土地利用方式对陇中黄土高原土壤碳素的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地利用方式是影响陆地生态系统碳循环最重要的因素之一,土壤是该系统中最大的有机碳库,同时又是土壤肥力重要的物质基础。本研究以甘肃陇中黄土高原区至少已有50年传统耕作历史的两种雨养轮作农耕地(耕作与休闲)和退耕20年的两种草地系统(围封和放牧)为研究对象,通过2年的野外调查和室内试验及数据分析,探讨了不同土地利用方式下土壤有机碳、氮、微生物碳、可浸提碳、团聚体碳和水溶性有机碳等的特征,以及土壤微生物碳和水溶性有机碳的季节变化及影响因素。主要结论如下:
     1.土地利用方式对土壤有机碳、全氮、速效磷、pH值和容重有显著影响。土壤有机碳含量0-10cm土层草地显著高于农田,全氮含量差异不显著,20-100cm土层有机碳和全氮农田高于草地(P<0.05);土壤全磷含量农田与草地无明显差异。土壤C/N比除0-10cm土层外,农田高于草地。在整个土壤剖面上,草地土壤pH显著高于农田(P<0.05);除10-20cm和底层土壤外,草地土壤容重也高于农田。草地土壤有机碳和全氮随土壤深度增加而降低,而农田土壤在0-30cm土层随土壤深度的增加而增加,在30cm土层以下与草地有相同趋势。草地土壤全磷含量各土层间没有显著差异,农田土壤全磷含量与土壤有机碳和全氮含量变化趋势一致;草地和农田土壤速效磷含量都呈减少趋势。土壤pH值随土壤深度的增加而增加。各样地土壤有机碳、全氮、全磷、速效磷与土壤容重和土壤pH之间呈极显著负相关性,土壤容重与土壤pH值呈极显著正相关,土壤有机碳、全氮、全磷和速效磷之间也呈现极显著正相关关系。
     2.两年的研究结果表明,各样地土壤微生物量碳主要受土壤水分和生物量的影响,与温度无显著相关性。土壤微生物量碳表现一定的季节变异,0-10cm土壤微生物量碳,在春季(5月)和初冬(11月)生物量较大的围封草地显著高于其他样地(P<0.05),休闲耕地最低;而水热条件较好的7月和9月谷子地>围封草地>放牧草地=休闲耕地;且各样地各土层均表现为9月>7月>5月≥(≤)11月,9月和7月之间且与其他各月间差异显著(P<0.05)。0-10cm土层围封草地、放牧草地、谷子地和休闲耕地土壤微生物量碳含量变幅两年平均分别在183.49-576.72mg/kg、121.13-366.76mg/kg、127.99-725.62mg/kg,44.05-354.58mg/kg之间。各样地在各季节土壤微生物量碳均随土壤深度的增加而降低。
     3.各样地土壤水溶性有机碳主要受水分的影响,谷子地与生物量也密切相关,但都与温度无相关性。各样地土壤水溶性有机碳在水分含量最高的9月显著高于其他各月(P<0.01),5月、7月和11月间没有显著差异。0-10cm土层围封草地、放牧草地谷子地和休闲耕地土壤水溶性有机碳含量变幅分别在31.88-13.58mg/kg、9.78-22.22mg/kg、8.34-23.72mg/kg,13.00-26.0mg/kg之间。沿土壤剖面,水溶性有机碳各样地0-10cm土层最高,且随土壤深度的增加,随季节变化表现出不同程度的降低,雨季降幅显著减小,降雨导致的水溶性有机碳的淋溶可能是农田系统20-100cm土层有机碳含量高于草地的原因之一。
     4.土地利用方式改变显著影响土壤团聚体含量,由于耕作引起大团聚体的损失和小团聚体的增多。0-20cm土层土壤团聚体含量,>0.5mm粒级草地显著高于农田(P<0.05);<0.05mm农田均显著高于草地(P<0.05);20-30cm土层,除>1mm粒级草地显著高于农田外,其他各粒级农田均显著高于草地(P<0.05)。各样地不同粒径团聚体的分配主要集中在<0.25mm微团聚体,达87.89%-96.22%,>0.25mm大团聚体含量仅在13%以内。
     5.团聚体有机碳表现和土壤有机碳一致的规律,0-10cm土层各粒级围封草地均显著高于农田;10-40cm土层,除>1mm土壤团聚体有机碳围封草地和谷子地没有显著差异外,其他粒级农田均显著高于草地。各样地>0.25mm的团聚体有机碳显著高于<0.25mm的微团聚体(P<0.05)。土壤剖面上各粒级土壤团聚体有机碳在草地和农田系统变化规律不一致,>0.5mm各粒级随土壤深度的增加而降低;<0.5mm各粒级草地随土壤深度的增加呈降低趋势,农田在0-30cm土层随深度增加而增加,随后减少。各粒级土壤团聚体有机碳含量,草地与土壤有机碳呈显著正相关,而农田仅<0.25mm微团聚体有机碳含量与土壤有机碳呈显著相关。
Land use mode is one of the biggest factors which affect carbon cycle in terrestrial ecosystems.Soil is the largest and the most active organic carbon pool in terrestrial ecosystems,the most important material basis in soil fertility as well.In this study,two types of rain-fed rotated farmland(cultivated and fallowed) which at least have 50 years traditional farming history and two types grassland system that have been returned from farmland to grassland for 20 years(fenced and grazing) were chosed as the research objects in the Loess Plateau in Gansu.Based on 2 years field investigation,laboratory test and data analysis,the characteristics of soil organic carbon(SOC),nitrogen(TN),soil microbial biomass carbon(SBMC),K_2SO_4--extracted carbon(K_2SO_4-C),soil aggregates organic carbon(SAOC),seasonal dynamics and influencing factors of water-soluble organic carbon(WSOC) and soil microbial biomass carbon were discussed in this paper.
     The main conclusions are as follows:
     1.Different land uses resulted in significant differences in SOC,TN,total phosphorous,available phosphorous,soil bulk density and soil pH.In surface soil(0-10 cm),SOC contents were significantly higher in grasslands than that in croplands,while TN show no significance.In the soil layers from 20 to 100cm,SOC and total nitrogen contents were significantly higher in croplands than that in grasslands(P<0.05).The soil total phosphorous was higher in croplands than that in grasslands but the difference was not significant.In the soil profile down to 100cm,the C/N ratios in croplands were much higher than that in grasslands,except in 0-10cm layer.The soil pH in grasslands was significant higher than that in croplands in each layer(P<0.05).The soil bulk densities in the grasslands were higher than that in croplands,except in 10-20 cm layer.The SOC and TN decreased with the increase of soil depth in grasslands,while this phenomenon was only found in the soil layers below 30cm in croplands;in the upper 30cm soil layers,the SOC increased with depth.Total phosphorous content did not show significant differences in different soil layers in grasslands.In croplands,the changes of total phosphorous showed the same trends with that of SOC and total nitrogen.The available phosphorous contents decreased with soil depth in both grasslands and croplands while the soil pH showed completely converse trend.Results showed that in both of grasslands and croplands,SOC,TN,total phosphorous and available phosphorous showed significant negative correlations with soil BD and soil pH.There were significant positive correlation between soil BD and soil pH.The significant positive correlations were also found among SOC,TN,total phosphorous and available phosphorous.
     2.Two years study showed that SMBC was mainly influenced by soil water content and plant biomass,not significantly correlated with temperature.In May and November, SMBC content in the 0-10cm layer was significantly higher in the fenced grassland than in other plots,while the lowest value was found in the fallow.The big difference in plant biomass was the main reason(P<0.05).In July and September,when the soil temperature and soil water content were relatively higher,the sequence was millet>fenced grassland>grazing grassland=fallow,and there was same trend among all plots: September>July>May≥(≤) November,there was significant difference among all months(P<0.05).In 0-10 cm layer,the ranges of SMBC content of the four plots(fenced grassland,grazing grassland,millet cropland and fallow) in two years were 183.49-576.72mg/kg,121.13-366.76mg/kg,127.99-725.62mg/kg,44.05-354.58mg/kg, respectively.In each plot,SMBC content decreased with the depth in all seasons.
     3.In all plots,soil WSOC was mainly influenced by soil water content,and it did not correlate with soil temperature,while in millet cropland,it also tightly correlated with plant biomass.In September,when the soil water content was highest,WSOC was significantly higher than in other months in all plots(P<0.01),and there was no significant difference among May,July and November.In 0-10cm soil layer,the ranges of WSOC content in fenced grassland,grazing grassland,millet cropland and fallow were 31.88-13.58mg/kg,9.28-22.22mg/kg,8.34-23.72mg/kg,13.00-26.0mg/kg, respectively.Along the soil profile in each plot,WSOC content was highest in 0-10cm layer,and decreased sharply in May and slightly in rainy season with soil depth. Compared with surface soil,WSOC content in 30-60 cm layer was only 0.8%lower in September(at this time of year,precipitation was much higher) in millet cropland. WSOC content in each layer of millet cropland was higher than that in other plots. WSOC leak resulting from precipitation may be one reason why SOC content in 10-100cm soil layer of cropland system was higher than in grassland.
     4.The change of land uses affected the content of soil aggregates significantly. Tillage activities could decrease small aggregates and increase large aggregates,resulting in the higher content of soil aggregates of>0.5mm particle size in upper soil layer (0-20cm) in grasslands than that in croplands,while soil aggregates<0.05mm in 0-20cm layer in croplands were higher than that in grasslands.The content of soil aggregates of different particle size except that bigger than 1mm were higher in croplands than in grasslands,while that of bigger than lmm were higher in grasslands(P<0.05). Distribution of different particle size aggregates mainly concentrated in<0.25mm micro-aggregates,ranging between 87.89%and 96.22%,while the large aggregates (>0.25mm) content was less than only 13%.
     5.The distribution of SAOC along soil profile showed same pattern with that of SOC.In 0-10 cm layer,the content of soil organic carbon in soil aggregates of different particle sizes was higher in fenced grassland than in cropland;while in 10-40 cm layer, the content of soil aggregates of different particle size were higher in croplands than in grasslands except that bigger than lmm which was at the same level in the two plots, especially for that of<0.25mm which account for 93.61%.The content of SAOC of>0.25mm were significantly higher than that of<0.25mm micro-aggregates in all plots (P<0.05).The distribution of SAOC of different particle size along soil profile showed different pattern.The content of SAOC of>0.5mm decreased with soil depth while that of<0.5mm showed the same pattern with SOC.The content of SAOC of different particle sizes showed significant positive correlation with SOC in grasslands,but the same correlation was only found for the soil aggregates with particle size<0.25mm in croplands.
引文
1.安韶山,张玄,张扬,郑粉莉.黄土丘陵区植被恢复中不同粒级土壤团聚体有机碳分布特征.水土保持学报,2007,21(6):109-113. 2.陈翠玲,蒋爱凤,介元芬等.土壤微团聚体与土壤有机质及有效氮、磷、钾的关系研究。河南职业技术师范学院学报,2003,31(4):7-9. 3.迟凤琴,宿庆瑞,王鹤桥.不同有机物料在黑土中的腐解及土壤有机质平衡的研究.土壤通报,1996,27(3):124-25. 4.陈国潮.土壤微生物量测定方法现状及其在红壤上的应用.土壤通报,1999,30(6):284-287. 5.陈国潮,何振立.红壤不同利用方式下的微生物量研究.土壤通报,1998,29(6):276-278. 6.蔡强国,吴淑安,陈浩等.坡耕地表土结皮对降雨径流和侵蚀产沙过程的影响.晋西黄土高原土壤侵蚀规律论文集.1990,48-56. 7.曹慧,杨浩,孙波等.不同种植时问菜园土壤微生物生物量和酶活性变化特征.土壤,2002(4):197-200. .陈利军,周礼恺.土壤保肥供肥机理及其调节Ⅳ:棕壤型菜园土肥力的调节与培肥及其作用实质.应用生态学报,2000,11(4):532-534. 9.陈珊,张常钟,刘东波等.东北羊草草原土壤微生物生物量的季节变化及其土壤生境的关系.生态学报,1995.15(1):91-94. 10.黄雪夏,唐晓红,魏朝富,谢德体.不同利用方式对紫色水稻土水溶性有机碳的影响.农业资源与环境科学.2007,23(8):440-443. 11.陈云峰等.气候变化-人类面临的挑战.气象出版社,2007,9.
    12.丁瑞兴,刘树桐.黑土开垦后土壤肥力的研究.土壤学报,1980,17(1)“20-32. 13.侯春霞,骆东齐,谢德体等.不同利用方式对紫色土团聚体形成的影响.西南农业大学学报,2003,25(5):467-470. 14.何云峰,徐建民,侯惠珍等.有机无机复合作用对红壤团聚体组成及腐殖质氧化稳定性的影响.浙江农业学报,1998,10(4):197-200. 15.樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响.水土保持研究,2003a,10(1).85-87
    16.樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究植物营养与肥料学报2003b,9(2):146-150.
    17.侯鹏程,徐向东,潘根兴.不同利用方式下吴江市耕地土壤环境质量变化.生态环境,2007,16(1):152-157.
    18.何振立.土壤微生物量的测定方法:现状和展望.土壤学进展,1994.22(4):36-44
    19.傅伯仁.甘肃黄土高原生态环境建设的问题与政策建议.中国农业资源与区划,2006,27(6):30-34.
    20.冯固,张玉凤,李晓林.丛生菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响.水土保持学报,2001,15(4):99-102.
    21.傅华,陈亚明,周志宇.阿拉善荒漠草地恢复初期植被与土壤环境的变化.中国沙漠,2003,23(6):661-664.
    22.方精云,郭兆迪.寻找失去的陆地碳汇.自然杂志,2007,29(1):1-6.
    23.高富,沙粒清.西庄河流域土地利用方式对土壤肥力影响的研究.土壤与环境,2000,9(3):223-226.
    24.巩杰,陈利顶,傅伯杰等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响.应用生态学报,2004,15(12):2292-2296.
    25.高云超,朱文珊,陈文新.土壤微生物生物量周转的估算.生态学杂志,1993,12(6):6-10.
    26.贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望.科学通报,2004,49(13):1226-1233.
    27.李爱宗.耕作方式对土壤有机碳库和团聚体稳定性的影响:[硕士学位论文].兰州:甘肃农业大学,2007.
    28.林滨,陶澍.沉积物中天然有机物吸着系数的动态测定.地理科学,1996,5:165-169.
    29.刘东臣.海涂人工草场土壤微生物量的研究.中国农业通报,1999,11(4):25-28.
    30.骆东奇,侯春霞,魏朝富.紫色土团聚体抗蚀特征研究.水土保持学报,2003,17(2):20-27.
    31.刘恩科,赵秉强,李秀英,姜瑞波,李燕婷,Hwat Bing So.长期施肥对土壤微生物量及土壤酶活性的影响.植物生态学报,2008,32(1):176-182.
    32.刘国彬.黄土高原草地植被恢复与土壤抗冲性形成过程-植被恢复不同阶段土壤抗 冲性特征.水土保持研究,1997,4(5):122-128.
    33.吕国红,周广胜,周莉,贾庆宇.土壤溶解性有机碳测定发放与应用.气象与环境学报.2006,22(2):51-55.
    34.李辉信,袁颖红,黄欠如,胡锋,潘根兴.不同施肥处理对红壤水稻土团聚体有机碳分布的影响.土壤学报,2006,43(3):422-429.
    35.李凌浩.土地利用变化对草地生态系统土壤碳贮量的影响.植物生念学报,1998,22(4):300-302.
    36.来璐,郝明德,彭令发等.黄土高原旱地长期施肥条件下土壤有机磷的变化.土壤,2003,35(5):413-418.
    37.李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤团聚体及其有机碳的变化.土壤通报,2000,31(5):193-195.
    38.陆景陵.植物营养学(上册).北京:中国农业大学出版社,2003.
    39.卢金伟,李占斌.土壤团聚体研究进展.水土保持研究,2002,9(1):81-85.
    40.刘纪远,王绍强,陈镜明等.1990-2000年中国土壤碳氮蓄积量与土地利用变化.地理学报,2004,59(4):483-496.
    41.刘满强,胡蜂,何园球等.退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义.土壤通报,2003,40(6):937-944.
    42.刘梦云,常庆瑞,安韶山,郑顺安.土地利用方式对土壤团聚体及微团聚体的影响.中国农学通报.2005,21(11):247-250.
    43.刘梦云,常庆瑞,齐雁冰.不同土地利用方式的土壤团粒及微团粒的分形特征.中国水土保持科学,2006,4(4):47-51.
    44.李睿,屈明.土壤溶解性有机质的生态环境效应.生态环境,2004,13(2):271-275.
    45.李淑芬,俞元春,何晟.土壤溶解性有机碳的研究进展.土壤与环境,2002,11(4):422-429.
    46.刘世梁,傅伯杰,刘国华,马克明.我国土壤质量及其评价研究的进展.土壤通报,2006,37(1):137-143.
    47.刘守赞,郭胜利,白岩.黄土高原沟壑区梁坡地土壤有机碳质量分数与土地利用方式的响应.浙江林学院学报,2005,22(5):490-494.
    48.刘文娜,吴文良,王秀斌,王明新,毛文峰.不同土壤类型和农业用地方式对土壤微生 物量碳的影响.植物营养与肥料学报.2006,12(3):406-411.
    49.刘文兆,胡梦君,侯喜禄,李凤民.半干旱黄土丘陵区小流域横断面土壤水分生态特征.干旱地区农业研究,2004,21(4):95-100.
    50.李小刚.甘肃景电灌区土壤团聚体特征研究.土壤学报,2000,37(2):263-270.
    51.廖晓勇,陈治谏,刘邵权等.三峡库区小流域土地利用方式对土壤肥力的影响.生态环境,2005,14(1):99-101.
    52.李新宇,唐海萍,赵云龙等.怀来盆地不同土地利用方式对土壤质量的影响分析.水土保持学报,2004.19(6):103-107.
    53.李香真.放牧对典型草原土壤-植物系统中碳、氮、磷库特征的影响.北京:中国科学院,1999,13-43.
    54.李香真,曲秋皓.蒙古高原草原土壤微生物量碳氮特真.土壤学报,2002,38(1):98-104.
    55.刘毅,李世清,邵明安等.黄土高原不同土壤结构体有机碳库的分布.应用生态学报,2006,17(6):1003-1008.
    56.李阳兵,谢德体.不同土地利用方式对岩溶山地土壤团粒结构的影响.水土保持学报,2001,15(4):122-125.
    57.冷延慧,汪景宽,李双异.长期施肥对黑土团聚体分布和碳储量变化的影响.生态学杂志,2008,27(12):2171-2177.
    58.李忠佩,王效举.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟.应用生态学报,1998,9(4):365-370.
    59.毛青兵.天台山七子花群落下土壤微生物量的季节动态.生物学杂志,2003,20(3):16-18.
    60.马秀枝,王艳芬,汪诗平.放牧对内蒙古锡林河流域草原土壤碳组分的影响.植物生态学,2005,29(4).569-576.
    61.倪进治,徐建昆,谢正苗.土壤生物活性有机碳库及其表征指标的研究.植物营养与肥料学报,2001a,7(1):56-63.
    62.倪进治,徐建民,谢正苗.不同有机肥料对土壤生物活性有机质组分的动态影响.植物营养与肥料学报,2001b,7(4):374-378.
    63.倪进治,徐建民,谢正苗.不同施肥处理下土壤水溶性有机碳含量及其组成特征的
    ?研究.土壤学报,2003,40(5):724-730.
    
    64.潘根兴.地球表层系统土壤学.北京:地质出版社,2000a:47-49.
    65.潘根兴,黄建华,周运超.土壤碳及其在地球表层生态系统碳循环中的意义.第四纪研究,2000b,20:325-334.
    66.潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议.南京农业大学学报,2002,25(3):100-109.
    67.潘根兴,李恋卿,张旭辉等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-618.
    68.彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,2003,23(10):2176-2183.
    69.彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展.土壤学报,2004,41(4):618-623.
    70.邱莉萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响.自然资源学报,2006,21(6):965-976.
    71.邱莉萍,张兴昌,程积民.土地利用方式对土壤有机质及其碳库管理指数的影响.中国环境科学.2009,29(1):84-89.
    72.孙波,赵其国,张桃林,俞慎.土壤质量与持续环境Ⅲ:土壤质量评价的生物学指标.土壤,1997,29(5):225-234.
    73.沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响.热带亚热带土壤科学,1998,7(1):1-5.
    74.沈宏,曹志洪,胡义正.土壤活性有机碳的表征及其生态效应.生态学杂志,1999,18(3):32-38.
    75.沈宏,曹志洪,徐志红.施肥对土壤不同形态及碳库管理指数的影响.土壤学报,2000,37(2):166-173.
    76.苏永中,赵哈林.科尔沁沙地不用土地利用和管理方式对土壤质量性状的影响.应用生态学报,2003,14(10):1681-1686.
    77.吴建国,韩梅,苌伟等.祁连山中部高寒草甸土壤氮矿化及其影响因素研究.草业学报,2007,16(6):39-46.
    78.吴建国,张效全,徐德应.土地利用变化对土壤有机碳贮量的影响.应用生态学报, 2004a,15(4):593-599.
    79.吴建国,张效全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较.植物生态学报,2004b,28(4):530-538.
    80.魏朝富,高明等.有机肥对紫色水稻土壤水稳性团聚体的影响.土壤通报,1995,26(3):114-116.
    81.王国梁,刘国彬,许明祥.黄土丘陵去纸坊沟流域植被恢复的土壤养分效应.水土保持通报,2002,22(1):1-5.
    82.王国强,毛艳玲.土地利用方式对土壤团聚体组成及质量的影响.林业科技开发,2008,22(6):60-63.
    83.王宏生.冬虫夏草生长地土壤微生物量季节动态变化研究.草业与畜牧,2008,9:11-16.
    84.汪景宽,冷延慧,于树,李双异,陈丽芳.不同施肥处理下棕壤有机碳库对团聚体稳定性的影响.土壤通报.2009,40(1):77-80.
    85.文倩,关欣.土壤团聚体形成的研究进展.干旱区研究,2004,21(4):434-438.
    86.王启兰,王长庭,杜岩功,曹广民.放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系.草业学报,2008,17(2):39-46.
    87.王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素.土壤通报,2005,36(3):415-421.
    88.王旭东,张一平.娄土不同粒径团聚体中胡敏酸性质结构研究.干旱地区农业研究,1997,(15)2:69-72.
    89.王义祥,翁伯琦,黄毅斌.土地利用和覆被变化对土壤碳库和碳循环的影响.亚热带农业研究,2005,1(3):44-51.
    90.解宏图,付时丰,张旭东等.土壤有机质稳定性特征与影响因子研究综述.土壤通报,2003,34(5):459-462.
    91.徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究.水土保持学报,2003,17(4):15-17.
    92.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-96.
    93.向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性.植物营养与肥料学 报,2004,10(6):663-670.
    94.杨芳,吴家森,姜培坤,徐秋芳.不同施肥雷竹林土壤水溶性有机碳动态变化.浙江林业科技,2006,26(3):34-37.
    95.杨少红.土地利用变化对土壤有机碳和土壤呼吸的影响:[硕士学位论文].福州:福建农林大学,2006.
    96.俞慎,李勇,王俊华等.土壤微生物量作为红壤质量生物指标的探讨.土壤学报,1999,36(3):413-421.
    97.俞慎,李振高.熏蒸提取法测定土壤微生物量研究进展.土壤学进展,1994,22(6):42-50.
    98.杨文治,邵明安.黄土高原土壤水分研究.北京:科学出版社.2000,4-11.
    99.尹瑞玲.微生物与土壤团聚体.土壤学进展,1985,4:24-29.
    100.宇万太,姜子绍,柳敏,赵鑫.不同土地利用方式下对土壤微生物碳的影响.土壤通报,2008,39(2):282-286.
    101.姚贤良,许绣云,于德芬.不同利用方式下红壤结构的形成.土壤学报,1990,27(1):25-33.
    102.姚贤良,于德芬.有机肥料及其利用方式对土壤结构的影响.土壤学报,1985,22(3):241-249.
    103.榆中县志编篡委员会,榆中县志.兰州:甘肃人民出版社,2001.
    104.周宝库,张喜林.长期施肥对黑土磷素积累、形态转化及其有效性影响的研究.植物营养与肥料学报,2005,11(2):143-147.
    105.张春霞,郝明德,魏孝荣,王旭刚.不同农田生态系统土壤微生物生物量碳的变化研究.中国生态农业学报,2006,14(1):81-83.
    106.张电学,韩志卿,王秋兵等.长期不同施肥制度下土壤有机质质量动态变化规律.土壤通报,2007,38(2):251-255.
    107.张华,张甘霖.土壤质量指标和评价方法.土壤.2002,6:326-333.
    108.章明奎,何振立.成土母质对土壤团聚体形成的影响.热带亚热带土壤科学,1997,6(3):198-202.
    109.赵吉.土壤健康的生物学监测与评价.土壤,2006,38(2):136-142.
    110.赵吉,郭婷,邵玉琴.内蒙古典型草原土壤微生物生物量及其周转与流通量的初步 研究.内蒙古大学学报(自然科学版)2004,35(6):637-676.
    111.赵吉.不同放牧率对冷蒿小禾草草原土壤微生物数量和生物量的影响.草地学报,1999,7(3):223-227.
    112.赵京考,刘作新,韩永俊.土壤团聚体的形成与分散及其在农业生产上的应用.水土保持学报.2003,17(6):163-166.
    113.周江敏,代静玉,潘根兴.土壤中水溶性有机质的结构特征及环境意义[J]。农业环境科学学报,2006,22(6):731-735.
    114.张金波,宋长春,杨文燕.土地利用方式对土壤水溶性有机碳的影响.中国环境科学.2005a,25(3):343-347.
    115.张金波,宋长春,杨文燕.小叶章湿地表土水溶性有机碳季节动态变化及影响因素分析.环境科学学报,2005b,25(10):1397-1402.
    116.张甲珅,陶澍,曹军.土壤中水溶性有机碳测定中样品保存与前处理方法.土壤通报,2000,31(4):174-176.
    117.赵劲松,张旭东,袁星,王晶.土壤溶解性有机质的特性与环境意义.应用生态学报.2003,14(1):126-130
    118.周萍,刘国彬,侯喜禄.黄土丘陵区铁杆蒿群落植被特性及土壤养分特征研究.草业学报,2008a,17(2):9-18.
    119.周萍,刘国彬,侯喜禄.黄土丘陵区不同土地利用方式土壤团粒结构分形特征.中国水土保持科学.2008b,6(2):75-82.
    120.赵其国,孙波,张桃林.土壤质量与持续环境Ⅱ:土壤质量评价的碳氮指标.土壤,1997,4:169-175.
    121.赵琼,曾德慧.陆地生态系统磷素循环及其影响因素,植物生态学报,2005,29(1):153-163.
    122.张蕴薇,韩建国,韩永伟.不同放牧强度下人工草地土壤微生物量碳、氮的含量。草地学报,2003,11(4):343-345.
    123.赵鑫,宇万太,李建东.不同经营管理方式对土壤有机碳及其组分的研究进展.应用生态学报,2006,17(11):2203-2209.
    124.张兴昌,邵明安.水蚀条件下不同土壤氮素和有机质流失规律.应用生态学报.2000,4(11):231-234.
    125.张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响.生态学杂志,2001,20(2):16-19.
    126.邹焱,苏以荣,路鹏等.洞庭湖区不同耕种方式下水稻土壤有机碳、全氮和全磷含量状况.土壤通报2006,37(4):671-674.
    127.朱祖祥.土壤学.北京:农业出版社,1983,276-279.
    128.Agustin Limon-Ortega,Bram Govaerts,Jozef Deckers,Kenneth D Sayre.Soil aggregate and microbial biomass in a permanent bed wheat-maize planting system after 12 years.Field Crops Research,2006,97:302-309.
    129.Amezketa E.Soil aggregate stability:a review.Journal of sustainable agriculture.1999,14(2/3):83-151.
    130.Anderson DW,Coleman DC.The dynamics of organic matter in grassland soils.Journal of Soil and Water Cons,1985,40:211-216.
    131.Anderson JE,Domsch KH.A physiological method for measurement of microbial biomass in soils.Soil Biology and Biochemistry,1978,10:215-221.
    132.Anderson T and Domsch KH.The metabolic quotient for CO_2(qCO_2)as a specific activity parameter to assess the effects of environmental conditions,such as pH,on the microbial of forest soils.Soil Biology and Biochemistry,1993,25:393-395.
    133.Anderson T,Domsch KH.Quantities of plant nutrients in the microbial biomass of selected soil.Soil Science,1980,130:211-216.
    134.Anderson T,Domsch KH.Ratios of microbial biomass carbon to total organic carbon in arable soils.Soil Biol.Biochem,1989,21:471-479.
    135.Aoyama M,Angers DA,N'Dayegamiye A..Particulate and mineral associated organic matter in stable aggregates as affected by fertilizer and manure applications.Soil.Sci.1999,79:295-302.
    136.Bajracharya BM,Lal R,Kimble JM.Soil organic carbon distribution in aggregates and primary particle fractions as influenced by erosion phase and landscape position.In:Lal R.et al.eds.Soil processes and The Carbon Cycle.Boca Raton:CRC Press,1997.353-367.
    137.Banerjee MR, Burton DL, Grant CAJnfluence of urea fertilization and urease inhibitor on the size and activity of the soil microbial biomass under conventional and zero tillage at two sites.Soil Science, 1999, 79: 255-263.
    138.Banhus J, Pare D, Core L.Effects of tree species,stand age and soil type on soil microbial biomass and its acticity in a southern boreal forest.Soil Biology and Biochemistry,1998,30: 1077-1089.
    139.Barricuso E, Bear U,Calvet R.Dissolved organic mater and adsorption-desorption of dimefuron, Atrazine and Carbetamide by soils.J Environ Qual, 1992, 21: 359-367.
    140.Bashkin MA, Binkley D.Changes in soil carbon following afforestation in Hawhii.Ecology, 1998,79: 828-833.
    141.Biox-Fayos C, Calvo-Cases A et al.Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators.CATENA.2001, 44(1): 47-67.
    142.Birgitte N, Leif P.Influence of arbuscular mycorrhizal fungion soil structure and aggregate stability of vertisol.Plant and Soil,2000,218: 173-183.
    143.Black.TA & Harden JW.Effect timber harvest on soil carbon storage at blodgett experimental forest California.Canadian Journal of Forest Reseerch, 1995, 25: 1385-1396.
    144.Bolan N S,Baskaran S,Thiagarajan S.An evaluation of theme & sure method dissolved organic carbon in soils , manures , sludge , and stream water.Communication in Soil Science Plant Annual.1996,27(13 / 14):2732-2737.
    145.Bronick CJ R.Soil structure and managements review.Geoderma,2005,124: 3-22.146.Burch GJ, Marson IB, Fischer RA et al.Tillage effects on soils: Physical an dhydraulic response direct drilling at Lockhart.Australia Journal of Soil Research, 1986, 24: 377-391.
    147.Capbell CA, Biederbeck VO, McConkey BG et al.Soil quality-Effect of tillage and fallow frequency: Soil organic matter quality as influenced by tillage and fallow frequency in a silt loam in southwestern Saskatchewan.Soil Biol.Biochem,1999, 31:
    148.Carter MR.Microbial biomass as an index for tillage-induced changes in soil biological properties.Soil and Tillage Research, 1986,7: 29-40.
    149.Chan KY.Soil particulate organic carbon under different land use and management.Soil Use and Management, 2001,17: 217-221.
    150.Changey K, Swift RS.Studies on aggregate stability I: Reformation of soil aggregates.Journal of Soil Science, 1986a,37(2): 329-335.
    151.Changey K, Swift RS.Studies on aggregate stability Ⅱ: The effect of humic substances on the stability of reformed soil aggregate.Journal of Soil Science,1986b,37: 337-343.
    152.Chantigny MH, Angers DA, Prevost D et al.Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization.Soil Biol Biochem, 1999,31: 543-550.
    153.Chen LD, Gong J,Fu BJ.Effect of land use conversion on soil organic carbon sequestration in the loess hill area, loess plateau of China.Ecological Research,2007,22: 641-648.
    154.Chilima J, Huang CY, WU CF.Microbial biomass carbon trends in black and red soils under single straw application: effect of straw placement mineral N addition and tillage.Pedosphere, 2002,12(1): 59-72.
    155.Christ MJ, David MB.Dyamics of extractable organic carbon in spodosol forest floors.Soil Biology & Biochemistry,1996,28(9): 1191-1199.
    156.Christensen BT.Physical fractionation of soil organic matter in primary particle size and density separates.Advances in Soil Science,1992, 20: 1-90.
    157.Christensen BT.Carbon in primary and secondary organ mineral complexes.In: Cater,M R,A B Stewart Eds.Structure and organic matter storage in agricultural soils.BocaRaton,Florida:CRC Press,Inc.1996, 97-165.
    158.Christie P and Beattie JAM.Grassland soil microbial biomass and accumulation of potentially toxic metals from long term slurry application.Applied Ecology,1989,26: 597-612.
    159.Cohen WB, Harmon ME & Wallino DO.Two decades of carbon flux from forests to the Pathfic Northwest.Bioscience,1996,46: 836-844.
    160.Collins HP, Rasmussen PE.Crop rotation and residue management effects on soil carbon and microbial dynamics.Soil Science, 1992,56: 783-788.
    161.Danuse M et al.Dose conversion of forest te agricultural land change soil carbon and nigtrogen? A review of the literature.Global Change Biologey, 2002.8(2), 105-112.
    162.Davidson EA & Aekerman IL.Changes in soil carbon inventories following cultivation of previously untilled soils.Biogeochemistry, 1993,20: 161-193.
    163.Degens B, Sparling G.Changes in aggregation do not correspond with changes in labile organic C fractions in soil amended with ~(14)C-glucose.Soil Biol.Biochem, 1996,28(45): 453-462.
    164.Detwiler RP.Land use change and the global carbon cycle: The role of tropicalsoils.Biogeochemistry, 1986,2: 67-93.
    165.Dou F, Wright AL, Hons FM.Depth distribution of soil organic C and N after long-term soybean cropping in Texas.Soil and Tillage Research, 2007, 94: 530-536.
    166.Elliott ET, Coleman DC.Let the soil work for us.Ecological Bulletins, 1988,39: 23-32.
    167.Eynard A, Schumacher TE, Lindstrom MJ, Malo DD.Aggregate sizes and stability in cultivated South Dakota Prairie Ustolls and Usterts.Soil Sci Soc Ami J, 2004,68: 1360-1365.
    168.Felipe GO, Robert L, Sanford J et al.Effects of slash and burn management on soil aggregate organic C and N in a tropical deciduous forest.Geoderma, 1999,88: 1-121.
    169.Fransluebbers AJ, Haney RL, Hons FM.Active fractions of organic matter in soils with different texture.Soil Biology and Biochemistry, 1996,28: 1367-1372.
    170.Franzluebbers AJ, Haney RL, Honeycutt CW etal.Climatic influences on active frations of soil organic matter.Soil Biology and Biochemistry, 2001,33: 1103-1111.
    171.Gale WJ, Cambardella CA.Carbon dynamics of surface residue and root-derived organic matter under simulated no-till.Soil Science Society of America Journal,2000,64: 190-195.
    172.Garica FO , Rice CW.Microbial biomass dynamics in tall grass prairie.Soil Sci.SocAm.J, 1994, 58: 816-823.
    173.Garterjr CT, Post WM, Hanson PJ.Forest soil carbon inventories and dynamics along an elevation gradient in the southern appellation mountains.Biogeochemistry, 1999,45: 115-145.
    174.Gerzabek MH, Haberhauer G, Kirchmann.Soil organic matter pools and carbon-13 natural abundance in particle-size fractions of a long-term agricultural field experiment receiving organic amendments.Soil Science Society of America Journal, 2001,65: 352-358.
    175.Ghani A, Dexter M, Perrott KW.Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilization,gazing and cultivation.Soil Biology and Biochemistry, 2003, 35: 1231-1243.
    176.Glaser B, Turrion MB, Solomon D, Ni A, Zech W.Soil organic matter quantity and quality in mountain soils of the Alay Range,Kyrgyzia,affected by land use change.Biology and Fertility of soils,2000,31: 407-413.
    177.Grasso D, Chin YP, Weber W.Structural and behavioral characteristics of a commercial humic acid and natural dissolved aquatic organic matter.Chemosphere,1990,21(10-ll): 1181-1198.
    178.Grestel M, Van Merckx R, Vlassak K.Spatial distribution of microbial biomass in microaggerates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying.Soil Biology and Biochemistry, 1996,28: 503-510.
    179.Groenendijk FM, Condron LM, Rijkse WC.Effects of afforestation on organic carbon ,nitrogen and sulfur concentration in new Zealand hill country soils.Geoderma,2002,108: 91-101.
    180.Guggenberger G et al.Microbial contributions to the aggregation of a cultivated grassland soil amended with starch.Soil Biol.Biochem., 1999,31: 407-419.
    181.Guo LB, Gifford RM.Soil carbon stocks and land use change: a meta analysis.Global Change Biology,2002,8: 345-360.
    182.Hajabbasi MA, Jalalian A, Karimzadeh HR.Deforestation effects on soil physical and chemical properties,Lordegan,Iran.Plant and Soil,1997,190: 301-308.
    183.Hassink J.Effects of soil texture on size of soil microbial biomass and on the amount of C and N mineralization per-unit of microbial biomass in Dutch grassland soils.Soil Biology and Biochemistry,1994,26: 1377-1581.
    184.Hassink J.Preservation of plant residues in soils differing in unsaturated protective capacity .Soil Science Society of America Journal,1996,60: 487-491.
    185.Haynes RJ.Labile organic matter as an indicator of organic matter quality in arable and pastoral soil in New Zealand.Soil Biology and Biochemistry., 2000,32: 211-219.
    186.Hernandez-Hernandez RM,Lopez-Hernandez D.Microbial biomass, mineral nitrogen and carbon content in savanna soil aggregates under conventional and no-tillage.Soil Biology & Biochemistry, 2002,34:1563-1570.
    187.Hofman J, Bezchllebova J, Dusek L et al.Novel approach to monitoring of soil biological quality Environment International, 003, 8: 71-778.
    188.Houghton RA.Terrestrial sources and sinks of carbon inferred from terrestrial data .Tellus,1995a,48(B): 420-432.
    189.Houghton RAChenges in the storage of terrestrial carbon since 1850 in; Lai R et al.(eds).Soil and Global Change.CRC press, Inc.Boca Raton, Florida, 1995b,45-65.
    190.Hughes R, Kauffman F JB, Jaramillo VJ.Biomass,carbon,and nutrient dynamics of secondry forests in a humid tropical region of Mexico.Ecology, 1999, 80(6): 1892-1907.
    191.Ingram J SI, Fernandes E CM.Managing carbon sequestration in soils :concept and terminology.Agric Ecosystem Environment, 2001, 87: 111-117.
    192.IPCC.Climate change 2001 the scientific basis.Cambridge:Cambridge University Press,2001.
    193.IPCC.Climate Change 1995.Workingroup l.IPCC.Cambridge:Cambridge University Press,1995.
    194.Janzen HH, Campbell CA, Gregorich EG et al.Soil carbon dynamics in Canadian agroecosystems.LAL R,JOHN K, RON F, et al.Soil Processes and the Carbon Cycle.Boca Raton: CRC Press, 1997, 57-80.
    195.Jastrow JD, Boutton TW, Miller RM.Carbon dynamic of aggregate-associated organic matter estimated by carbon-13 natural abundance.Soil Science Society of America Journal, 1996b, 60: 801-807.
    196.Jastrow JD.Soil aggregate formation and the accrual of particulate and mineral - associated organic matter.Soil Biol.Biochem., 1996a, 28(4-5): 665-676.
    197.Jean PC , Anver G.The sole of the European Union in globe change research.AMBIO, 1994, 23(1): 101-103.
    198.Jenkinson DS, Adam DE, Wild A.Model estimates of CO_2 emissions from soil in response to global warming.Nature, 1991, 351(23): 304-306.
    199.Jenkinson DS,Ladd JN.Microbial biomass in soil: Measurement and turnover In:Paul.Soil Biochemistry, Paul VEA and Ladd JN(eds), Narcel Dekker New York, 1981, 5: 415-471.
    200.Jenkinson DS, Powlson DS.Effect of biocidal treatments on metabolism in soil: A method for measuring soil biomass.Soil Biology and Biochemistry., 1976,8: 209-213.
    201.Jenkinson DS.Determination of microbial biomass C and N in soil.In Advances in Nitrogen Cycling in Agricultural Ecosystems (J.R.Wilson,ED.) CAB Internationl, Wakkingford., 1988, 368-386.
    202.Jobbagy EG, Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications, 2000,10: 423-436.
    203Jolivet C, Arrouays D, Anereeux F.Soil organic carbon dynamics in cleared temperate forest spodosots converted to maize cropping.Plant and soil, 1997, 191: 225-231.
    204.Kaiser K, Guggenberger G, Haumaier L.Seasonal variations in the chemi cal composition of dissolved organic ma tter in organ ic forest floor layer leaehates of old-grouth Scots pine(Pinns sylvestries L.) and European beech (Fagus sylvmiea L.) stand in northeastern Bavaria, Germany.Biogeochemistry, 2001, 55: 103-143.
    205.Kaiser K, Zech W.Rate of dissolved organicmatter release and sorp tion in forest soils.Soil Sci.,1998, 163(9): 714-725.
    206.Kalbitz K, Solinger S, Park JH.Controls on the dynamics of dissolved organic matter in soils: a review.Soil Science, 2000, 165: 277-304.
    207.Kalbitz K.Seasonal impacts on hexachlorocyclohexane concentration in soil solution.Environ Pullut, 1999, 106: 139-141.
    208.Kannan Iyyemperumal, Daniel W.Israel, Wei Shi.Soil microbial biomass activity and potential nitrogen mineralization in a pasture: Impact of stock camping activity.Soil Biology & Biochemistry , 2007, 39: 149-157.
    209.Kuiter AT, Mulder W, Water soluble organic matter in forest soils.Plant and Soil, 1993, 152(2): 215-224.
    210.Ladd JN,Amato M,Li-Kai Z.Different effects of rotation,Plant residue and nitrogen fertilizer on microbial biomass and organic matter in an Australian alfisol.Soil Biology and Biochemistry, 1994, 26: 821-831.
    211.Lajtha K.Nutrient reabsorption efficiency and the response to phosphorus fertilization in the desert shrub Larrea tridentata (DC.) Cov.Biogeochemistry, 1987, 4(3): 265-276.
    212.Lal R, Follett RF, Kimble J.Management US cropland to sequester carbon in soil.Journal of Soil and Water Cons,1999a,54(1): 374-381.
    213.Lal R.Soil management and restoration for C sequestration to mitigate the acclerated greenhouse effects.Progr Environ Sci, 1999b, 14: 307-326.
    214.Lantz A, Lal R, Kimble J.Land use effects on soil carbon pools in two major land use resource areas of Ohio,USA.STOTT D E, MOHTAR R H, STEINHARCH G C.Sustaining the Global Farm., 2001, 499-502.
    215.Lefroy R DB, Blair GJ, Strong WM.Changes in soil organic mater with cropping as measured by organic Cfractions and~(13)C natural isotope abundance.Plant and Soil, 1993, 156: 399-402.
    216.Li L & Chen Z.Changs in soil carbon storage due to over-grazing in Leymus chinensis steppe in the Xilin river basin of Inner Mongolia.J.of Environmental Science, 1997, 9(4): 486-490.
    217.Li Xudong, Fu Hua, Li Xiaodong, Guo Ding, Dong Xiaoyu, Wan Changgui.Effects of land-use regimes on carbon sequestration in the Loess Plateau, northern China.New Zealand Journal of Agricultural Research, 2008, 51(1): 45-52.
    218.Liang BC, Mackenzie AF, Schnitzer M et al.Managenment induced change in labile soil organic matter under continuous corn in eastern Canadian soils.Biol.Fertil.Soils, 1998, 26: 88-94.
    219.Liao JD,Boutton TW.Soil microbial biomass response to woody plant invasion of grassland.Soil Biology & Biochemistry, 2008, 40: 1207-1216.
    220.Louise MD, Gwyn SG, Jhon H.Management influences on soil microbial communities and their function in botanically diverse hay-meahows of northern England and Wales.Soil Biology and Biochemistry, 2000, 32: 253-256.
    221.Lugo AE, Sanchez AJ, Brown S.Land use and organic carbon content of some subtropical soils.Plant Soil, 1986, 96: 185-196.
    222.Lundquist EJ, Jackson LE, Scow KM.Wet-dry cycles affect dissolved organic carbon in two California agricultural soils.Soil.Biol.Biochem., 1999, 31: 1031-1038.
    223.Lupwayi NZ et al.Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation.CanJ.Soil Sci, 1999, 79-.273-280.
    224.Waldrop MP , Firestone MK.Seasonal Dynamics of microbial Community Composition and Function in Oal Canopy and Open Grassland.Soils.MicrobialEcology, 2006, 52: 470-479.
    225.Mann LK.Changes in soil carbon storage after cultivation.Soil Science, 1986, 142: 279-288.
    226.Markewitz D, Sartori F, Craft C.Soil change and carbon storage in longleaf pine stands planted on marginal agricultural lands.Ecol Appl, 2002, 12(5): 1276-1285.
    227.Martens DA, Reedy TE, Lewis DT.Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements.Global Change Biology, 2003, 10: 65-78.
    228.Martin JP, Martin WP, Page JB.Soil aggregation Advances in Agronomy.1995, 7: 1-37.
    229.Marumto T.Nitrogen and microbial biomass in arable soils.Hakuyusya Tokyo,Soil Biomass, 1984, 115-140.
    230.Maysoon MM , Charles WR.Tillage and manure effects on soil and aggregate-associated carbon and nitrogen.Soil.Sci.SocAm.J., 2004, 68: 809-816.
    231.McConnell SG, Quinn ML.Soil productivity of four land use systems in southeastern Montana.Soil Science society of America Journal, 1988, 52: 500-506.
    232.Mcdowell WH, Likens GE.Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley.Ecol.Monogr., 1988, 58: 177-195.
    233.Mcdowell WH, Wood T.Podzolization: Soil processes control dissolved organic carbon concentrations in stream water.Soil.Sci., 1984, 137: 23-32.
    234.McGill WB, Cannon KR, Robertson JA et al.Dynamics of soil microbial biomass and water-soluble organic C in Breton after 50 years of cropping to rotations.Can.J.SoilSci., 1986, 66: 1-19.
    235.McGill WB, Hunt HW et al., A model of the dynamics of carbon and nitrogen in grassland soils.Ecol Bull, 1981, 33: 49-115.
    236.Merckx R, Hartog DA, Van Veen JA.Turnover of root-derived material and related microbial biomass formation in soils of different texture.Soil Biology and Biochemistry, 1985, 17: 565-569.
    237.Moller J , Miller M , Kjoller A.Fungal-bacterial interaction on beeche leaves:influence on decomposition and dissolved organic carbon quality.Soil Biology and Biochemistry.1999, 31(3): 367-374.
    238.Morari F, Lugato E, Berti A, Giardini L.Long-term effects of recommended management practices on soil carbon changes and sequestration in north-eastern Italy.Soil Use and Management, 2006, 22: 71-81.
    239.Morre TR, Souza WD, Koprivnijak JF.Controls on the sorption of dissolved organic carbon by soils.Soil Science, 1992, 154: 120-129.
    240.Murty D, Kirschbaum MF, Mcmurtrie RE et al.Does conversion of forest to agricultural and land change soil carbon and nitrogen a review of the literature.Global Change Biology, 2002, 8: 105-123.
    241.Neil C, Melillo JM, Steudler PA.Soil carbon and nitrogen stocks following forests clearing for pasture in the southwestern brazilian amazon.Ecol Appl, 1997, 7(4):1216-1225.
    242.Nelson SD, Farmer WJ, Letey J, Williams CF.Stability and mobility of napropamide complexed with dissolved organic matter in soil columns.Journal of Environmental Quality,2000,29(6): 1856-1862.
    243.Neufeldt H, Ayarza MA, Resck D VS et al.Distribution of water-stable aggregates and aggregating agents in Cerrado Oxisols.Geoderma, 1999,93(1/2): 85-99.
    244.Nsabimana D, Haynes RJ, Wallis FM.Size activity and catabolic diversity of the soil microbial biomass as affected by land use.Applied Soil Ecology, 2004, 26: 81-92.
    245.0gutu ZA.An inversfigation of the influence of human disturbance on selected soil nutrients in Narok District, Kenya.Environmental Monitoring and Assessment 1999, 58: 39-60.
    246.0hno T, CrannellB S.Green and animal manure derived dissolved organic mattereffects on Phosphorus sorption.J Environ Qual., 1996, 25 (5): 1137-1143.
    247.01iva P, Viers J, Dupre B, et al.,The effect of organic matter on chemical weathering : study of a small tropical watershed : nsimi-zoetele site , Cameroon.Geochimica et Cosmochimica Acta, 1999,63(23-24): 4310-4035.
    248.Parkinson D, Paul E A.In A.L.Page(ed.).Methods of Soil Analysis Part 2.Chemical and Microbiological Properties ASA.SSSA INC Madison WI USA.Microbial biomass, 1982, 821-829.
    249.Parr JF, Papendick RI, Hornick SB.Soil quality attributes and relationship to alternative and sustainable agriculture.American journal of alternative agriculture.1992, 7: 5-11.
    250.Parton W, Schimel D, Cole C, Ojima .Analysis of factors controlling soil organic matter levels in Great Plains grassland.Soil Science Society of America Journal.1987, 51: 1173-1179.
    251.Patra DD, Brookes PC, Coleman K et al.Seasonal changes of soil microbial biomass in arable and a grassland soil which have been under uniform management for many years.Soil Biology and Biochemistry, 1990, 22(6): 739-742.
    252.Patra DD, Chand S, Anwar M.Seasonal changes in microbial biomass in soils cropped with palmarosa(Cymbopogonmartinii L) and Japanese mit (Mentha arvensis L) in subtropical India.Biology and Fertility of Soils, 1995, 19: 193-196.
    253.Paul EA.Soil Biochemistry.New York: Marcel Dekker, 1981: 415-471.
    254.Petrovic M, Macan MK, Horvat A JM.Interactive sorption ofmetalions and humic acids onto mineral particles.Water,Air and Soil Pollution.1999, 116: 41-56.
    255.Pinheiro E FM, Pereire MG, Anjos L HC.Aggregate distribution and soil organic matter under different tillage system for vegetable crops in a Red Latosol from Brazil.Soil & Tillage Researeh, 2004.77: 79-84.
    256.Pojasak Tand, Kay SD.Effect of root exudates from corn and bromegrass on soil structural stability.CanJ.SoilSci., 1990, 70: 351-362.
    257.Post WM, Mann LK.Changes in soil organic carbon and nitrogen as a result of cultivation.BOUWMAN A F.Soils and the Greenhouse Effect.New York:JohnWiley & Sons, 1990, 401-406.
    258.Post WM, Known KC.Soil carbon sequestration and land use change: process and potential.Global Change Biology, 2000, 6(3): 317-327.
    259.Powlson DS, Jenkinson DS.A comparison of the organic matter,biomass adenosine triphosphate and mineralizable nitrogen contents of Ploughed and direct-drilled soils.J of Agricultural Science, 1981, 97: 713-721.
    260.Puget P, AngersDA, Chenu C.Nature of carbohydrates associated with water-stable aggregates of two cultivated soils.Soil Biol.Biochem., 1999, 31(1): 55-63.
    261.Puget P, Chenu C, Balesdent J.Dynamic of soil organic matter associated with particle-size fractions of water-stable aggregate.Euro.J.Soil.Sci., 2000, 51: 595-605.
    262.Puget P, Chenu C, Balesdent J.Total and young organic matter distributions in aggregates of silty cultivated soils.European Journal of Soil Science, 1995, 46:449-459.
    263.Quails RG, HAINES BL.Biodegradability of dissolved organic matter in forest throughfall, soil, and stream water.Soil Sci Soc Am, 1992, 56: 578-586.
    264.Quails RG.Comparison of the behavior of soluble organic and inorganic nutrients in forest soils.Forest Ecology and Management, 2000, 138: 29-50.
    265.Raghubanshi AS.Dynamics of soil biomass C, N, and P in a dry tropical forest in India.Biology Fertilization Soils, 1991, 12: 55-59.
    266.Ritz K, Wheatley RE.Effects of water amendment on basal and substrate induced respiration rates of mineral soils.Biology Fertilization Soils, 1989, 8: 242-246.
    267.Roy S, Singh JS.Consequences of habitat heterogeneity or availability of nutrients in a dry tropical forest.J.Ecology, 1994, 82: 503-509.
    268.Saggar S , Yeates GW, Shepherd TG.Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand.Soil & Tillage Research, 2001, 58: 55-68.
    269.Saviozzi A, Levi-Minzi R, Cardelli R et al.A comaparison of soil quality in adjacent cultivated, forest and native grassland soils.Plant and soil, 2001, 233: 251-259.
    270.Schiffman PM, Jonhson WC.Phytomasa and detritus storage during re-growth in the southeastern United States Piedmont.Canadian Journal of Forestry Research, 1990, 20(1): 69-78.
    271.Schlesinger WH.An overview of the global carbon cycle.in, Lai.R et al(eds).Soil and Global Change.CRC press, Inc.Boca Raton, Florida, 1995, 45-65.
    272.Scott NA, Tate KR, Ford.Robertson J.Soil carbon storage in plantation forests and pastures: land use change implications.Tellus, 1999, 51(B): 326-335.
    273.Seol Y, Lee L.Effect of dissolved organic matter in treated effluents on sorption of atrazine and prometryn by soil.Soil Sci.Soc.Am.j., 64 (6) : 1976-1983.
    274.Shand CA, Williams BL, Smiths Young ME.Temporal changes in C.P and N concentration in soil solution following application of synthetic sheep urine to a soil under grass.Plant and soil,2000,222(l-2):l-13.
    275.Sharma PK, Aggarwal GC.Soil structure under different land uses.Catena, 1984, 11: 91-201.
    276.Shinjo H, Fujita H, Gintzburger Gus.Soil aggregate stability under different landscapes and vegetation types in a semiarid area in Northeastern Syria.Soil Science & Plant Nutrient, 2000, 46(1): 229-240.
    277.Singh JS.Microbial biomass associated with water-stable aggregates in forest, savanna, and crop land soils of seasonally dry tropical region, India.Biol.Fertil.Soil., 1995, 27(8): 1027-1033.
    278.Singh JS.Water-stable aggregates and associated organic matter in forest, savanna, and cropland soils of seasonally dry tropical region, India.Biol.Fertil.Soil, 1996, 22: 76-82.
    279.Six J, Elliott ET, Paustian K.Aggregateandsoil organic matter dynamics under conventional and no-tillage systems.Soil Science Society of America Journal, 1999, 63: 1350-1358.
    280.Six J, Paustian K, Elliott ET et al.Soil structure and soil organic matter: Distribution of aggregate size classes and aggregate associated carbon.Soil Science Society of America Journal, 2000a, 64: 681-689.
    281.Six J, Elliott ET, Paustian K.Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture.Soil Biology and Biochemistry, 2000b, 32: 2099-2103.
    282.Six J and Paustian K, Microbial contributions to the aggregation of a cultivated grassland soil amended with starch.Soil Biology and Biochemistry, 1998, 31(3): 407-419.
    283.Smith CK, Oliverira FDA, Gholz HI et al.Soil carbon stocks after forest conversion to tree plantations in lowland amazonia.Brazil.For Ecol Man, 2002, 164: 257-263.Smith JL, Paul EA.The significance of soil microbial biomass estimations.in soil Biochemistry, V6-Jean-Marc Bollag and Gstoxky(eds) Marcel Deeker INC., Newyork, USA.1991, 357-396.
    284.Smolander A, Kurks A, Kimer V, et al.Microbial biomass C and N,and respiratory activity in soil of repeatedly limed and N and P fertilized Norway spruce stands.Soil Biology and Biochemistry, 1994, 26: 957-962.
    285.Smolander A, Kitmner V.Soil microbial activities and characteristics of dissolved organic C and N in relation to tee species.Soil Biol.Biochem., 2002, 34(5): 651-660.
    286.Solomon D, Lehmann J, Kinyangi J, Amelung W, Lobe I, Pell A, Riha S et al.Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems.Global Change Biology, 2007, 13: 511-530.
    287.Soulides DA, Allison FE.Effect of drying and freezing soils on carbon dioxide production available mineral nutrients,aggregation and bacterial population.Soil Sci., 1961, 91: 291-298.
    288.Sparling GP.Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter.Australian Journal of Soil Research , 1992, 30: 195-207.
    289.Stefan A, S Ingvar N, Peter S.Leaching pf dissolved organic carbon (doc) and dissolved organic nitrogen (don) in mor humus as affected by temperature and pH.Soil Biol.Biochem,1999,32: 1-10.
    290.Steven Degryze.Soil organic carbon pool changes following land use conversion.Global Change Biology, 2004, 10: 1120-1132.
    291.Strobel BW, Hansen HC B, Borggaarg OK, Andersen MK et al.Cadmium and copper release kinetics in relation to afforestation of culticated soil.Geovhimicaet CosmochimicaActa, 2001, 65(8): 1233-1242.
    292.Su YZ, Zhao HL, Zhang TH.Influences of grazing and exclosure on carbon sequestration in degraded sandy grassland, Inner Mongolia, North China.New Zealand Journal of Agricultural Research, 2003, 46: 321-328.
    293.Tabatabai MA.Soil enzymes in " Method of Soil Analysis " .Am.Soc.of Agro.Madisosn.USA.1982, 903-947.
    294.Take KR, Scott NA, Ross DJ et ah Plant effects on soil carbon storage and turnover in a montane beech(nothofagus) forest and adjacent tussock grassland in new Zealand.Aust J Soil Res, 2000, 38: 685-698.
    295.Tate KR, Ross DJ, Feltham CW.A direct extraction method to estimate soil microbial C: Effects of experimental variables and some different calibration procedures.Soil Biology and Biochemistry., 1988, 20: 329-335.
    296.THURMAN EM.Organic Geochemistry of Natural Waters .Boston: Kluwer Academic, 1985.
    297.Tiessen HJ, Steward WB & Bettany JR.Cultivation effects on the amount and concentration of carbon nitrogen and phosphorus in grassland soil.Agronomy Journal, 1982, 74: 831.
    298.Trumbore SE, Davidson EA, Barbosa DE et al.Belowground cycling of forests and pastures of eastern Amazonian.Global Biogeochemistry Cycle, 1995, 9: 512-528.
    299.Tsutomu Ohno, Ivan J.Fernandez, Syuntaro Hiradate et al.Effects of soil acidification and forest type on water soluble soil organic matter properties.Geoderma, 2007, 140: 176-187.
    300.Turner J, M Lambert.Change in organic carbon in forest plantation soils in eastern Australia.Forest Ecology and Management, 2000, 133: 231-247.
    301.Unger PW.Aggregate and organic carbon concentration interrelationships of a Torrertic Paleustoll.Soil and Tillage Research, 1997, 42: 95-113.
    302.Urszula K, Carinne AP, Rufus L et al.The effect of pH on metal accumulation in two alyssum species.Journal of Environmental Quality, 2004, 33: 2090-2102.
    303.Van Gestel M, Ladd JN and Amato M.Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil.Soil Biology and Biochemistry, 1992, 20: 103-111.
    304.Vance ED, Brookes PC and Jenkinson DS.An extraction method for measuring soil microbial biomass C.Soil Biology and Biochemistry, 1987, 19(6): 703-707.
    305.Vesterdal L, Ritter E, Gundersen P.Change in soil organic carbon following afforestation of former arable land.For Ecol Man., 2002, 169: 137-147.
    306.Wander MM, Traina SJ, Stinner BR, Peters SE.The effects of organic and conventional management on biologically active soil organic matter fraction.Soil Sci.Am.J., 1994, 58: 1130-1139.
    307.Wardle DA.A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil.Biology Revised edition, 1992, 67: 321-358.
    308.Wardle DA.Controls of temporal variability of the soil microbial biomass: A global synthesis.Soil Biol.Biochem., 1998, 30(13): 1627-1637.
    309.Watson RT, Bolin B.Land Use, Land Use Change and Forestry: a Special Report of the IPCC.Cambridge, U K:Cambridge University Press.2000, 189-217.
    310.Wenyan Hana, Sarah J.Kemmittb, Philip C.Brookes.Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity.Soil Biology & Biochemistry, 2007, 39: 1468-1478.
    311.Whalen JK, Bottomley PJ, Myrold DD.Carbon and nitrogen mineralization from light and heavy fraction additions to soil.Soil Biology and Biochemistry, 2000, 32: 1345-1352.
    312.Williams BL, Edwards AC.Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soil.Chem.Ecol., 1993, 8: 203-215.
    313.Witter E,Martnsson AM,Garica FV.Size the soil microbial biomass in a long term experiment affected by different N-fertilizers and organic manures.Soil Biology and Biochemistry,1993,25:659-669.
    314.Woods LE, Schuman GE.Influence of soil organic matter concentration on carbon and nitrogen activity.Soil Sci .Am.j., 1986, 50: 1241-1245.
    315.Woomer P, Martin A, Albrecht Resck D, Scharpenseel H.The importance and management of soil organic matter in the tropics.In:Wommer, P., Awift, M.(eds), The Biological management of Tropical Soil Fertility, Wileylsayce, UK, 1994,47-80.
    316.Wu J, Joergensen RG, Pommerening B et al.Measurement of soil microbial biomass C-an automatic procedure.Soil Biology and Biochemistry, 1990, 22: 1167-1169.
    317.Yano Y, Mcdowell WH, Kinner N.Quantification of biodegradable dissolved organic carbon in soil solution with flowthrough bioreactors.Soil Sci Soc Am, 1998, 62:1556-1564.
    318.Zeller V, Bardgett RD, Tappeiner U.Site and management effects on soil microbial properties of subalpine meadows: A study of land abandonment along a noah south gradient in the European Alias.Soil Bio.Biochem., 2001, 33: 639-649.
    319.Zhang MK, He ZL, Chen G C et al.Formation and water stability of aggregates in red soil as affected by organic matter.Pedosphere, 1996, 6(1): 39-45.
    320.Zinn YL, Resck D VS, Silva J ED.Soil organic carbon as affected by afforestation with Eucalypt us and Pinus in the cerrado region of Brazil.For Ecol Man, 2002,166:285-294.
    321.Zsolnay A, Gorlitz H.Water extraxtable organic matter in arable soils effects of drought and long-term fertilization.Soil Biol Biochem, 1994, 26: 1257-1261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700