有机物对土壤镉生物有效性的影响及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤镉污染对生态系统、粮食安全及人体健康具有巨大的潜在危害,已成为当今全球共同关注的重大环境问题。我国有机物资源丰富,通过施用有机物降低镉的危害既适合我国国情,也符合农业可持续发展要求。然而有机物对土壤镉有效性的影响还存在一定的争议,不同有机物的作用效果和机制也不一致。秸秆和畜禽粪便是最主要的有机资源,因此,有必要研究其对镉有效性的影响及机理,从而为其合理利用提供理论依据。
     本研究以作物秸秆和猪粪为材料研究有机物施入土壤后:对土壤镉生物有效性的影响;对土壤镉形态转化的影响;对土壤镉形态和生物有效性影响的机理。取得如下主要结果与进展:
     1.利用樱桃萝卜和冬小麦进行盆栽试验研究未经腐熟的小麦秸秆或腐熟猪粪施入土壤后对镉生物有效性的影响和机理。结果表明,在潮土和红壤上,施用秸秆显著增加第一茬樱桃萝卜叶和根的镉浓度,并促进镉向可食部位根的转移,但可显著降低第二茬樱桃萝卜叶和根的镉浓度,并抑制镉向可食部位的转移。施用猪粪显著降低樱桃萝卜各部位镉浓度,同时抑制镉向可食部位的转移。在潮土和黄棕壤上,施用秸秆或猪粪均可显著降低小麦各部位镉浓度及镉向可食部位籽粒的转移。在降低植株Cd浓度的效果上,猪粪好于秸秆,猪粪施入红壤或黄棕壤后对植株Cd浓度的降低作用大于施入潮土后的效果。
     2.采用土壤培养和盆栽试验研究施用未腐熟秸秆或腐熟猪粪对土壤镉形态的动态影响。结果表明,在非种植条件下,在潮土和红壤上施用秸秆45天后,可显著提高交换态镉含量,降低低活性态镉含量,但45天后这种作用随培养时间逐渐减弱,到90天后作用不显著。猪粪在整个培养期间均显著降低交换态镉含量,增加低活性态镉含量。在潮土和红壤上种植樱桃萝卜的情况下,施用秸秆到第一茬樱桃萝卜收获时交换态镉含量增加,低活性态镉含量下降,到第二茬收获时,交换态镉含量下降,低活性态镉含量增加。施用猪粪后,两茬樱桃萝卜收获时高活性的交换态镉含量均降低,其他低活性态镉含量则增加。在潮土和黄棕壤上种植小麦的情况下,施用秸秆或猪粪均降低交换态镉含量。回归分析表明,樱桃萝卜和小麦体内镉浓度的变化主要与土壤交换态和有机质结合态镉含量有关,且与交换态镉含量呈显著正相关而与有机质结合态镉含量呈显著负相关。说明秸秆和猪粪可通过土壤镉形态的变化来影响植株对镉的吸收。猪粪施入红壤或黄棕壤后对交换态Cd含量的降低作用大于施入潮土后的效果。
     3.采用土培试验和盆栽试验表明,施用秸秆或猪粪可不同程度地影响土壤pH。施用秸秆后,潮土和黄棕壤的pH变化不显著,而红壤pH增加。施用猪粪后,潮土pH显著降低,而红壤和黄棕壤pH显著增加。相关分析表明,秸秆施入潮土、红壤和黄棕壤及猪粪施入潮土后,土壤pH与交换态镉含量呈显著正相关。猪粪施入红壤和黄棕壤后,土壤pH与交换态镉含量呈显著负相关。说明只有当猪粪施入红壤和黄棕壤后可通过pH的改变降低镉的有效性。
     4.施用秸秆或猪粪均可显著增加土壤胡敏酸(HA)和富里酸(FA)含量,但其对HA/FA比的影响不同。非种植条件下,施用秸秆可降低潮土和红壤的HA/FA,但该作用随培养时间逐渐减弱。种植樱桃萝卜情况下,施用秸秆到第一茬收获时,潮土和红壤中HA/FA降低,但第二茬收获后土壤HA/FA则增加。种植小麦情况下,施用秸秆可增加潮土和黄棕壤上HA/FA。无论是否种植作物,猪粪施入土壤后均可增加土壤HA/FA,猪粪对土壤HA/FA的增加作用大于相同碳用量的秸秆,且猪粪施入红壤和黄棕壤后对HA/FA的增加作用大于在潮土上的作用。回归分析表明,施用秸秆和猪粪后,交换态镉含量与HA/FA呈显著负相关关系。采用施用外源HA和FA的土壤培养试验进一步证明,增加土壤HA/FA可显著降低交换态镉含量,增加碳酸盐结合态及铁锰氧化物结合态镉的含量。
     综上所述,无论施用秸秆还是猪粪可通过改变土壤HA/FA影响土壤镉的活性,从而影响植物对镉的吸收是有机物影响土壤镉形态及镉生物有效性的主要机制。因此,利用有机物降低土壤镉活性时,应将有机物充分腐熟,增加HA/FA比,达到降低镉活性和生物有效性的目的。
Cadmium contamination has great potential thread to ecosystem, food safety and human health. It has been an important environmental problem widely concerned. There are abundant organic materials in China. Application of organic materials to reduce mobility of cadmium not only adapts to national conditions of China but consists with the demand of sustainable agriculture. However, the effect of organic materials on the availability of cadmium and the related mechanisms is still unclear and inconsistent. Straw and manure are the main organic materials in China. So, it is necessary to study the effect of straw or manure on the availability of cadmium in soils and the related mechanisms in order for appropriate application of organic materials in reducing the availability of cadmium in contaminated soils.
     In this study, crop straw or pig manure was applied in Cd contaminated soils to investigate: the effect of straw or pig manure amendment on the bioavailability of cadmium in soils; the effect of straw or pig manure amendment on changes of cadmium fractions in soils; the mechanisms of the effect of straw or pig manure on cadmium availability. The main findings were obtained as follows:
     1. Pot experiments with cherry-red radish and winter wheat were conducted to study the effect of wheat straw or compost pig manure amendment on phytoavailability of cadmium in Cd contaminated soils and the mechanisms. Results showed that cadmium concentrations in radish tissues and the distribution of cadmium to edible part increased for the first harvest when straw was applied to calcareous soil and acidic red soil. But cadmium concentrations in radish tissues and the distribution of cadmium to the edible part decreased for the second harvest after the application of straw. Application of pig manure reduced cadmium concentrations in radish tissues and the distribution of cadmium to the edible part in both soils. Straw or pig manure amendment in Fluvo-aquic soil and yellow brown soil significantly reduced cadmium concentrations in wheat tissues and Cd distribution to the edible part (grain). The reduced effect of pig manure amendment on cadmium concentrations in plants was more significant than that of straw application. The reduced effect of manure on cadmium concentrations in plant tissues in red soil and yellow brown soil was more significant than in Fluvo-aquic soil.
     2. A soil incubation experiment and pot experiments were conducted to study the effect of straw or pig manure amendment on changes of cadmium fractions in soils. In soil incubation experiment, exchangeable cadmium in Fluvo-aquic soil and red soil increased significantly and other fractions decreased during the first 45 days after the application of straw. This increasing effect decreased with the incubation time and was not significant after incubation for 90 days. During the whole incubation period of 90 days exchangeable cadmium decreased and other fractions increased when pig manure was applied. When planting cherry-red radish exchangeable cadmium increased and other cadmium fractions decreased by the first harvest when straw was applied to Fluvo-aquic soil and red soil. Whereas exchangeable cadmium decreased and other cadmium fractions increased by the second harvest after the application of straw. While application of pig manure decreased exchangeable cadmium and increased other cadmium fractions by both harvests. When winter wheat was planted the exchangeable cadmium decreased and other cadmium fractions increased whether straw or pig manure was applied to Fluvo-aquic soil and yellow brown soil. Stepwise multiple regression analysis indicated that cadmium concentrations in radish and wheat tissues could be explained by the variations of exchangeable and/or organic bound cadmium in soils. Cadmium concentrations in radish and wheat tissues were positively correlated with the content of exchangeable cadmium and negatively correlated with the content of organic bound cadmium in soils. These results showed that straw or pig manure could affect cadmium concentrations in plants by changing cadmium fractions in soils. The reduced effect of pig manure on exchangeable cadmium in red soil and yellow brown soil was more significant than in Fluvo-aquic soil.
     3. Soil pH was affected by the application of straw or pig manure. The change of soil pH in Fluvo-aquic soil and yellow brown soil was not significant and the pH in red soil significantly increased after the application of straw. The pH in Fluvo-aquic soil significantly decreased, whereas the pH in red soil and yellow brown soil significantly increased when manure was applied. When straw was applied to Fluvo-aquic soil, red soil and yellow brown soil, a significant positive relationship existed between soil pH and exchangeable cadmium fraction. But when composted pig manure was applied to red soil and yellow brown soil, there was a significant negative relationship between soil pH and the exchangeable cadmium fraction. These results suggested that cadmium availability be reduced by changes of soil pH only when pig manure was applied to red soil and yellow brown soil.
     4. Although humic acid and fulvic acid increased when straw or pig manure was added to the soils, the changes of soil HA/FA ratio were different. The HA/FA ratio of soils without planting decreased when straw was applied to Fluvo-aquic soil or red soil but this reduced effect diminished with incubation time. When cherry-red radish was planted soil HA/FA ratio decreased by the first harvest and increased by the second harvest after application of straw to Fluvo-aquic soil and red soil. When wheat was planted soil HA/FA ratio increased when straw was applied to Fluvo-aquic soil and red soil. Amendment of pig manure increased soil HA/FA ratio in soils with or without planting. The effect of pig manure on the increase of soil HA/FA ratio was more than that of straw and this effect in red soil and yellow brown soil was more than that in Fluvo-aquic soil. Stepwise multiple regression analysis indicated that exchangeable cadmium fraction which was regarded as the most available form in soils was negatively correlated with HA/FA ratio and can be explained by the variation of HA/FA ratio in soils. Soil incubation experiment by the addition of HA or FA in soils further demonstrated that the exchangeable cadmium decreased while carbonated bound and oxide bound cadmium increased by increasing soil HA/FA ratio.
     In summary, the main mechanism for the effect of organic material on phytoavailability of cadmium in soils was that amendment of straw or pig manure changed soil HA/FA ratio which affected cadmium fractions especially the exchangeable Cd fraction. This result suggested that organic materials should be composted to increase the ratio of HA/FA before using to reduce the availability of cadmium in soils.
引文
1.白玲玉,陈世宝,华珞,韦东普.腐植酸与Cd、Zn的络合特性研究.核农学报,2000,14(1):44~48.
    2.白玲玉.镉、锌及其复合污染的植物效应和有机肥调控作用的研究[硕士学位论文].北京:中国农科院,1999.
    3.蔡金娟,史衍玺.不同腐殖酸组分对湖泊沉积物中重金属释放的影响.水土保持学报,2006,20(1):108~185.
    4.藏惠林,郑春荣,陈怀满.控制镉污染土壤上作物吸收镉的研究—Ⅰ对水稻和白菜的控制效果.农业环境保护,1987,6(8):28~29.
    5.藏惠林,郑春荣,陈怀满.控制镉污染土壤上作物吸收镉的研究—Ⅱ对小麦和后作水稻的控制效果.农业环境保护,1989,8(1):33~34.
    6.曹仁林.不同改良剂抑制水稻吸收镉的研究—在酸性土壤上.农业环境保护,1992,11(5):195~198.
    7.陈怀满.土壤圈物质循环系列专著:土壤—植物系统中的重金属污染.北京:科学出版社,1996.
    8.陈怀满.土壤中化学物质的行为与环境质量.北京:科学出版社,2002.
    9.陈素华,孙铁珩,耿春女.我国畜禽养殖业引致的环境问题及主要对策.环境污染治理技术与设备,2003,4(5):5~8.
    10.陈同斌.重金属对土壤的污染.金属世界,1999,(3):10~11.
    11.陈同斌,黄泽春,陈煌.废弃物中水溶性有机质对土壤吸附Cd的影响及其机制.环境科学学报,2002,22(3):150~155.
    12.陈同斌.中国可持续发展信息网.2003年10月16日.
    13.陈英旭,林琦,陆芳,何云峰.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,2000,20(4):467~472.
    14.丁园.重金属污染的土壤治理方法.环境与开发,2000,15:25~30.
    15.杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究.云南农业大学学报,2005,20(4):539~543.
    16.段学军,闵航.镉对稻田土壤典型微生物种的胁迫生理毒性.生态环境,2005,14 (6):865~869.
    17.范洪黎.苋菜超积累镉的生理机制研究[博士学位论文].北京:中国农业科学院,2007.
    18.范小建.切实加强有机肥料建设,努力提高农业综合生产能力.农民日报:2005年06月21日.
    19.傅显华,吴启堂.不同有机物料对叶菜吸收镉铅的影响.农业环境保护,1995,14(4):145~149.
    20.高彦征,贺纪正,凌婉婷.有机酸对土壤中镉的解吸及影响因素.土壤学报,2003,40(5):731~737.
    21.高跃,韩晓凯,李艳辉,关连珠,颜丽.腐殖酸对土壤铅赋存形态的影响.生态环境,2008,17(3):1053~1057.
    22.高拯民.土壤-植物系统污染生态研究.北京:中国科技出版社,1986.
    23.谷勋刚,王果,方玲.有机肥非水溶性分解产物对铜、镉吸附及解吸的影响.植物营养与肥料学报,2001,7(1):93~102.
    24.何电源,廖先苓.稻田合理施用石灰的实验研究.土壤通报,1989,20(3):108~112.
    25.何雨帆.腐殖酸对水稻土镉的化学行为及植物效应的影响研究[硕士学位论文].广西:广西大学,2004.
    26.胡培松.土壤有毒重金属镉毒害及镉低积累型水稻筛选与改良.中国稻米,2004,2:10~12.
    27.华珞,陈世宝,白玲玉,韦东普.土壤腐殖酸与109Cd、65Zn及其复合存在的络合物稳定性研究.中国农业科学,2001,34(2):187~191.
    28.华珞,陈世宝,白玲玉,韦东普.有机肥对镉锌污染土壤的改良效应.农业环境保护,1998,17(2):55~59.
    29.黄昌勇.土壤学.北京:中国农业出版社,2000.
    30.黄国锋,钟流举,张振钿,吴启堂.有机固体废弃物堆肥的物质变化及腐熟度评价.应用生态学报,2003,14(5):813~818.
    31.霍文瑞,曹仁林,何宗兰,周毅,王继军.不同改良剂抑制水稻吸收镉的研究.农业环境保护,1989,8(6):38~40.
    32.季书勤,郭瑞、王汉芳,张德奇,赵淑章,许令超.河南省主要小麦品种重金属污染评价及镉吸收规律研究.麦类作物学报,2006,26(6):154~157.
    33.江水英,肖化云,吴声东.影响土壤中镉的植物有效性的因素及镉污染土壤的植物修复.中国土壤与肥料,2008,(2):6~10.
    34.李波,青长乐,周正宾,杨青敏.肥料中氮磷和有机质对土壤重金属行为的影响及在土壤治污中的应用.农业环境保护,2000,19(6):375~377.
    35.李非里,刘丛强,杨元根,闭向阳,刘杰.贵阳市郊菜园土-辣椒体系中重金属的迁移特征.生态与农村环境学报,2007,23(4):52~56.
    36.李静,陈宏,陈玉成,杨学春.腐殖酸对土壤贡、镉、铅植物可利用性的影响.四川农业大学学报,2003,21(3):234~237.
    37.李俊莉,宋华明.土壤理化性质对重金属行为的影响分析.环境科学动态,2003,1:24~26.
    38.李科江,马俊永,曹彩云,郑春莲,孙文芳.长期定位施用不同种类有机肥对作物产量及潮土理化性状的影响.河北农业科学,2007,11(1):60~63.
    39.李明德,童潜明,杨海涛,何英豪.海泡石对镉污染土壤改良效果的研究.土壤肥料,2005,(1):42~44.
    40.李勇,朱亮,王超.黑麦草对土壤中Cd不同赋存形态的吸收规律.农业环境科学学报,2003,22(3):353~356.
    41.廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响.环境科学学报,1999,19(1):81~86.
    42.廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社,1993,301~303.
    43.林琦,陈英旭,陈怀满,郑春荣.有机酸对Pb、Cd的土壤化学行为和植株效应的影响.应用生态学报,2001,12(4):619~622.
    44.刘国顺,刘韶松,贾新成,徐辰生.烟田施用有机肥对土壤理化性状和烟叶香气成分含量的影响.中国烟草学报,2005,11(3):29~33.
    45.刘霞,刘树庆,唐兆宏.河北主要土壤中Cd、Pb形态与油菜有效性的关系.生态学报,2002,22(10):1688~1694.
    46.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    47.陆长青,朱燕婉.腐殖酸-镉络合物的稳定常数.土壤通报,1982,1(5):365~367.
    48.吕金姝.崇明东滩沉积物腐殖酸与重金属生物地球化学研究[硕士学位论文].上海:华东师范大学,2008.
    49.彭安,王文华,董慧茹.松花江腐殖酸的提取、表征及与重金属的络合作用.环境化学.1982,1(4):314~319.
    50.钱进,王子健,单孝全.土壤中微量金属元素的植物可给性研究进展.环境科学,1995,16(6):73~75.
    51.乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响.土壤,2000,32(2):79~85.
    52.史长青.重金属污染对水稻土酶活性的影响.土壤通报,1995,26(10):34~35.
    53.谭启玲,胡承孝.施用工业污泥对棉花产量及土壤重金属含量的影响.华中农业大学学报,2001,20(1):36~39.
    54.涂从.土壤镍各形态的生物可利用性研究.环境科学学报,1997,17(2):179~186.
    55.汪斌,谭建新,代静玉.腐殖酸对池塘底泥中铅、镉的离子形态分布及其活性的影响.土壤通报,2007,38(1):106~110.
    56.汪洪,周卫,林葆.钙对镉胁迫下玉米生长及生理特性的影响.植物营养与肥料学报,2001,7(1):78~87.
    57.王存宝,宁安茶,常晓冰,武九昆.太原市汾河流域五大粮食作物污染检测评价.农业环境保护,1993,12(5):208~212.
    58.王果,谷勋刚,高树芳,方玲.三种有机肥水溶性分解产物对铜、镉吸附的影响.土壤学报,1999,36(2):179~188.
    59.王晶,张旭东,李彬,郭书海,王新.腐殖酸对土壤中Cd形态的影响及利用研究.土壤通报,2002,33(3):185~187.
    60.王凯荣.我国农田镉污染现状及其治理利用对策.农业环境保护,1997,16(6):274~278.
    61.王兴明,刘登义,涂俊芳,李征,王友保.芜湖钢铁厂周边土壤及油菜籽中镉、铜、锌、铅含量和形态分布研究.生态学报,2005,16(10):1924~1931.
    62.王秀丽,徐建民,姚槐应,谢正苗.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科学学报,2003,23(1):23~27.
    63.王亚平,潘小菲,芩况,刘素芳,韩志文.汞和镉在土壤中的吸收和转运研究进展.岩矿测试,2003,22(4):277~283.
    64.魏世强,木志坚,青长乐.几种有机物对紫色土镉的溶出效应与吸附—解吸行为影响的研究.土壤学报,2003,40(1):110~117.
    65.文孝启.土壤有机质研究法.北京:农业出版社, 1984.
    66.吴景贵,王明辉,刘洁,梁映昕,姜岩.非腐解有机物培肥对水田土壤理化性质的影响.吉林农业大学学报,1998,20(1):49~54.
    67.吴燕玉,陈涛,张学询.沈阳张士灌区镉污染生态研究.生态学报,1989,9(1):21~26.
    68.夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997,(3):72~76.
    69.夏增禄,穆从如,孟维奇,李森照,沈瑞珍,何瑞珍.Cd、Zn、Pb及其相互作用对烟草、小麦的影响.生态学报,1984,4(3):231~236.
    70.熊礼明,鲁如坤.土壤有效Cd浸提剂对Cd的浸提机制.环境化学,1992,11(3):41~47.
    71.杨超光,豆虎,梁永超,娄运生.硅对土壤外源镉活性和玉米吸收镉的影响.中国农业科学,2005,38(1):116~121.
    72.杨景辉.土壤污染与防治.北京:科学出版社,1995.
    73.杨亚提,张一平.土壤胡敏酸的解离及其与Cu2+的络合特征.环境科学学报,2001, 21(6):731~736.
    74.杨玉爱.我国有机肥料研究及展望.土壤学报,1996,33(4):414~421.
    75.杨志新,刘树庆.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响.土壤与环境,2000,9(1):15~18.
    76.杨忠芳,陈岳龙,钱鑂,郭莉,诸慧燕.土壤pH对镉存在形态影响的模拟试验研究.地学前缘,2005,12(1):252~260.
    77.于天仁,季国亮,丁昌璞.可变电荷土壤的电化学.北京:科学出版社,1996.
    78.于天仁.水稻土的物理化学.北京:科学出版社,1983.
    79.余桂芬,蒋新,孙磊,王芳,卞永荣.有机物质对土壤镉有效性的影响研究综述.生态学报,2002,22(5):770~776.
    80.张大庚,依艳丽,李亮亮,袁德玲.水分和有机物料对土壤锌-镉形态及化学性质的影响.农业环境科学学报,2006,25(4):939~944.
    81.张会民,徐明岗,吕家珑,李菊梅,刘红霞.pH对土壤及其组分吸附和解吸镉的影响研究进展.农业环境科学学报,2005,24:320~324.
    82.张晋京,窦森.玉米秸秆分解期间胡敏酸、富里酸动态变化的研究.土壤通报,2005,36(1):134~136.
    83.张敬锁,李花粉,衣纯真.有机酸对水稻镉吸收的影响.农业环境保护,1999,18(6):278~280.
    84.张青.改良剂对镉锌复合污染土壤修复作用及机理研究[硕士学位论文] .北京:中国农业科学院,2005.
    85.张亚丽,沈其荣,姜洋.有机物料对镉污染土壤的改良效应.土壤学报,2001,38(2):212~218.
    86.章永松,林咸永,罗安程.有机肥(物)对土壤中磷的活化作用及机理研究Ⅱ.有机肥(物)分解产生的有机酸及其对不同形态磷的活化作用.植物营养与肥料学报,1998,4(2):151~155.
    87.赵其国.发展与创新现代土壤科学.土壤学报,2003,40(3);321~327.
    88.郑国璋.农业土壤重金属污染研究的理论与实践.北京:中国环境科学出版社,2007.
    89.周根娣,盛沛麟,何七勇.农业生产对土壤重金属含量的影响.农业环境保护,1993,12(6):274~275.
    90.周启星.复合污染生态学.北京:中国环境科学出版社,1995.
    91.周卫,汪洪,李春花,林葆.添加碳酸钙对土壤中镉形态转化与玉米叶片镉组分的影响.土壤学报,2001,38(2):219~225.
    92.朱兆良.中国土壤学会第十次全国代表大会开幕词.土壤通报,2005,36(2):16.
    93. Adriano D.C. Trace elements in terrestrial environments, biogeochemistry, Bioavailability and Risks of Metals. 2nd edn. Springer, New York. 2001.
    94. Alfven T., Jarup L., Elinder C.G. Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria. Evironmental Health Perspectives, 2002, 110: 699~702.
    95. Alm?s ?.R., Singh B.R. Plant uptake of cadmium-109 and zinc-65 at different temperature and organic matter levels. Journal of Environmental Quality, 2001, 30: 869~877.
    96. Alm?s ?.R., Singh B.R., Salbu B. Mobility of Cd-109 and Zn-65 in soil influenced by equilibrium time, temperature, and organic matter, Journal of Environmental Quality, 1999, 28: 1742~1750.
    97. Anguissola S.I., Silva S., Baffi C. Effect of fly ash on the uptake of heavy metals by chicory. Water Air and Soil Pollution, 1999, 109: 397~406.
    98. Antoniadis V., Alloway B.J. Availability of Cd, Ni and Zn to ryegrass in sewage sludge-treated soils at different temperatures. Water Air and Soil Pollution, 2001, 132: 201~214.
    99. Applebury M.L., Johnson B.P., Coleman J.E. Phosphate binding to alkaline phosphatas. Biological Chemistry, 1970, 245: 4968~4976.
    100. Aravind P., Prasad M.N.V. Cadmium-induced toxicity reversal by zinc in ceratophyllum demersum L. (a free floating aquatic macrophyte) together with exogenous supplements of amino and organic acids. Chemosphere, 2005, 61:1720~1733.
    101. Aualiitia A., Peckering W.F. The specific sorption of trace amounts of Cu, Pb, and Cd by inorganic particulates. Water Air and Soil Pollution, 1987, 35: 171~185.
    102. Barrow N.J. Reactions of anions and cations with variable charge soils. Advances in Agronomy, 1985, 38: 183~230.
    103. Baziramakenga R., Simard R.R. Low molecular weight aliphatic acid contents of composted manures. Journal of Environmental Quality, 1998, 27: 557~561.
    104. Bergaman I., Lundbergl P., Nilssona M. Microbial carbon mineralization in an acid surface peat: effect of environmental factor in laboratory incubations. Soil Biology and Biochemistry, 1999, 31(13): 1867~1877.
    105. Berglund B., Davis R.D., L’hermite D. Utilization of sewage sludge on land: Rates of application and longterm effects of metals, D. Reidel plublishing company, Dordrecht/Boston/Lancaster, 1984.
    106. Bernal M.P., Paredes C., Sanchez-Monedero M.A., Cegarra J. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 1998, 63: 91~99.
    107. Bertach P.M., Seaman J.C. Characterization of complex mineral assemblages: Implications forcontaminant transport and environmental remediation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 3350~3357.
    108. Beyer L., Blum H.P., Mueller K., Schleich-Saidfar C. The application of secondary paper mill sludges on arable soils to improve soil fertility. Journal of Agronomy and Crop Science, 1992, 169: 336~346.
    109. Bhattacharyya P., Chakrabarti K., Chakraborty A., Tripathy S., Powell M.A. Fraction and bioavailability of Pb in municipal solid waste compost and Pb uptake by rice straw and grain under submerged condition in amended soil. Geosciences Journal, 2008, 12: 41~45.
    110. Bipasha C., Sheela S. Effect of cadmium and zinc interaction on metal uptake and regenerate on tolerant plant sinin seed. Agriculture Ecosystems and Environment , 1997, 61: 45~50.
    111. Blaskova E. Cadmium, lead and mercury in the soil and in potatoes under irrigated conditions. Vedecke Prace Vyskumneho usvevu Zavlahoveho IIospodarstva V Bratislava. 1994, 21: 127~138.
    112. Bolan N.S., Adriano D.C., Duraisamy P., Mani A., Dusraisamy A. Immobilization and phytoavailability of cadmium in variable charger soils.Ⅱ. Effect of lime addition. Plant and Soil, 2003, 251: 187~198.
    113. Bolan N.S., Naidu R., Khan M.A.R., Tillman R.W., Syers J.K. The effects of anion sorption on sorption and leaching of cadmium. Australian Journal of Soil Research, 1999, 37: 445~460.
    114. Borovec Z. Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of Total Environment, 1996, 177: 237~250.
    115. Brazauskiene D.M., Paulauskas V., Sabiene N. Speciation of Zn, Cu, and Pb in the soil depending on soil texture and fertilization with sewage sludge compost. Journal of Soils and Sediments, 2008, 8: 184~192.
    116. Brennan R.F., Robson A.P., Gartrell J.W. Reaction of copper with soil affecting its availability to plants.Ⅱ. Effect of soil pH, soil sterilization and organic matter on the availability of applied copper. Australian Journal of Soil Research, 1983, 21: 155~163.
    117. Brown S.L., Chaney R.L., Angle J.S., Ryan J.A. The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils. Journal of Environmental Quality, 1998, 27: 1071~1078.
    118. Buelt J.L., Farnsworth R.K. In-situ vitrification of soils contaming various metal. Nuclear Technology, 1992, 11:178.
    119. Businelli M.R., Altier P.L., Giusquiani P.L., Gigliotti G. Complexation capacity of dissolved organic matter from pig slurry: a gel filtration and dialysis study. Water Air and Soil Pollution, 1999, 113: 385~389.
    120. Butt D., Dowling K., Vinden P. Assessment of cadmium distribution in some Australian krasnozems by sequential extraction. Water Air and Soil Pollution, 2008, 190: 157~169.
    121. Cairney J.W., Meharg A.A. Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizophere. Canadian Journal of Botany, 2002, 80: 803~809.
    122. Cala V., Cases M.A., Walter I. Biomass production and heavy metal contents of Rosmarinus officinalis grown on organic waste-amended soil. Journal of Arid Environments, 2005, 62: 401~412.
    123. Chanyasak V., Hirai M., Kubota H. Changes of chemical components and nitrogen transformation in water extracts during composting of garbage. Journal of Fermentation Technology, 1982, 60: 439~446.
    124. Chefetz B., Hatcher P.G., Hadar Y., Chen Y. Chemical and biological characterization of organic matter during composting of municipal solid waste. Journal of Environmental Quality, 1996, 25: 776~785.
    125. Christopher A.I., Yuefeng L., Jennifer K.S., Herbert E.A., Willie J.G.M.P. Correlation of the partitioning of dissolved organic matter fraction with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environment International, 2002, 28: 401~410.
    126. Ciecko Z., Wyszkowski M., Krajewski W., Zabielska J. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and oilseed rape. Science of Total Environment, 2001, 281: 37~45.
    127. Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212: 475~486.
    128. Clijsters H., Assche F. Inhibition of photosynthesis by heavy metals. Photosynthesis Research, 1985, 7: 31~40.
    129. Cumming J.R., Tomsett A.B. Metal tolerance in plants: signal transduction and acclimation mechanisms. In: Adriano, D.C. (Ed.), Biogeochemistry of Trace Metals. Lewis Publishers, Boca Raton, FL, 1992, pp. 329~364.
    130. Curtin D., Campbell C.A., Messer D. Prediction of titratable acidity and soil sensitivity to pH change. Journal of Environmental Quality, 1996, 25: 1280~1284.
    131. Davis R.D. Cadmium-A complex environmental problem. Part II: Cadmium in sludges used as fertilizer. Cellular and Molecular Life Sciences, 1984, 40: 117~126.
    132. De Vleeschauwer D., Verdonck O., Assche P.V. Phytotoxicity of refuse compost. Biocycle, 1981, 22: 44~46.
    133. Deacon J.R. Distribution of trace elements in streambed sediment associated with mining activities in the upper Colorado river basin, Colorado, USA, 1995-1996. Archives of Environmental Contamination and Toxicology, 1999, 37: 7~18.
    134. Dowdy, R.H., Larson, W.E. The availability of sludge borne metals to various crops. Journal of Environmental Quality, 1975, 4: 278~282
    135. Dzombak A.D., Fish W., Morel F.M.M. Metal-humic interation.Ⅰ. Piscrete ligace and continuous distyibution models. Envionmental Science Technology, 1986, 20: 669~675.
    136. El-Falaky A.A., Aboulroos S.A., Lindsay W.L. Measurement of cadmium activities in slightly acidic to alkaline soil. Science Society of America Journal, 1991, 55: 974~979.
    137. Eriksson J.E. Effect of nitrogen-containing fertilizers on solubility and uptake of cadmium. WaterAir and Soil Pollution, 1990, 49: 355~368.
    138. Eriksson, J.E. The effect of clay, organic water and time on adsorption and plant uptake of cadmium added to soil. Water Air and Soil Pollution, 1988, 40: 359~377.
    139. Fimreite N., Nenseter B., Steen B. Liming, reacidificatioin, and the mobilizatioin of cadmium from sediments. Bulletin of Environmental Contamination and Toxicology, 1996, 57, 888~894.
    140. Forsher U. Metal pollution aquatic environment. Berlin: Sprionger-verlag, 1981.
    141. Freedman B., Hutchinson T.C. Sources of metal and elemental contamination of terrestrial environments, In Lepp. N.W. (ed.), Effect of heavy metal pollution on plants (Vol. 2), Applied Science Publishers, London and New Jersey, 1981, pp35~94.
    142. Gambrell R.P. Trace and toxic metals in Wetland-A Review. Journal of Environmental Quality, 1994, 23: 883~889.
    143. García C., Hernández T., Costa F., Pascual J.A. Phytotoxicity due to the agricultural use of urban wastes: Germination experiments. Journal of the Science of Food and Agriculture, 1992, 59: 313~319.
    144. García C., Polo A., Sanchez-Diaz M. Plant availability of heavy metals in a soil amended with a high dose of sewage sludge under drought conditions. Biology and Fertility of Soils, 2004, 40: 291~299.
    145. Garg P., Tripathi R.D., Rai U.N., Sinha S., Chandra P. Cadmium accumulation and toxicity in submerged plant Hydrilia verticillata (L.F.) royle. Environmental Monitoring and Assessment, 1997, 47: 167~173.
    146. Gavi F., Basta N.T., Raun W.R. Wheat grain cadmium as affected by long-term fertilization and soil acidity. Journal of Environmental Quality,1997, 26: 265~271.
    147. Gjessing E.T., Riise G., Peterson R.C., Andruchow E. Bioavailability of aluminium in the presence of humic substances at low and modeate pH. Science of Total Environment, 1989, 81-82: 683~690.
    148. Gray C.W., Mclaren R.G. Soil factors affecting heavy metal solubility in some New Zealand soils. Water Air and Soil Pollution, 2006, 175: 3~14.
    149. Gray C.W., McLaren R.G., Roberts A.H.C., Condron L.M. The effect of long-term phosphatic fertilizer applications on the amounts and forms of cadmium in soils under pasture in New Zealand. Nutrient Cycling in Agroecosystems, 1999, 54: 267~277.
    150. Halen I.I. Study of factors controlling cadmium sorption in series of Belgian soils. Revue de1’Agriculture, 1990, 43: 933~948.
    151. Hanson A.T. Transport and remediation of subserfale contaminants. Washangton DC. American Chemical Society, 1992.
    152. Harter R.D.R., Naidu R. Role of metal-organic complexation in metal sorption by soils. Advances in Agronomy, 1995, 55: 219~264.
    153. Hayes M.H.B., Maccarthy P., Malcolm R.L., Swift R.S. Humic substancesⅡ. In search of structure, Wiley, New York. 1989.
    154. Helling C.S., Chesters G., Corey R.B. Contribution of organic matter and clay to soil cation exchange capacity as affected by pH of the saturating solution. Soil Science of Society of America Journal, 1964, 28: 517~520.
    155. Heylar K.R. Nitrogen cycling and soil acidification. Journal of Australian Institute of Agricultural Science, 1976, 42: 217~221.
    156. Hofrichter, M., Steonbüchel, A., Biopolymers. Lignin. In: Humic substances and coal, 1. Wiley Europe-VCH, Weinheim, New York. 2001.
    157. Hosono M. R., Tachibana Y., Ohta Y. The effect of calcium in alleviating heavy metal toxicities in crop paints.Ⅰ. Effect of calcium concentration in nutrient solution on the retarded growth of rice and tomato plants. Soil Science and Plant Nutrition, 1979, 25: 466~471.
    158. Hsiech C.F., Hsu K.N. An experiment on the organic farming of sweet corn and vegetable soybeans. Bulletin of Taichung District Agricultural Improvement Station, 1993, 39: 29~39.
    159. Hsu J.H., Lo S.L. Chemical and spectroscopic analysis of organic matter transformation during composting of pig manure. Environmental Pollution, 1999, 104: 189~196.
    160. Huffman E.W., Stuber H.A. Oxidative degration of humic acid. In: Aiken G R, Mcknight D M, Wershaw R L. eds. Humic substances in soil, sediment, and water. New York: Wiley, 1985.
    161. Ikeda M., Zhang Z.W., Moon C.S., Shimbo S., Watanabe T., Nakatsuka H., Matsuda Inoguchi-N., Higashikawa K. Possible effect of environmental cadmium exposure on kidney function in Japanese general population. International Archives of Occupational and Environmental Health, 2000, 73: 15~25.
    162. Impellitteri C.A., Lu Y., Saxe J.K., Allen H.E., Peijnenburg W.J.G.M. Correlation of the partitioning of dissolved organic matter fraction with the desorption of Cd, Cu, Ni, Pb and Zn from 18 dutch soils. Environment International, 2002, 28: 401~410.
    163. Islam A., Ialam W. Chemistry of submerged soils and growth and yield of rice,Ⅰ.Benefits of submergence. Plant Soil, 1973, 39: 555~565.
    164. Jalali M., Khanlari Z.V. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA. Archives of Environmental Contamination and Toxicology, 2007, 53: 519~532.
    165. Jarvis S.C., Jones L.H.P., Hopper M.J. Cadmuim uptake from solution by plants and its transport from roots to shoots. Plant and Soil, 1976, 44: 179~191.
    166. John M.K., Van Laerhoven C.J., Chuah H.H. Factors affecting plant uptake and phytotoxicity of cadmium added to soils. Environmental Science Technology, 1972, 6: 1005~1008.
    167. Joshua W.D., Michalk D.L., Curtis I.H., Salt M., Osborne G.J. The potential for contamination of soil and surface waters from sewage sludge (biosolid) in a sheep grazing study, Australia. Geoderma, 1998, 84: 135~156.
    168. Kalbitz K., Wennich R. Mobilization of heavy metal and in polluted wetland soil and its dependence on dissolved organic matter. Science of Total Environment, 1998, 209: 27~39.
    169. Karaca A. Effect of organic wastes on the extractability of cadium, copper, nickel, and zinc in soil.Geoderma, 2004, 122: 297~303.
    170. Ko H.J., Kim K.Y., Kim H.T., Kim C.N., Umdea M. Evaluation of maturity parameters and heavy metal contents in compost made from animal manure. Waste Mangement, 2008, 28: 813~820.
    171. Koeppe D.E. The uptake, distribution and effect of Cd and Pb in plants. Science of Total Environment, 1977, 7: 197~206.
    172. Koukal B., Guéguen C., Pardos M., Dominik J. Influence of humic substance on the toxic effect of cadmium and zinc to the green alga Pseudokirchneriella subcapitata. Chemosphere, 2003, 53: 953~961.
    173. Krishnamurti G.S.R., Huang P.M., Van Rees K.C.J. Kinetics of cadmium release from soils as influenced by organic: implications in cadmium availability. Journal of Environmental Quality, 1997, 26: 271~277.
    174. Krishnamurti G.S.R., Naidu R. Speciation and phytoavaliability of cadmium in selected surface soils of South Australia. Australian Journal of Soil Research, 2000, 38: 991~1004.
    175. Kuiters A.T., Mulder W. Gel permeation chromatogaghy and Cu-binding of water-soluble organic substance from litter and humic layers of forest soils. Geoderma, 1992, 52: 1~15.
    176. Kumar G.P., Yadav S.K., Thawale P.R., Singh S.K., Juwarkar, A.A. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter-A greenhouse study. Bioresource Technology, 2008, 99: 2078~2082.
    177. Kuzel S.K., Ndl V., Kol A.R.L. Spatial variability of cadmium, pH, organic matter in soil and its dependence on sampling scales. Water Air and Soil Pollution, 1994, 78: 51~59.
    178. Lagier T., Feuillade G., Matejka G. Interactions between copper and organic macromolecules: determination of conditional complesaction constants. Agronomie, 2000, 20: 537~546.
    179. Lamoreaux R.J., Chaney W. The effect of Cadmium on net photosynthesis, transpiration and dark respiration of excised silver maple leaves. Physical Plant, 1978, 43: 231~236.
    180. Laxen D.P.H., Harrison R.M. The physicochemical speciation of Cd, Pb, Cu, Fe and Mn in the final effluent of a sewage treatment works and its impact on speciation in receiving river. Water Research, 1981, 15: 1053~1065.
    181. Leifeld J., Siebert S., Kogel-Knabner I. Biological activity and organic matter mineralization of soils amended with biowaste compost. Journal of Plant Nutrition and Soil Science, 2002, 165: 151~159.
    182. Li J.X., Yang X.E., He Z.L., Jilani G., Sun C.Y., Chen S.M. Fraction of lead in paddy soils and its bioavailability to rice plants. Geoderma, 2007, 141: 174~180.
    183. Li P., Wang X.X., Zhang T.L., Zhou D.M., He Y.Q. Distribution and accumulation of copper and cadmium in soil-rice system as affected by soil amendments. Water Air and Soil Pollution, 2009, 196: 29~40.
    184. Liang Y.C., Wong J.W.C., Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 2005, 58: 475~484.
    185. Liu D., Islam E., Li T., Yang X., Jin X., Mahmood Q. Comparison of synthetic chelators and lowmolecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials, 2008, 153: 114~122.
    186. Liu L., Chen H., Cai P., Liang W., Huang Q. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. Journal of Hazardous Materials, 2008, 163: 563~567.
    187. Marschner H. Mineral nutrition of higher plants. 2nd edn, New York: Academic press, 1995.
    188. McKenna I.M., Chaney R.L., Williams F.M. The effect of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environmental Pollution. 1993, 79: 113~120.
    189. Mclaughlin M.J., Zarcinas B.A., Stevens D.P. Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 2000, 31: 1661~1670.
    190. Mench M.J. Cadmium availability to plants in relation to major long-term changes in agronomy systems. Agriculture Ecosystems Environment, 1998, 67: 175~187.
    191. Miller R.J., Bittell J.E., Koeppe D.E. The effect of Cadmium on electron and energy transfer reactions in corn mitochondria. Physiologia Plantarum, 1973, 28: 166~171.
    192. Misra V., Tiwari A., Shukla B., Seth C.S. Effect of soil amendments on the bioavailability of heavy metals from zinc mine tailings. Environmental Monitoring and Assessment, 2008, DOI 10.1007/s 10661-008-0449-5.
    193. Moreno-Caselles J., Moral R., Perez-Espinosa A., Perez-Mureia M.D. Cadmium accumulation and distribution in cucumber plant. Journal of Plant Nutrition, 2000, 23: 243~250.
    194. Motavallia P.P., Palmb V.A., Partonc W.J. Soil pH and organic C dynamics in tropical forest sols: Evidence from laboratory and simulation studies. Soil biology & biochemistry, 1995, 27: 1589~1599.
    195. Motomura S. The effect of organic matter on the formation of ferrous iron in soil. Soil Science and Plant Nutrition, 1962, 8: 20~29.
    196. Naidu R., Kookana R.S., Summer M.E., Harter R.D., Tiller K.G. Cadmium sorption and transport in variable charge soils: A review. Journal of Environmental Quality, 1997, 26: 602~617.
    197. Nakagawa H., Nishijo M. Environmental cadmium exposure, hypertension and cardiovascular risk. Journal of Cardiovascular Risk, 1996, 3: 11~47.
    198. Narwal R.P., Singh B.R. Effect of organic materials on partitioning, extractability and plant uptake of metals in alum shale soil. Water Air and Soil Pollution, 1998, 103: 405~421.
    199. Norman T., Gray B. Phytoremediation of contaminated soil and water. Lewis Publishers, 2002.
    200. O’Dell R., Silk W., Green P., Claassen V. Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Browmus carinatus (Hook and Arn.). Environmental Pollution, 2007, 148: 115~124.
    201. Palma L.D., Mecozzi R. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. Journal of Hazardous Materials, 2007, 147: 768~775.
    202. Pancholy S.K., Rice E.L., Turner J.A. Soil factors preventing revegetation of a denuded area nearan abandoned Zinc Smelter in Oklahama. Journal of Applied Ecology, 1975, 12: 337~342.
    203. Pankhurst C.E., Hawke B.G., McDonald H.J., Kirkby C.A., Buckerfield J.C., Michelsen P., O’Brien K.A., Gupta V.V.S.R., Doube B.M. Evaluation of soil biological properties as potential bioindictors of soil health. Australian Journal of Experimental Agriculture, 1995: 1015~1028.
    204. Papassiopi N., Tambouris S., Kontopoulos A. Removal of metals from calcareous contaminated soil by EDTA leaching. Water Air and Soil Pollution, 1999, 109: 1~15.
    205. Paquin P.R., Zoltay V., Winfield R.P., Wu K.B., Mathew R., Santore R.C., Ditoro D.M. Extension of the biotic ligand model of acute toxicity to a physiologically based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver. Comparative Biochemistry and Physiology, 2002, 133: 305~343.
    206. Parker D.R., Pedler J.F. Reevaluating the free-ion activity model of trace metal availability to higher plants. Plant and Soil, 1997, 196: 223~228.
    207. Peng H.Y., Yang X.E. Effect of elsholtzia splendens, soil amendments, and soil managements on Cu, Pb, Zn and Cd fraction and solubilization in soil under field conditions. Bulletin of Environmental Contamination and Toxicology, 2007, 78: 384~389.
    208. Pepper I.L., Bezdicek A.S., Baker., Sims J.M. Silage corn uptake of sludge-applied zinc and cadmium as affected by soil pH. Journal of Environmental Quality, 1983, 12: 270~275.
    209. Piccolo A., Stevenson F.J. Infrared spectra of Cu2+, Pb2+ and Ca2+ complexes of soil humic substances. Geoderma, 1981, 27: 195~208.
    210. Pinto A.P., Mota A.M., Varennes A.de., Pinto F.C. Influence of organic matter on the uptake of cadmium, zinc, copper and ion by sorghum plants. Science of Total Environment, 2004, 326: 239~247.
    211. Prasad M.N.V., Greger M., Smith B. Aquatic macrophytes. In: Prasad, M.N.V.(Ed.), Metals in the Environment—Analysis by Biodiversity. Marcel Dekker, New York, 2001.
    212. Preston C.M., Schnitzer M. Effects of chemical modifications and extractants on the Carbon-13 NMR spectra of humic materials. Soil Science Society of America Journal, 1984, 48: 305~311.
    213. Prokop Z., Vangheluwe M.L., Van-Sprang P.A., Janssen C.R., Holoubek I. Mobility and toxicity of metals in sediments deposited on land. Ecotoxicology and Environmental Safety, 2003, 54: 65~73.
    214. Querauvller P.H., Rauret G., Griepink B. Single and sequential extraction in sediments and soils. International Journal of Environmental Analytical Chemistry, 1993, 51: 129~134.
    215. Ramos L., Hernandez L.M., Gonzalez M.J. Sequential fractionation of copper, cadmium and zinc in soils from or near Donana National Park. Journal of Environmental Quality, 1994, 23: 50~57.
    216. Rashmi N., Shalini S., Satya P., Srivastava M.M. Cadmium mobilization and plant availability-the impact of organic acids commonly exuded from roots. Plant and Soil, 2001, 230:107~113.
    217. Rauret G. Extraction procedure for the determination of heavy metals in contaminated soil and sediment. Talanta, 1998, 46: 449~455.
    218. Rautaray S.K., Ghosh B.C., Mittra B.N. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard croppingsequence under acid lateritic soils. Bioresource Technology, 2003, 90: 275~283.
    219. Robinson B.H, Leblanc M., Daniel P., Brooks R.R., Kirkman J.H., Gregg P.E.H. The potential of Thlaspi caerulescens for phytorem ediation of contaminated soils. Plant and Soil, 1998, 203: 47~56.
    220. Rotkittikhun P., Chaiyarat R., Kruatrachue M., Pokethitiyook P., Baker A.J.M. Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: A glasshouse study. Chemosphere, 2007, 66: 45~53.
    221. Saar R.A., Weber J.H. Comparision of spectrofluorometry and ion selective electrode potantiometry for determination of complex between fulvic acid and heavy-metal ions. Analytical Chemistry, 1980, 52: 2095~2100.
    222. Saha J.K., Mandal S., Mandal L.N. Adsorption of copper on Alfisols in relation to soil properties. Journal of the Indian Society of Soil Science, 1995, 43: 196~199.
    223. Salt D.E., Smith R.D., Raskin I. Phytoremediation. Annual review. Plant Physiology and Plant Molecular Biology, 1998, 49: 643~668.
    224. Sanchez-Monedero M.A., Roig A., Cegarra J., Bernal M.P. Relatioinships between water-soluble carbohydrate and phenol fractions and the humificatioin indices of different organic wastes during composting. Bioresource Technology, 1999, 70: 193~201.
    225. Sauerbeck D.R. The nickel uptake from different soils and its prediction by chemical extractants. Water Air and Soil Pollution, 1991, 57/ 58 (1/ 4): 861~871.
    226. Sauman L.M. Fractionation Method for Soil Microelements. Soil Science, 1985, 140: 11~22.
    227. Sauve S., Mcbride M.B., Hendershot W.H. Soil solution speciation of lead: Effects of organic matter and pH. Soil Science Society of America Journal, 1998, 62: 618~621.
    228. Sauvés S., Manna S., Turmel M.C., Roy A.G., Courchesne F. Solid solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environmental Science and Technology, 2003, 37: 5191~5196.
    229. Schnitzer M. Chemical, spectroscopic and thermal methods for the classification and characterization of humic substances. In ProcIntern Meetings on Humic Rvhctnrnrccnrlnn Waopninapn, 1972, 293~310.
    230. Schnitzer M., Khan S.U. Humic substances in the environment. New York: Marcel Dekker, Inc, 1972.
    231. Schnizer M., Kadama H. The dissolution of micas by fulvic acid. Geoderma, 1976, 15: 381~391.
    232. Schwartz C., Echevarria G., Morel J.L. Phytoextration of cadmium with Thlaspi caerulescens. Plant and Soil, 2003, 249: 27~35.
    233. Scuchulten H.R., Schnitzer M.A. State of the art structure concept for humic substance. Naturwissenschaften, 1993, 80: 29~30.
    234. Sheoran I.S., Aggarwal N., Singh R. Effect of cadmium and nickel on in vivo carbon dioxide exchange rate of pigeon pea (Cajanus cajan L.). Plant and Soil, 1990, 129: 243~249.
    235. Shweta S., Arvind M., Kayastha. Response of microbial organism to metal contained soil. Journalof Microbiology & Biotechnology, 2001, 17: 667~672.
    236. Silviera D.J., Sommers L.E. Extractability of copper, zinc, cadmium and lead in soils incubated with sewage sludge. Journal of Environmental Quality, 1977, 6: 47~52.
    237. Simon L. Stabilization of metals in acidic mine spoil with amendments and refescue (Festuca rubra L.) growth. Environmental Geochemistry and Health, 2005, 27: 289~300.
    238. Singh R.P., Aqrawal M. Effect of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plant. Chemosphere, 2007, 67: 2229~2240.
    239. Solbraa K. Composting of bark.ⅣPotential growth reducing compounds and elements in bark. Medd Norsk Inst Skogforsk, 1979, 34: 443~508.
    240. Spark K.M., Well J.D., Johnson B.B., The interaction of humic acid with heavy metals. Australian Journal of Soil Research, 1997, 35: 89~101.
    241. Sposito G. Sorption of trace metals by humic materials in soils and natural waters. Critical Reviews in Environmental Control, 1986, 16: 193~227.
    242. Stenstroem T., Loensjoe H. Cadmium availability to wheat: a study with radioactive tracers under field conditions. Ambio, 1974, 3: 87~90.
    243. Stevenson F.J. Humus chemistry. New York: John Wiley, 1982.
    244. Stevenson F.J. Organic acid in soil In: McLaren A.D. and Peterson G.H. ed. Soil Biochemistry. New York: Marcel Dekker, 1967, 1: 119~149.
    245. Still S.M., Dirr M.A., Gartner J.B. Phytotoxic effect of several bark extracts on mung bean and cucumber growth. Journal of the American Society for Horticultural Science, 1976, 101: 34~37.
    246. Stumin W. Chemical speciation in riley. In: J. P. Skirrow G. ed. Chemical Oceanography. Ch. 3. New York : Academic Press, 1975, 173~279.
    247. Szefer P., Giasby G.P., Penpkowiak J., Kaliszan R. Extraction studies of heavy-metal pollutants in surficial sediments from the Southern Baltic Sea of Poland. Chemical Geology, 1995, 120: 111~126.
    248. Tan D.E. The release of silicon, aluminum and potassium during decomposition of soil minerals by humic acid. Soil Science, 1980, 129: 5~11.
    249. Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51: 844.
    250. Thomas G.W., Hargrove W.L. The chemistry of soil acidity. In Soil Acidity and Liming. Ed. F Adams, Agron. Monogr. 12. American Society of Agronomy, Madison, WI, 1984.
    251. Tiquia S.M., Tam N.F.Y., Hodgkiss I.J. Effects of bacterial inoculum and moisture adjustment on composting of pig manure. Environmental Pollution, 1997, 96: 161~171.
    252. Tudoreanu L., Phillips C.J.C. Modeling cadmium uptake and accumulation in plants. Advances in Agronomy, 2004, 84: 121~157.
    253. Wang P.X., Qu E.F., Li Z.B. Fraction sand availability of nickel in Loessial soil amended with sewage sludge or sewage. Journal of Environmental Quality, 1997, 26: 795~800.
    254. Wei S.H., Zhou Q.X., Kovl P.V. Flowering stage characteristics of cadmium hyperaccumulatorSolanum nigrum L and their significance to phytoremediation. Science of Total Environment, 2006, 369: 441~446.
    255. Wen G., Bates T.E., Inanaga S., Voroney R.P., Hamamura K., Curtin D. A yield control approach to assess phytoavailability of Zn and Cu in irradiated, composted sewage sludges and composted manure in field experiments:Ⅱ.Copper. Plant and Soil, 2002, 246: 241~248.
    256. Wu L.H., Luo Y.M., Christie P., Wong M.H. Effect of EDTA and low molecular weight organic acids on soil solution properties of heavy metal polluted soil. Chemosphere, 2003, 50: 819~822.
    257. Xian X. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant and Soil, 1989, 113: 257~264.
    258. Xiong L.M. Plant materials affect cadmium adsorption by soil. Agribiological Research, 1994, 47: 160~167.
    259. Yadav D.S., Kumar V., Singh M. Inhibition of soil urease activity and nitrification with some metallic cations. Australian Journal of Soil, 1986, 24:527~532.
    260. Yin Y., Impellitteri C.A., You S.J., Allen H.E. The importance of organic matter distribution and extract soil: solution ration on the desorption of heavy metals from soils. Science of Total Envrionment, 2002, 287, 107~119.
    261. Zhang M.K., He Z.L., Stoffella P.J., Calvert D.V., Yang X.E., Xia Y.P., Wilson S.B. Solubility of phosphorus and heavy metals in potting media amended with yard waste-biosolids compost. Journal of Environmental Quality, 2004, 33: 373~379.
    262. Zhou L.X., Wong J.W.C. Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption. Journal of Environmental Quality, 2001, 30 : 878~883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700