, Williams J H, Black C R. 1990.The effect of timing of shade on development, dry matter production and light use efficiency in groundout under field condition, Aust Agri Res, 41:633~644.
    Stadtman ER.1993. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal catalyzed reactions.Ann Rev Biochem, 62,797~821.
    Stadtman ER, Oliver ON. 1991.Metal-catalysed oxidation of proteins. Physiological consequences .J Biol Chem, 266:2005~2008.
    Subbarao GV, Chauhan YS, Johansen C. 2000. Patterns of osmotic adjustment in pigeonpea~its importance as a mechanism of drought resistance. European Journal of Agronomy 12,239~249.
    Smeet L, Hogenboom N G.1985.Introduction to an investigation into the possibilities of using growth and physiological characters in breeding tomato for low energy conditions.Euphtica, 34:705~707.
    Thangaraj M,Sivasubraraartian V.1990.Effects of low light intensity on growth and productivity of irrigated rice.Madras Agri J,77:220~224.
    Thiagarajan. A., R. Lada, P. Joy. 2007. Compensatory effects of elevated CO2 concentration on the inhibitory effects of high temperature and irradiance on photosynthetic gas exchange in carrots. Photosynthetica, 45 (3): 355~362.
    Thomas D.S, Turner. D.W. 2001. Banana (Musa sp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Scientia Horticulturae, 90: 93~108.
    Venkayaramanaiah V., Sudhir P., Murthy S.D.S. 2003. Effect of high temperature on photosynthetic electron transport activities of the cyanobacterium. Spirulina platensis. Photosynthetica, 41 (3): 331~334.
    Weiss, Weiss, E.A. 2002. World Production and Trade. CABI Publishing, CAB International, Wallingford, UK.
    Wang Hong, Falin Wang, Gang Wang, ea tl. 2007. The responses of photosynthetic capacity, chlorophyll fluorescence and chlorophyll content of nectarine (Prunus persica var. Nectarina Maxim) to greenhouse and field grown conditions. Scientia Horticulturae, 112:66~72.
    Wittmann C, Aschan G., Pfanz H. 2001. Leaf and twig photosynthesis of young been (Fagus sylvstica) and aspen (Populus tremula) trees grown under different light regime. Basic Appl. Ecol,(2) 145~154.
    Xu Z.Z., Zhou G.S., Wang Y.L., ea tl. 2008. Changes in chlorophyll fluorescence in maize plants with imposed rapid dehydration at different leaf ages. J. Plant Growth Regul, 27: 83~92.
    Zhang J.Z., Shi L., Shi A.P., ea tl. 2004. Photosynthetic responses of four Hosta cultivars to shade treatments. Photosynthetica,42 (2): 213~218.
    Zhao D. Oosterhuis D.1998.Influence of shade on minera1nutrient status of field~grown cotton.Plant Nutrient, 21:1681~1692.
    Zhang W X, Gao F L, Wu J S, ea tl. 2000. Effects of shading on photosynthesis and leaf yields of Ginkgo. Journal of Nanjing Forestry University, 24(4):11~15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700