黄瓜果实可溶性糖含量遗传效应的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus.L..),富含维生素A、C以及多种矿物质,分布于世界各地,通过自然选择,人工选择和引种,形成很多生态型。它是我国的主要蔬菜作物之一,也是人们最喜食的蔬菜之一。黄瓜不仅作为生食、熟食、腌渍的蔬菜,而且经常被人们当作水果鲜食。黄瓜独特的风味,脆嫩的质地是其一直受人们所青睐的重要原因之一。果实中糖、酸含量、糖酸比等因子是决定其风味品质最重要的指标。因此,研究黄瓜果实可溶性糖含量的遗传效应具有重要意义。
     本研究以40个黄瓜品种(系)为试验材料,对果实果糖、葡萄糖含量等6个品质性状进行了主成分和聚类分析。选择了6个黄瓜品种作为亲本,按Griffing方法2双列杂交法配制了15个杂交组合,根据加性-显性与环境互作的遗传模型,分析了黄瓜6个亲本和15个F_1杂交组合在大棚和露地两种环境下黄瓜果实内可溶性糖、有机酸及可溶性固形物含量的遗传效应,预测了不同环境F_1杂种优势的遗传表现。以高果糖含量黄瓜EP326和低果糖含量黄瓜科普二号为材料,运用植物数量性状遗传体系的分析方法对黄瓜果实果糖含量进行了遗传模型分析。主要研究结果如下:
     1.以40个黄瓜品种(系)为试验材料,对果实果糖、葡萄糖含量等6个品质性状进行了研究。结果表明:遗传变异系数以果糖和葡萄糖含量较高,说明在早世代进行单株选择会有较好的效果。主成分分析结果表明:40个品种分为品质、形态和产量3个主成分,且累计贡献率达96.48%。聚类分析结果表明,当遗传距离为0.10时,40个黄瓜品种被分为大果中可溶性糖含量、小果中可溶性糖含量、小果低可溶性糖含量和中果高可溶性糖含量4种类型。
     2.选择6个黄瓜品种为亲本,按Griffing方法2双列杂交法配制15个杂交组合,根据加性-显性与环境互作的遗传模型,分析了黄瓜6个自交系亲本和15个F_1杂交组合在大棚和露地2种环境下果实内5种主要可溶性糖、有机酸及可溶性固形物含量的遗传效应。结果表明:5种可溶性糖、有机酸和可溶性固形物含量的亲本和F_1在两个环境中的表现并不一致,该结果预示着可能存在基因型与环境的互作;遗传方差分量分析表明:果糖、有机酸和可溶性固形物含量主要受加性效应的影响。遗传率分析表明:仅有果糖、有机酸和可溶性固形物含量存在普通狭义遗传率,且达到极显著水平。遗传相关分析表明:果糖和葡萄糖、蔗糖、麦芽糖含量的基因型和表现型相关呈显著或极显著正相关。
     3.以高果糖含量黄瓜EP326和低果糖含量黄瓜科普二号杂交并自交及回交所获得的6个世代(P_1、P_2、F_1、BC_1、BC_2和F_2)为材料,利用主基因+多基因混合遗传模型对黄瓜果实果糖含量进行了遗传模型分析。黄瓜果实果糖含量受1对加性-显性主基因+加性-显性多基因控制,其中以主基因遗传为主;在黄瓜育种实践中,对该性状的选择适宜在早世代进行。
Cucumber (Cucumis sativus.L.), with high vitamins A, C and minerals content, is one important vegetable over the world, and variance ecotypes were formed in different regions under natural and artificial selection. The unique flavor and crisp texture make it very popular in the market. Sugar and acid content and sugar acid content ratio of the fruit are the most important quality traits for cucumber. Therefore, the research about genetic effects of cucumber quality characters is very necessary for the quality improvement.
     In this study, the fruit quality related characters of 40 cucumber varieties were evaluated by Principal component and cluster analysis. Six culitvars with different content of sugar organic acid and soluble solids were selected to be parental lines, and fifteen F_1s were got according to Griffing 2 diallel cross method. Six parents and fifteen F_1s were evaluated under two environments that were greenhouse and open field. Genetic effects and genotype by environment interaction effects for 5 kinds of sugar content and two major fruit quality traits of cucumber were analyzed by using a genetic model including additive-dominance effects and their interaction effects with environments, and the heterosis performance under different environment were also predicted. High-sugar content line EP326 and the low-sugar content line kepu 2 were used as parental lines, their F_1, BC_1, BC_2 and F_2 were bred. The fructose content of six generations of cucumber was analyzed by using the mixing major gene and polygene inheritance model. The main results were as follows:
     1. Fructose、glucose content and other four fruit quality traits of 40 cucumber varieties (lines) were analyzed. The results showed that the genetic variance of fructose and glucose content were high, therefore, it would be effective to select the aim plant in early generations. The principal component analysis indicated that 40 species could be divided into three principal component factors as quality, morphology and yield, and the total contribution rate reached 96.48%. Base on the cluster analysis, 40 cucumber cultivars were grouped into 4 types that were large fruit- medium quality type, small fruit- quality type, small fruit-low quality type and medium fruit-high quality type at genetic distance of 0.10.
     2. Five major kinds of sugar, organic acid and soluable solids contents of six parental lines and their 15 F_1s were analyzed under two environments. The results presented that the performance of quality characters of cucumber were different under two environments, and it indicated there might be genotype and environment interaction in cucumber. Genetic variance indicated that the content of fructose, acid and soluble solids were mainly controlled by additive effects. By the heritability analysis, we found that there was extremely significant general heritability in the narrow sense of fructose, organic acid and soluble solids. The genotype and phenotype correlation values of the content of fructose and glucose, sucrose, maltose were positive and significant or extremely significant.
     3. Six generations of P_1, P_2, F_1, BC_1, BC_2 and F_2 from the cross of the high-sugar content line EP326 and the low-sugar content line Kepu 2 were obtained to analyze the genetic effects of the fructose content of cucumber fruit by using of the mixed major gene and polygene inheritance model. The heredity of the fructose content of cucumber fruit could be explained by an additive-dominance major gene and additive-dominance polygene model, and mainly controlled by the main gene. In cucumber breeding, the selection in early generations might be effective.
引文
[1]李加旺.我国黄瓜种质资源的特点及对现代科学育种的影响[J].天津农业科学,1997,(12):4-8.
    [2]周长久.蔬菜种质资源概论[M].北京农业出版社,1996, 163-171.
    [3]顾兴芳,张圣平,王烨.我国黄瓜育种研究进展[J].中国蔬菜,2005,(12):1-7.
    [4]侯喜林,曹寿椿.我国蔬菜科学研究的前沿问题及关键技术[M].园艺学进展(第二辑),南京:东南大学出版社,1998,299-306.
    [5]方智远,祝旅,李树德.我国蔬菜科技五十年的主要成就与今后的任务[J].中国蔬菜,1999,(5):1-5.
    [6]田世龙,袁丽卿.甘肃几种蔬菜不同品种营养成分分析[J].甘肃农业科学,1997,(4):25-27.
    [7]张部昌,袁华玲,刘才宇.安徽萝卜种质资源营养品质分析与评价[J].作物品种资源,1999,(2):41-42.
    [8] MCCREIGHT, J.R.L. LOWER AND R.H. MOLL.Heritability of reducing sugar concentration in pickling cucumber fruit and its implication on methods of selection [J]. J. Amer. Soc. Hort. Sci,1978,103:271-274.
    [9]Gross K C,Pharr D M.A potential pathway for galactose metabolism in Cucumsi sativus L,a stachose transporting species[J]. Plant Physiol, 1989, 69:117-121.
    [10]Levis W Handley,David M Pharr,Roger F Mcfeeters. Carbohydrate Changed during Maturation of Cucumber Fruit [J]. Plant Physiol, 1983, 72:498-502.
    [11]Schaffer AA,Petreikov M,Miron D et al. Modification of carbohydrate content in developing tomato fruit[J].HortSci,1999,34(6):1024-1027.
    [12] Farra J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascular plants[J].Plant Sci, 2000, 154:1-11.
    [13]Sue Damon, John Hewitt, Matt Nieder et al. Sink Metabolism in tomato fruit [J]. Plant Physiol, 1988, 87:731-736.
    [14]Jang JC, Sheen J. Sugar sensing in higher plants[J].Plant Cel1, 1994, 6:1665-1697.
    [15]Koch KE. Carbohydrate modulated gene expression in plants [J]. Annu Rev Plant Physiol Plant Mol BioI, 1996, 47:509-540.
    [16]Smeekens S, Rook R Sugar sensing and sugar-mediated signal transduction in plants [J]. Plant Physiol, 1997, 115:7-13.
    [17] Marcelis L F M.Effect of fruit growth,temperature and irradiance on biomass allocation to the vegetative Parts of cucumber [J]. Neth.J.Agric.Sci,1994,42:115-123.
    [18]谢祝捷,陈春宏,余纪柱,等.上海自控温室黄瓜干物质生产和分配模拟模型研究[J].上海农业学报,2004,01(20卷),54-61.
    [19] Ho LC, Hewitt JD.Fruit development.In: Atherton JC, Rudich J(eds).Tomato Crop: A Scientific Basis For Improvement [J]. London: Chapman and Hall, 1986.202-226.
    [20]Ruan YL.Control of hexose accumulation in developing fruit of tomato (Lycopersicon esculentum M.).Ph D Thesis, The University of Newcastle,NS W2308,Australia,1995.
    [21]Cronshow J, Lucas WJ, Giaquinta RT(eds).Offer CE,Patrick JW.Cellular pathway and hormonal control of short distance transfer in sink regions[J]. Plant Biology, Vol 1: 1986.295-306.
    [22]Gross K C, Pharr D M.A potential pathway for galactose metabolism in Cucumsisativus L,a stachose transporing species[J]. Plant Physiol, 1989, 69:117-121.
    [23]Levis W Handley, David M Pharr,Roger F Mcfeeters.Carbohydrate Changed during Maturation of Cucumber Fruit[J]. Plant Physiol, 1983, 72:498-502.
    [24]Doty TE. Fructose sweetness: a new dimension [J].Cereal Foods World, 1976 , 21 (2): 62-63.
    [25]Yamaguchi S, Yoshikawa T, Ikeda S, et al. Studies on the taste of some sweet substances Part I. measurement of the relative sweet-ness [J]. Agric Biol Chem, 1970, 34:181-186.
    [26]白宝璋,张宪政.植物生物学[M].北京:中国科学技术出版社,1992, 219.
    [27]Pangborn R M.Relative taste of selected sugars and organic acids [J].J Food Sci, 1963,28: 726-733.
    [28]Doty T E. Fructose sweetness: a new dimension [J]. Cereal Foods Worlr,1976, 21:62-63.
    [29]刘春香,何启伟,孟静静.黄瓜感官检验与主要芳香物质、可溶性糖的相关关系[J].中国蔬菜,2005,(1):8-10.
    [30]乔宏宇,朱芳栗,长兰,等.黄瓜主要营养品质性状遗传分析[J].东北农业大学学报,2006,36(3):290-293.
    [31]Pangborn R.M. Relative taste of selected sugars and organic acids [J].J Food Sci , 1963,28: 726-733.
    [32]左覃元,朱更瑞,王力荣.油桃生产发展中应注意的几个问题[J].果树科学,1996,13:206-207.
    [33]Dirlewanger E., Moing A., Rothan C., Svanella L., Pronier V, Guye A., Plomion C. and MonetR. Mapping QTLs controlling fruit quality in peach (Prunes persica (L.) Batsch) [J]. Theor Appl Genet , 1999,98: 18-31.
    [34]Rieger R, Michaelist A,Green M. M. Glossary of Genetics [J].Fifth Edition Springer~Verlag.German. 1991,209.
    [35]罗林广,王新望,罗绍春.分子标记及其在作物遗传育种种的应用[J].江西农业学报,1997,9(1):45-54.
    [36]邱芳,伏建民,金德敏,等.遗传多样性的分子检测[J].生物多样性,1998,6(2):143-150.
    [37]董伟,陈玲.四川省黄瓜地方品种资源研究[J].作物品种资源,1991,(1):24-25.
    [38]李锡香,沈镝,宋江萍,等.中国黄瓜遗传资源的来源及其遗传多样性表现[J].作物品种资源,1999,(3):27-29.
    [39]孙小镭,王永强,曲士松.山东黄瓜种质资源地理分布与生态类型的关系[J].山东农业科学,2000,(6):36-37.
    [40]刘晓虹,宋勇,陈惠明.黄瓜种质资源亲缘关系的聚类分析[J].湖南农业科技,2001,(6):9-11.
    [41]王志峰,孙小镭,曹齐卫,等.山东黄瓜地方种质资源的聚类分析[J].山东农业科学,2003,(5):19-22.
    [42]戚春章,袁珍珍,李玉湘.黄瓜新类型-西双版纳黄瓜[J].园艺学报,1983, 10 (4) : 259-263.
    [43]利容千.中国蔬菜植物核型研究[M].武汉:武汉大学出版社,1989,102-112.
    [44]张海英,王永建,许勇,等.黄瓜种质资源遗传亲缘关系的RAPD分析[J].园艺学报,1998,25(4):345-349.
    [45]陈劲枫,庄飞云.采用SSR和RAPD标记研究黄瓜属葫芦科的系统发育关系[J].植物分类学报,2003,4(5):427-433 .
    [46]Zhuang F Y, Chen J E人ssessm en L of gene tic relationships among Cucum is spp by SSR and RAPD marker analysis[J].Plant Breeding ,2004, 123:167-172.
    [47]Gaccia-Mas J. Monforte A J. PhylogeneLic relationship s among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers[J].Plant Sys tem a tics and Evolution ,2004, 3: 191-203.
    [48]LIXX,ZHUDW,DUYCH等. Genetic diversity and phylogenetic relationship of cucumber(Cucumis sativusL.) germplasm based on RAPD analysis[J].Journal of Plant Genetic Resources,2004,5(2):147-152(in Chinese).
    [49]LIXX,ZHUDW,DUYCH等.Studies on genetic diversity and phylogenetic relationship of cucumber(Cucumis sativusL.) germplasm by AFLP technique[J].Acta Horticultural Sinica,2004,31(3):309-314(in Chinese).
    [50]顾兴芳,杨庆文.AFLP技术在黄瓜种质资源鉴定及分类上的应用初探[J].中国蔬菜,2000,(1):30-32.
    [51]李丽,郑晓鹰,李旺.用SRAP标记分析黄瓜品种遗传多样性及鉴定品种[J].分子植物育种,2006,4(5): 702-708.
    [52]刘殿林,杨瑞环.不同来源黄瓜遗传亲缘关系的RAPD分析[J].华北农学报,2003,18(3):50-54.
    [53] Knerr L D, Staub J E, Holder D J et al.Genetic Diversity in Cucumis Sativus L. Assessed by variation at 18 allozyme Coding Loci [J].Theor Appl Genet, 1989,78: 119-128.
    [54]Tomas Horejsi, Jack E Staub. Genetic Variation in Cucumber (Cucumis Sativus L.) as Assessed by Random Amplified Polymorphic DNA [J]. Genetic Resources and Crop Evolution, 1999,46: 337-350.
    [55] Staub J E, Serquen F C, Horejsi T et al.Genetic Diversity in Cucumber (Cucumis SativusL.)Ⅳ: An Evaluation of Chinese Germplasm[J]. Genetic Resources and Crop Evolution, 1999, 46: 297-310.
    [56]Staub J E, Serquen F C and Mccreight J D. Genetic Diversity in Cucumber (CucumisSativus L.)Ⅲ: An Evaluation of India Germplasm[J]. Genetic Resources and Crop Evolution, 1997, 44: 315-326.
    [57]徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994,201-205
    [58]朱军,Mixed model approches for estimating genetic variances and covariances[J].生物数学学报,1992,7(1):1-11.
    [59]朱军.作物杂种后代基因型值和杂种优势的预测方法[J].生物数学学报,1993.8(1):6-18.
    [60]朱军.广义遗传模型与数量遗传分析新方法[J].浙江农业大学学报,1994.(6):551-559.
    [61]王万廷,李玉华,王晓武,等.玉米自交系性状的遗传差异与杂种优势及特殊配合力的关系[J].甘肃农业大学学报,1993, 28(3): 243-246.
    [62]程伟东,时成倘,覃兰秋.不同来源超甜玉米种质自交系的配合力分析[J].玉米科学,2001, 9(3): 3-7.
    [63]X .Zhanga, S .D.Haleyb and Y.Jina , Inheritance of Septoria TriticiBlotch Resistance in Winter Wheat[J].Crop Science , 2001,41:323-326.
    [64]张金发,昊征彬,郭介华,等.四倍体棉花抗蜡性的双列杂交分析[J].华中农业大学学报,1996, (2): 10-14.
    [65]S Kuroda,H Kato and R Ikeda,Heterosis and combining ability for Callus growth rate in rice[J].Crop Science,Vol 38,Issue 4933-936.
    [66]王玉兰,王庆任,禹航.甜玉米主要数量性状配合力分析[J].玉米科学,1995,3(1):18-21.
    [67]Amir M.H , Ibrahim* , a and James S , Quickb , Genetic Control of HighTemperature Tolerance in Wheat as Measured by Membrane ThermalStability [J].Crop Science, 2001,41:1405-1407.
    [68]李素文,孙德岭,张宝珍,等.花椰菜主要经济性状的配合力分析[J].华北农学报,1996,11(4): 104-108.
    [69]陈泽辉,高翔.热带、温带玉米自交系和贵州地方种选系的配合力及杂交组合组配方式的研究[J].玉米科学,2001,9(2):26-29.
    [70]马育华.植物育种的数量遗传学基础[M].南京:江苏科学技术出版社,1982,13-25.
    [71] Falconer D S. Introduction to Quantitative Genetics, and edn. [M]. Longman: London and New York: 1981.
    [72]Mather S K, J L Jinks.Biometrical Genetics, Chapman and Hall, 1982.
    [73]杨永华,盖钧镒,马育华.春夏秋播种季节条件下大豆生育期遗传的差异表现[J].中国农业科学,1994,27(3): 1-6 .
    [74]莫惠栋.质量-数量性状的遗传分析:I.遗传组成和主基因基因型鉴别[J].作物学报,1993, 19(1): 1-6.
    [75] Jiang C et al. The use of mixture models to detect effects of major genes onquantitative characters in plant bmedi experiment[J].Genetics, 1994, 136: 383-394.
    [76]Tanksley S D. Annu. Rev. Mapping polygenes [J].Genet, 1993, 27: 205-233.
    [77]张增翠,侯喜林,曹寿椿.不结球白菜维生素C和可溶性糖含量的遗传分析[J].园艺学报,1999,26(3):170-174.
    [78]向道权,黄烈健,曹永国,等.玉米产量性状主基因2多基因遗传效应的初步研究[J].华北农学报,2001,16(3):1-31.
    [79]袁有禄,张天真,郭旺珍.JohnYu,RussellJKohel.棉花品质纤维性状的主基因与多基因遗传分析[J].遗传学报,2002,29(9):827-834.
    [80]Wrike G.Weber w E.植物育种的选择原理[M].张爱民译,北京:北京农业大学出版社,1990,213-223.
    [81]梁丽,李堃,都桂芳,等.薄皮甜瓜主要经济性状在杂种一代的遗传表现与分析[J].中国园艺学会第四届青年学术讨论会园艺学进展(第四辑) ,2000.
    [82]秦智伟.园艺学进展(第四辑)[M].哈尔滨:哈尔滨工程大学出版社, 2000, 461-463.
    [83]林碧英,高山,聂德毅.薄皮×厚皮甜瓜F1代主要经济性状的遗传及其杂种优势[J].福建农业学报,2002,(4):217-219.
    [84]王华新,秦勇,王雷,等.加工番茄主要品质性状的遗传变异分析[J].北方园艺,2004,2:522-531.
    [85]林碧英,高山,林峰.甜瓜可溶性固形物含量的遗传表现与基因效应分析[J].中国瓜菜,2007 ,(1):4-6.
    [86]PateronA.H., Da Hewittj.D.,Rabimowitch H.D., LincolnS.E., LanderE.S.,and TanksleyS.D.,Mendelian factors underlying quantitative traits in tomato: comparison cross species, generations, and environments[J],Genet., 1991,127:181-197.
    [87]陈克玲,陈力耕,刘建军.柑桔果实主要性状的遗传倾向研究[J].西南农业学报, 2006,19(6):1114-1120.
    [88]梅拥军,徐傅,由宝昌.海岛棉纤维含糖量的遗传和亲子相关[J].西北农业学报,1998,7(4):66-68.
    [89]井立军,崔鸿文,张秉奎.茄子品质性状遗传研究[J].西北农业学报,1998, 7(1):45-48.
    [90]赵仁贵,牟琪,张健.加强型甜玉米含糖量性状的遗传研究[J].吉林农业大学学报,2000,22(4):32-35.
    [91]徐强,陈学好,于杰,等.加工黄瓜品质性状遗传力和遗传相关的研究初步[J].江苏农业研究,2001,22 (4): 18-20.
    [92]李宝江,景士西,丁玉英,等.苹果糖酸遗传和选择研究[J].遗传学报,1994, 21(2):147-154.
    [93]王得元,李颖,王恒明.辣椒主要性状遗传研究进展[J].长江蔬菜,2001, (11):28-30.
    [94]曾国平,曹寿椿.不结球白菜主要品质性状遗传效应分析[J].园艺学报,1997, 24 (1):43-47.
    [95]徐锦华,羊杏平,江蛟,等.莲网纹甜瓜果实主要性状的配合力分析[J].中国蔬菜,2007,(1):15-17.
    [96]何宁,赵宝璋.葡萄种间杂交性状遗传[J].园艺学报,1981,8 (1):1-5.
    [97]宋润刚,郑永春,路文鹏,等.山葡萄种内和种间杂交F1-F4代果实酸和糖含量的遗传分析[J].园艺学报,2007,34(4):813-822.
    [98]陈锦秀,薄天岳,任云英.6个甘蓝自交系的3个主要营养品质性状配合力分析[J].上海农业学报,2006,22(3):73-75.
    [99]于占东,何其伟,王翠花,等.大白菜主要营养品质性状的遗传效应研究[J].园艺学报,2005,32(2):244-248.
    [100]Kalb,T.J. and D.W.Davis.1984.Evaluation of combining ability, heterosis, and genetic variance for fruit quality characteristics in bush muskmelon[J]. J. Am. Sot.Hortic. Sci,109:411-415.
    [101]赵晋铭,王灿,张玉梅.菜用大豆感官品质性状发育特性及其遗传分析[J].园艺学报,2008,35(2):201-206.
    [102]高三基,陈如凯,邓祖湖,等.甘蔗杂交后代蔗汁品质性状的遗传分析[J].热带植物学报,2006,14(1):31-37.
    [103]Burger.Y., U.Saar.N.Katzir, H.Paris, Y.Yeselson, I.Levin, and A.Schaffer.A single recessive gene for sucrose accumulation in Cucumis melo fruit [J]. J. Am. Sot. Hortic. Sci,2002,127:938-943.
    [104]Yosef Burger, Uzi Saar,Nurit Katzir,and Harry S. Paris, Ilan Levin, and Arthur A. Schaffer,Yelena Yeselson. A Single Recessive Gene for Sucrose Accumulation in Cucumis melo Fruit [J]. J. AMER. SOC. HORT. SCI,2002,127 (6):938–943.
    [105]Stommel JR, Haynes KG.Genetic control of fruit sugar accumulation in a Lycopersicon esculentum ? L. hirsutum cross[J].J Am Soc Hortic Sci, 1993, 118:859-863.
    [106]Chetelat RT, Klann E, Deverna JW, Yelle S, Bennett AB. Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii [J]. Plant J ,1993,4:643-650.
    [107]Yelle S, Chetelat RT, Dorais M, DeVerna JW, Bennett AB.Sink metabolism in tomato fruit. IV. Genetic and biochemical analysis of sucrose accumulation [J]. Plant Physiol ,1991, 95:1026-1035.
    [108]Ellen Klann,Roger T. Chetelat,Joseph W. DeVerna,Serge Yelle andAlan B. Bennett.Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii [J]. The Plant Journal ,1993,4(4), 643-650.
    [109]Freeman, R.E. and Simon, P.W. Evidence for simple genetic control of sugar type in carrot (Daucus carota L.) [J].J. Amer. Sac. Hort.Sci.,1983,108, 50-54.
    [110]BIAN Yun-long ,Yazaki Seiji ,Inoue Maiko and CAI Hong—wei. QTLs for Sugar Content of Stalk in Sweet Sorghum(Sorghum bicolor L Moench) [J].Agricultural Sciences in China,2006,5(10):736-744.
    [111]孙保娟,孙光闻.樱桃番茄主要品质性状的遗传效应分析[J].广东农业科学,2006,1:36-38
    [112]陈锦秀,薄天岳,任云英,等.6个甘蓝自交系的3个主要营养品质性状配合力分析[J].上海农业学报,2006,22(3):73-75.
    [113]李怀志.韭菜主要品质性状配合力分析及其遗传规律的研究[D].山东农业大学硕士学位论文,2004.
    [114]李宝江,景士西,丁玉英,等.苹果糖酸遗传和选择研究[J].遗传学报,1994, 21(2):147-154.
    [115]曾国平,曹寿椿.不结球白菜主要品质性状遗传效应分析[J].园艺学报,1997, 24 (1):43-47.
    [116]谭其猛.蔬菜育种[M].北京:中国农业出版社,1984,169-180.
    [117]徐大勇,王礼焦.试论啤酒大麦的品质育种[M].见:罗树中主编,中国大麦文集(II)西安:陕西科学技术出版社,1991, 182-186.
    [118]Sprague,G..F.and Tatum,L.A.General vs.Specific combining ability in single crosses of corn [J].Argon.J.,1942,34:923-934.
    [119] Rojas,B.A.and Sprague,G..F.A comparison of variance components in corn yield traits.IILGeneral and specific combining ability and their interaction with location and yeas [J]. Argon, 1952, 44:462-489.
    [120]Felix C.Serquen,Jeff Bacher and Jack E.Staub. Genetic analysis of yield components in cucumber at iow plant density [J]. J Amer Soc Hort Sci,1997,122 (4):522-528.
    [121]Cheryld L.Whalc:y mmons and Jhon W.Scott.Diallelanalysis of resistance to cuticle cracking in tomato [J]. J.Amer.Soc. Hort.Sci, 1998,123 (1):67-72.
    [122]L.F.Lippert,M.O.Hail.Hetitabilities and correlations in muskmelon from parent-offspring regression analyses[J]. J.Amer.Soc. Hort.Sci, 1982,107 (2):217-221.
    [123]Mark S.Strefeler and Todd C.Wehner.Estimates of heritabilities and genetic variances of three yield and ove quality traits in three fresh-market cucumberpopulations [J].J.Amer.Soc.Hort.Sci , 1986, l l I (4):599-605.
    [124]Smith O.S.,R.L.vower,and R.H.Mo11.Estimates of heritabilities and variance components in pickling cuLumber [J]. J.Amer.Soc. Hort.Sci, 1978, 103:222-225.
    [125]何晓明,陈清华,林梳娥.华南型黄瓜产量与果实性状的相关和通径分析[J].广东农业科学,2001,(1);17-18.
    [126]王永飞,王鸣,王雷,等.加工番茄丰产性状和品质性状的典型相关分析[J].中国农业科学,1999, 32(1): 20-25.
    [127]马艳青,邹学校,张竹青,等.辣椒主要营养成分的配合力分析[J].湖南农业大学学报(自然科学版).2006,32(1):29-31.
    [128]刘静,霍建勇,冯辉.番茄风味品质相关性状研究综述[J].辽宁农业科学,2004,6:39-40.
    [129]何晓明,王鸣.辣椒若干性状的相关及通径分析[J].西北农业大学学报,1988,16(4):90-96.
    [130]王华新,秦勇,王雷,等.加工番茄主要品质性状的遗传变异分析[J].北方园艺,2004,2:52-53.
    [131]张建农,满艳萍.南瓜果实营养成分测定与分析[J].甘肃农业大学学报,1999,34(3):30-33.
    [132]王萍,赵青岩,王若菁.籽用南瓜成熟过程中主要营养成分的变化[J].园艺学报,2001,28(1):47-51.
    [133]Park.S.O., K.M.Crosby, J.W.Sinclair, K.S.Yoo, and L.M.Pike. Identification of QTL affecting sugars in ananas melon [J].HortScience., 2004b,39:744(Abstr)
    [134]Jonathan W.Sinclair, Soon O.Park. Identification and Confirmation of RAPD Markers and Andromoecious Associated with Quantitative Trait Loci for Sugars in Melon[J]. J. Am. Sot. Hortic. Sci, 2006, 131(3):360-371.
    [135]T.M.M. Malundo,R.L. Shewfelt, J.W. Scott . Flavor quality of fresh tomato (Lycopersiconesculentum Mill.) as affected by sugar and acid levels[J]. Postharvest Biology and Technology, 1995, 6:103-110.
    [136]Stevens, M.A., Kader, A.A., Albright-Holton, M. and Algazi, M..Genotypic variation for flavor and composition in fresh market tomatoes[J].J. Am. Sot. Hortic. Sci. 1977, 102: 680-689.
    [137]Rick CM, Kesicki E, Fobes JF, Holle M. Genetic and biosystematic studies on two new sibling species of Lycopersicon from interandea Peru [J]. Theor Appl Genet , 1976, 47: 55-68.
    [138]R. T. Chetelat. J. W. DeVerna. A. B. Bennett.Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato [J].Theor Appl Genet, 1995, 91: 334-339.
    [139]Etienne,C.,C.Rothan,AMoing,C.Plomion,C.Bodenes,L.Svanella-Dumas,P.Cosson,V.Pronier,R.Monet,and E.Dirlewanger.Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch] [J].Theor Appl Genet,2002, 105:145–159.
    [140]袁有禄,张天真,郭旺珍,等.棉花高品质纤维性状的主基因与多基因遗传分析[J].遗传学报,2002,29(9 ): 827-834.
    [141]张鲁刚,王鸣.甜瓜种质资源地判别分析[J].园艺学报,1992,19 (1):35-400.
    [142]杨以耕,刘念慈,陈学群,等.芥菜分类研究[J].园艺学报,1989,2:42-45.
    [143]曹家树,曹寿椿,缪颖,等.中国白菜各类型的分支分析和演化关系研究[J].园艺学报,1997, 24(1):35-42.
    [144]杜永成.高温对黄瓜根系可溶性糖含量和a-半乳糖营酶活性影响[J].园艺学进展(II),南京:东南大学出版社,1998,448-451.
    [145]Levis W Handley, David M Pharr, Roger F Mcfeeters.Carbohydrate Changed during Maturation of Cucumber Fruit [J].Plant physiol., 1983, 72: 498-502.
    [146]张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社,1982.163-172,395-397,416-426.
    [147]唐守正.多元统计分析方法[M].中国林业出版社,1986,145-153.
    [189]欧阳新星,许勇,张海英.用主成分分析法研究西葫芦早熟性及品种分类[J].华北农学报,1999,14(2):125-128.
    [148]Dirlewanger E, Moing A, Rothan C, et al .Mapping QTLs controlling fruit quality in peach (Pruntrspersica (L)Batsh) [J]. Theor Appl Genet, 1999(98):18-31.
    [150]朱军.遗传模型分析方法[M].北京:中国农业出版社,1997:88-225.
    [151]朱军.作物品种间杂种优势遗传分析的新方法[J].遗传学报,1993,20(3):262-271.
    [152]吴吉祥,朱军.不同环境下作物基因型值和杂种优势的分析方法[J].浙江农业大学学报,1994(6):587-592.
    [153]Miller R G .The kacllmofe-a review[J].Biomtrika.1974,61:1-15.
    [154]翟虎渠.应用数量遗传学[M].中国农业出版社,2001, 143-271.
    [155]Wang J., Podlic D.W., Cooper M., et al. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits[J]. Theor.Appl. Genet., 2001, 103(5): 804-816.
    [156]盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社, 2003, 224-265.
    [157]章元明,盖钧镒,王建康.利用B1和B2或F2群体鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J].生物数学学报,2000,15(3): 358-366.
    [158]盖钧镒.植物数量性状遗传体系的分离分析方法研究[J].遗传, 2005, 27(1):130-136.
    [159]http://icgr.caas.net.cn/xw/upload/%B8%BD%BC%FE5.doc.
    [160]王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J].遗传学报,1997,24(5):432-440.
    [161]王建康.数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计的研究[D].博士学位论文,南京农业大学,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700