细菌Caldicellulosiruptor bescii嗜热纤维素酶系功能及协同作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,石油资源日益枯竭,能源消耗日趋增多。寻求可再生能源以降低对不可再生资源依赖以及应对气候变化,已经成为国际社会关注的焦点。木质纤维素生物质作为世界上最多的可再生有机物,被认为是生物燃料和其他增值产物最主要的来源。为将木质纤维素生物质转变为重要的工业产品,必须将其转化成可发酵的单糖或寡糖,纤维素酶在此过程中具有关键作用。嗜热纤维素酶与常温纤维素酶相比具有诸多优势,如热处理木质纤维素时酶稳定性好,因而对反应体系具有良好的兼容性。开发来源于嗜热菌的新型纤维素酶及探讨其功能及对不溶纤维素的协同水解机理是重要的研究课题。本论文克隆、异源表达了来源于真细菌Caldicellulosiruptor bescii的嗜热渐进性内切纤维素酶、纤维二糖水解酶和β葡萄糖苷酶,并对其底物特异性、产物特异性及其协同作用水解纤维素等进行了系统地研究。
     来源于嗜热真细菌C. bescii的CbCelA是模块化的酶,由糖苷水解酶第9家族结构域(GH9)和第48家族结构域(GH48)通过3个糖类结合蛋白(CBM3c和两个重复的CBM3b)连接。为研究每个模块的功能特点,我们克隆构建了一系列CbCelA截短蛋白(CbCel9A_3cbm、CbCel9A_2cbm、CbCel9A_1cbm、CbCel9A、CbCbh48A、2cbm_CbCbh48A、CBM3c和CBM3b)。通过测定各重组蛋白底物特异性、产物特异性、吸附能力和协同能力等特征,揭示各模块水解纤维素的功能。结果表明CbCel9A为渐进性内切纤维素酶,对不溶性纤维素具有较高活力;CbCbh48A为纤维二糖水解酶,对固体纤维素活力很低,但是它可以通过协同作用加速CbCel9A_1cbm或其他内切纤维素酶水解活力。紧邻的CBM3c对CbCel9A活力、热稳定性及渐进性具有重要作用,且帮助CbCel9A吸附不溶底物。CBM3b则帮助CbCel9A_1cbm和CbCbh48A吸附到固体底物上,提高水解不溶底物活力和渐进性。
     细菌β葡萄糖苷酶作为纤维素酶系统的一个主要成分,负责水解纤维二糖等纤维寡糖为葡萄糖。为了获得新型耐热β葡萄糖苷酶有效用于水解纤维素,我们克隆、异源表达了来源于嗜热真细菌C. bescii的β葡萄糖苷酶CbBgl1A(GenBank:ACM59590.1)。通过系统地测定其底物特异性、催化动力学、结构建模和分子对接,以及与其他嗜热纤维素酶协同作用。我们发现CbBgl1A可以在高温下水解一系列纤维寡糖,β类二糖,和芳基-β-糖苷;高浓度底物不能够抑制其活力,对产物葡萄糖有较高的耐受性,且可以与外切纤维素酶和渐进性内切纤维素酶以较高协同性水解固体纤维素。
     为进一步深入研究纤维素酶协同水解纤维素,我们选定上述表征的CbCel9A_3cbm和CbCbh48A以及本实验室已有的FnCel5A三种嗜热纤维素酶,通过不同比例组合,在高温下水解再生不定型纤维素RAC,并在反应体系中加入定量的CbBgl1A以消除产物抑制。结果表明CbCel9A_3cbm在水解RAC过程中发挥最重要作用,CbCbh48A作用最小。转化率在最初两个小时最高,随着孵育时间延长,水解速度显著降低。60oC水解24小时后,CbCel9A_3cbm,CbCbh48A,和FnCel5A的最佳比例为60:20:20,转化率达到81.9%。进一步提高反应温度(75oC)后,在2小时内最高转化率可达到46%。
In view of rising prices of crude oil due to increasing fuel demands, the need foralternative sources of bioenergy inresponse to decreasing of non-renewable resourcesand climate change is expected to increase sharply in the coming years.Lignocellulosic biomass, as the most abundant renewable source of organic matter onthe earth, has been identified as the prime source of biofuels and other value-addedproducts. To initiate the production of industrially important products from cellulosicbiomass, bioconversion of the cellulosic components into fermentable sugars isnecessary, whereas cellulase is the key element in this process. Thermostable enzymeshave been studied for their abilities to hydrolyze lignocellulosic materials since theyhave several potential advantages compared to their mesophilic counterparts, such asbetter hydrolytic efficiency and stability at higher temperatures. Screening novelthermostable cellulase and detailed study into the biochemical and catalytic propertiesof them, together with an improved understanding of the synergistic mechanisms inthe presence of other cellulase components is important to assess their full potentialfrom both fundamental and applied standpoints. Hearein we report cloning andoverexpression of processive endoglucanase, cellobiohydrylase and β-glucosidasefrom thermophile Caldicellulosiruptor bescii, we systematically determined thesubstrate specificities, product specificities and synergistic effects of the enzymes.
     A bifunctional enzyme designated CbCelA from C. bescii is a modular protein, ithas a glycoside hydrolase family9(GH9) module at the N-terminus and a GH48module at the C-terminus. Located between the two modules are threecarbohydrate-binding modules (CBMs), one of which belongs to CBM3c subfamily,other two modules are repeated one belongs to CBM3b subfamily. To dissect function of the each module, several truncated forms (CbCel9A_3cbm,CbCel9A_2cbm,CbCel9A_1cbm, CbCel9A, CbCbh48A,2cbm_CbCbh48A, CBM3c and CBM3b)were constructed. The biochemical properties were described by determiningsubstrate and product specificities, ability of adsorption on cellulose and synergisticeffects with other cellulases. The results suggested that the GH9domain (CbCel9A)was a processive endoglucanase with high activity on insoluble cellulose, whereasGH48(CbCbh48A) was a cellobiohydrolase. It possessed very low activity towardscellulose but could synergistically work with CbCel9A_1cbm or other cellulase tohydrolyze substrate. The CBM3c module was very important to the activity andthermostability of CbCel9A, meanwhile, this protein helped CbCel9A partially bind tocellulose. The CBM3b module could adsorb to cellulose, resulting in increasedconcentration of enzymes on surface of cellulose, thereby enhancing the activities ofCbCel9A_1cbm and CbCbh48A.
     Bacterial β-glucosidase (BGL) is a major component of the cellulase system andis responsible for the hydrolysis of cellobiose and short chain oligosaccharides intoglucose. In an effort to obtain new thermostable BGLs desirable for the hydrolysis ofcellulose, herein we report a novel recombinant BGL from the thermophile C. bescii(CbBgl1A). Enzyme properties of CbBgl1A were determined by analyses of substratespecificity, catalytic kinetics, structure modeling, along with synergistic effects withother cellulase components. We found that CbBgl1A could hydrolyze a range ofcellooligosaccharides, β-diglycosides, as well as aryl-β-glycosides at high temperature.It was resistance to both high concentrations of substrate and product, and its catalysiswas highly synergistic with exocellulases (cellobiohydrolases) and processiveendocellulase in the hydrolysis of cellulose.
     To further understand the synergistic mechanisms of cellulases, CbCel9A_3cbmand CbCbh48A, together with another thermalstable endoglucanase FnCel5A whichwas previously characterized in our lab, were selected to form a minimal set ofbacterial cellulases for bioconversion of cellulose. In addition, fixed amounts ofCbBgl1A were added to eliminate product inhibition.21reactions containing differentratios of three cellulases and fixed amounts of CbBgl1A were studied on disordered high-accessibility regenerated amorphous cellulose (RAC). Processive endoglucanaseCbCel9A_3cbm was the most important for high cellulose digestibility, whereasCbCbh48A contributed the least. The optimal ratio for maximum cellulosedigestibility (81.9%) was60:20:20(CbCel9A_3cbm: CbCbh48A: FnCel5A) after24h incubation at60oC. The digestibility improved along with temperature increase.After2h incubation at75oC, the best mixture for maximum digestibility (46%) was80:0:20, which was2.82-fold improvement than that of CbCel9A alone.
引文
[1] Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization:fundamentals and biotechnology. Microbiol Mol Biol Rev.2002,66(3):506-77.
    [2] Payen A. Mémoire sur la composition du tissu propre des plantes et du ligneux.C R Hebd Seances Acad Sci,1938,7:1052–1056.
    [3] Coughlan MP. The properties of fungal and bacterial cellulases with commenton their production and application. Biotechnol Genet Eng Rev.1985,3:39-109.
    [4] Jagtap S, Rao M. Purification and properties of a low molecular weight1,4-β-d-glucan glucohydrolase having one active site for carboxymethylcellulose and xylan from an alkalothermophilic Thermomonospora sp. BiochemBiophys Res Commun.2005,329:111-116.
    [5] Watanabe H, Tokuda G. Animal cellulases. Cell Mol Life Sci.2001,58:1167-1178.
    [6] Klemm D, Schmauder HP, Heinze T. In: Biopolymers:Polysaccharides II;Vandamme E, De Baets A, Steinbuchel A, editors. Weinheim, Germany;Wiley-VCH;2002,275-319
    [7] Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: Fascinating Biopolymer andSustainable Raw Material. Polym Sci.2005,44:3358-3393.
    [8] Percival Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement:screening and selection strategies. Biotechnol Adv.2006,24:452-481.
    [9] Gardner, KH; Blackwell, J. The structure of native cellulose. Biopolymers.2004,13:1975-2001.
    [10] Klemm D, Heublein, B, Fink, HP, Bohn A. Cellulose: Fascinating Biopolymerand Sustainable Raw Material. Polym Sci.2005,44:3358-3393.
    [11] Nishiyama Y, Sugiyama J, Chanzy H, Langan P. Crystal structure and hydrogenbonding system in cellulose Ir from synchrotron X-ray and neutron fiberdiffraction. J Am Chem Soc.2002,124:9074–9082.
    [12] Wyman CE. Ethanol from lignocellulosic biomass: technology, economics, andopportunities. Bioresource Technol.1994,50:3-16.
    [13] Wyman CE. Ethanol production from lignocellulosic biomass: overview, inWyman CE, Handbook on Bioethanol: Production and Utilization, Washington,DC, Taylor&Francis,1996,1-18.
    [14] Knappert DR, Grethlein HE, Converse AO, Partial acid hydrolysis of poplarwood as a pretreatment for enzymatic hydrolysis. Biotechnol Bioeng.11:67-77.
    [15] Parajo JC, Garrote G, Cruz JM, Dominguez H, Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food SciTechnol.2004,15:115-120.
    [16] Badger PC. Ethanol from cellulose: A general review. In: J. Janick and A.Whipkey (eds), Trends in New Crops and New Uses. ASHS Press, Alexandria,VA,2002, pp.17-21
    [17] Bon E, Ferrara MA. Bioethanol production via enzymatic hydrolysis ofcellulosic biomass in The role of agriculture biotechnologies for production ofbioenergy in developing countries, FAO seminar, Rome,2007,http://www.fao.org/biotech/seminaroct2007.htm
    [18] Bhat MK, Bhat S. Cellulose degrading enzymes and their potential industrialapplications. Biotechnol Adv.1997,15:583-620.
    [19] Viviane I, Serpa, Igor Polikarpov. Enzymes in Bioenergy. In: Marcos S.Buckeridge, Gustavo H. Goldman (eds), Routes to cellulosic ethanol. SpringerScience, New York, NY,2011, pp.97-114
    [20] Tomme P, Warren RA, Gilkes NR. Cellulose hydrolysis by bacteria and fungi.Adv Microb Physiol.1995,37:1-81.
    [21] Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria.Appl Microbiol Biotechnol.2001,56:634-649
    [22] Béguin P, Lemaire M. The cellulosome: an exocellular, multiprotein complexspecialized in cellulose degradation. Crit Rev Biochem Mol Biol.1996,31:201-236.
    [23] Bayer EA, Kenig R, Lamed R. Adherence of Chlostridium thermocellum tocellulase. J Bacteriol.1983,156:818-827.
    [24] Kakiuchi M, Isui A, Suzuki K. Fujino T. Fujino E, Kimura T. Cloning and DNAsequencing of the genes encoding Clostridium josui scaffolding protein CipAand cellulase CelD and identification of their gene products as majorcomponents of the cellulosome. J Bacteriol,1998,180:4303–4308.
    [25] Pages S, Belaich A, Fierobe HP, Tardif C, Gaudin C, Belaich JP. Sequenceanalysis of scaffolding protein CipC and ORFXp, a new cohesin-containingprotein in Clostridium cellulolyticum: comparison of various cohesin domainsand subcellular localization of ORFXp. J Bacteriol,1999:181,1801–1810.
    [26] Rincon MT, Ding SY, McCrae SI, Martin JC, Aurilia V, Lamed, R. Novelorganization and divergent dockerin specificities in the cellulosome system ofRuminococcus flavefaciens. J Bacteriol,2003,185:703–713.
    [27] Bayer EA, Belaich JP, Shoham Y, Lamed R. The cellulosomes: multienzymemachines for degradation of plant cell wall polysaccharides. Annu RevMicrobiol,2004,58:521–554.
    [28] Kosugi A, Murashima K, Doi RH. Xylanase and acetyl xylan esterase activitiesof XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylandegradation. Appl Environ Microbiol,2002,68:6399–6402.
    [29] Tamaru Y, Doi RH. Pectate lyase A, an enzymatic subunit of the Clostridiumcellulovorans cellulosome. Proc Natl Acad Sci USA,2001,98:4125–4129.
    [30] Gilbert HJ. Cellulosomes: microbial nanomachines that display plasticità inquaternari structure. Molec Microbiol,2007,63:1568-1576.
    [31] Bayer EA, Lamed R, White BA, Flint HJ. From cellulosomes to cellulosomics.Chem Rec,2008,8:364-377.
    [32] Mayer F, Coughlan MP, Mori Y, Ljungdahl LG. Macromolecular organization ofthe cellulolytic complex of Clostridium thermocellum as revealed by electronmicroscopy. Appl Environ Microbiol,1987,53:2785–2792.
    [33] Fujino T. Béguin P, Aubert JP. Organization of a Clostridium thermocellumgene cluster encoding the cellulosomal scaffolding protein CipA and a proteinpossibly involved in attachment of the cellulosome to the cell surface. JBacteriol,1993,175:1891-1899.
    [34] Bayer, EA, Chanzy H, Lamed R, Shoham Y. Cellulose, cellulases andcellulosomes. Curr Opin Struct Biol,1998,8:548–557.
    [35] Leibovitz E, Béguin P. A new type of cohesin domain that specifically binds thedockerin domain of the Clostridium thermocellum cellulosome-integratingprotein CipA. J Bacteriol,1996,178:3077–3084.
    [36] Rincon MT, Ding SY, McCrae SI, Martin JC, Aurilia V, Lamed R. Novelorganization and divergent dockerin specificities in the cellulosome system ofRuminococcus flavefaciens. J Bacteriol,2003,185:703–713.
    [37] Rincon MT, Ding SY, McCrae SI, Martin JC, Aurilia V, Lamed R. Novelorganization and divergent dockerin specificities in the cellulosome system ofRuminococcus flavefaciens. J Bacteriol,2003,185:703–713.
    [38] Fierobe HP, Mingardon F, Mechaly A, Béla ch A, Rincon MT, Pagés S, LamedR, Tardif C, Béla ch JP, Bayer EA. Action of designer cellulosomes onhomogeneous versus complex substrates: controlled incorporation of threedistinct enzymes into a defined trifunctional caffoldin. J Biol Chem,2005,280:16325-16334.
    [39] Jindou S, Brulc JM, Levy-Assaraf M, Rincon MT, Flint HJ, Berg ME.Cellulosome gene cluster analysis for gauging the diversity of the ruminalcellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol Lett,2008,285:188–194.
    [40] Doi RH. Cellulases of mesophilic microorganisms: cellulosome andnoncellulosome producers. Ann N Y Acad Sci,2008,1125:267-279.
    [41] Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol. MicrobiolMol Biol Rev,2005,69:124–154.
    [42] Fontes CM, Gilbert HJ. Cellulosomes: highly efficient nanomachines designedto deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem.2010,79:655-81.
    [43] Henrissat B. A classification of glycosyl hydrolases based on amino acidsequence similarities. Biochem J.1991,280:309-316.
    [44] Henrissat B, Bairoch A. New families in the classification of glycosylhydrolases based on amino acid sequence similarities. Biochem J.1993,293:781-788.
    [45] Henrissat B, Bairoch A. Updating the sequence-based classification of glycosylhydrolases. Biochem J.1996,316:695-696.
    [46] Henrissat B, Teeri TT, Warren RAJ. A scheme for designating enzymes thathydrolyse the polysaccharides in the cell walls of plants. FEBS Lett.1998,425:352-354.
    [47] Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat BThe Carbohydrate-Active EnZymes database (CAZy): an expert resource forGlycogenomics. Nucleic Acids Res.2009,37:D233-238
    [48] Beguin, P. Molecular biology of cellulose degradation. Ann Rev Microbiol.1990,44:219-248.
    [49] Coughlan, MP. Mechanisms of cellulose degradation by fungi and bacteria. JAnim Feed Sci.1991,32:77-100.
    [50] Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR. Structureof hen egg white lysozyme. A threedimensional Fourier synthesis at2Aresolution. Nature.1965,206:757-763.
    [51] Lehninger AL. Principles of biochemistry. Worth, New York.1982.
    [52] Gilkes NR, Warren RAJ, Miller RC Jr. Kilburn DG. Precise excision of thecellulose binding domains from two Cellulomonas fimi cellulases by ahomologous protease and the effect on catalysis. J Biol Chem.1988,263:10401–10407.
    [53] Schwarz WH, Schimming S, Ruecknagel KP, Burgschweiger S, Kreil G,Staudenbauer WL. Nucleotide sequence of celC gene encoding endoglucanaseC of Clostridium thermocellum. Gene.1988,63:23–30.
    [54] Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases.Structure.1995,3:853–859
    [55] McCarter JD, Withers SG. Mechanisms of enzymatic glycoside hydrolysis. Curr.Opin. Struct. Biol.1994,4:885–892.
    [56] White A, Rose DR. Mechanism of catalysis by retaining β-glycosyl hydrolases.Curr. Opin. Struct. Biol.1997,7:645–651.
    [57] Withers SG. Mechanisms of glycosyl transferases and hydrolases. Carbohydr.Res.2001,44:325–337.
    [58] Bayer EA, Shoham Y, Lamed R. Cellulose-decomposing bacteria and theirenzyme systems. Prokaryotes.2006,2:578-617.
    [59] Vocadlo DJ, Davies GJ. Mechanistic insights into glycosidase chemistry CurrOpin Chem Biol.2008,12,539-555.
    [60] Coutinho PM, Henrissat B. The modular structure of cellulases and othercarbohydrate-active enzymes: An integrated database approach. In: K. Ohmiya,K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita, and T. Kimura (Eds.) Genetics,Biochemistry and Ecology of Cellulose Degradation. Uni Publishers. Tokyo,1999, pp15–23.
    [61] Gilkes NR, Henrissat B, Kilburn DG, Miller RCJ, Warren RAJ. Domains inmicrobial β-1,4-glycanases: Sequence conservation, function, and enzymefamilies. Microbiol. Rev.1991,55(2):303–315.
    [62] Teeri TT, Reinikainen T, Ruohonen L, Jones TA, Knowles JKC. Domainfunction in Trichoderma reesei cellulases. J. Biotechnol.1992,24:169–176.
    [63] Reese ET, Sui RGH, Levinson HS. The biological degradation of solublecellulose derivatives and its relationship to the mechanism of cellulosehydrolysis. J. Bacteriol.1950,59:485–497.
    [64] Tomme P, Tilbeurgh HV, Pettersson G, Damme JV, Vandekerckhove J, KnowlesJ, Claeyssens MT. Studies of the cellulolytic system of Trichoderma reeseiQM9414. Analysis of domain function in two cellobiohydrolases by limitedproteolysis. Eur. J. Biochem.1988,170:575–581.
    [65] Gilkes NR, Warren RA, Miller RJ, Kilburn DG. Precise excision of the cellulosebinding domains from two Cellulomonas fimi cellulases by a homologousprotease and the effect on catalysis. J. Biol. Chem.1988,263:10401–10407.
    [66] Goldstein MA, Takagi M, Hashida S, Shoseyov O, Doi RH, Segel IH.Characterization of the cellulose-binding domain of the Clostridiumcellulovorans cellulose-binding protein A. J. Bacteriol.1993,175:5762–5768
    [67] Shoseyov OT, Hamamoto, Foong F, Doi RH. Cloning of Clostridiumcellulovorans endo-1,4-β-glucanase genes. Biochem. Biophys. Res. Commun.1990,169:667–672.
    [68] Coutinho PM, Henrissat B. Carbohydrate-active enzyme: an integrated databaseapproach, In H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson (ed.),Recent advances in carbohydrate bioengineering. The Royal Society ofChemistry, Cambridge, United Kingdom.1999, pp.3–12.
    [69] Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-bindingmodules: fine-tuning polysaccharide recognition. Biochem J.2004,382(Pt3):769-81.
    [70] Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemicalproperties and novel applications. Microbiol Mol Biol Rev.2006,70(2):283-95.
    [71] Bolam DN, Ciruela A, Mcqueen-Mason S, Simpson P, Williamson MP, RixonJE, Boraston A, Hazlewood GP, Gilbert HJ. Pseudomonas cellulose-bindingdomains mediate their effects by increasing enzyme substrate proximity.Biochem. J.1998,331:775–781.
    [72] Boraston AB, Kwan E, Chiu P, Warren RAJ, Kilburn DG. Recognition andhydrolysis of noncrystalline cellulose. J. Biol. Chem.2003,278:6120–6127.
    [73] Charnock SJ, Bolam DN, Turkenburg JP, Gilbert HJ, Ferreira LM, Davies GJ,Fontes CM. The X6“thermostabilizing” domains of xylanases arecarbohydrate-binding modules: structure and biochemistry of the Clostridiumthermocellum X6b domain. Biochemistry.2000,39:5013–5021
    [74] Ali MK, Hayashi H, Karita S, Goto M, Kimura T, Sakka K, Ohmiya K.Importance of the carbohydrate-binding module of Clostridium stercorariumXyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem.2001,65:41–47.
    [75] Zverlov VV, Volkov IY, Velikodvorskaya GA, Schwarz WH. The bindingpattern of two carbohydrate-binding modules of laminarinase Lam16A fromThermotoga neapolitana: differences in β-glucan binding within family CBM4.Microbiology.2001,147:621–629
    [76] Maglione G, Matsushita O, Russell JB, Wilson DB. Properties of a geneticallyreconstructed Prevotella ruminicola endoglucanase. Appl. Environ. Microbiol.1992,58:3593–3597.
    [77] Hall J, Black GW, Ferreira LM, Millward-Sadler SJ, Ali BR, Hazlewood GP,Gilbert HJ. The non-catalytic cellulose-binding domain of a novel cellulasefrom Pseudomonas fluorescens subsp. cellulosa is important for the efficienthydrolysis of Avicel. Biochem. J.1995,309:749–756
    [78] Sakon J, Irwin D, Wilson DB, Karplus P A. Structure and mechanism ofendo/exocellulase E4from Thermomonospora fusca. Nat. Struct. Biol.1997,4:810–818
    [79] Araki R, Ali MK, Sakka M, Kimura T, Sakka K, Ohmiya K. Essential role ofthe family-22carbohydrate-binding modules for β-1,3→1,4-glucanase activityof Clostridium stercorarium Xyn10B. FEBS Lett.2004,561:155–158.
    [80] Boraston AB, Creagh AL, Alam MM, Kormos JM, Tomme P, Haynes CA,Warren RAJ, Kilburn DG. Binding specificity and thermodynamics of a family9carbohydrate-binding module from Thermotoga maritima xylanase10A.Biochemistry.2001,40:6240–6247
    [81] Carrard G, Koivula A, Soderlund H, Beguin P. Cellulose-binding domainspromote hydrolysis of different sites on crystalline cellulose. Proc. Natl. Acad.Sci. U.S.A.2000,97:10342–10347
    [82] Din N, Damude HG, Gilkes NR, Miller JrRC, Warren RAJ, Kilburn DG. C1-Cxrevisited: intramolecular synergism in a cellulase. Proc. Natl. Acad.Sci. U.S.A.1994,91:11383–11387
    [83] Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, S rlie M, Eijsink VG.An Oxidative Enzyme Boosting the Enzymatic Conversion of RecalcitrantPolysaccharides. Science.2010,330(6001):219-22.
    [84] Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J. Cellproliferation at122°C and isotopically heavy CH4production by ahyperthermophilic methanogen under high-pressure cultivation. Proc Natl AcadSci USA.2008,105:10949–10954.
    [85] Viikari L, Alapuranen M, Puranen T, Vehmaanper J, Siika-Aho M.Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem EngBiotechnol.2007,108:121-145
    [86] Turner P, Mamo G, Karlsson EN. Potential and utilization of thermophiles andthermostable enzymes in biorefining. Microb Cell Fact.2007,15:6-9
    [87] Svetlichnyi, VA, Svetlichnaya TP, Chernykh NA and Zavarzin GA. Anaerocellumthermophilum gen. nov., sp. nov., an extremely thermophilic cellulolyticeubacterium isolated from hot-springs in the valley of Geysers. Microbiology1990,59:598–604.
    [88] Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C,Davis M, Westpheling J and Adams MW. Efficient degradation of lignocellulosicplant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellumthermophilum" DSM6725.Appl Environ Microbiol2009,75:4762-4769.
    [89] Kataeva IA, Yang SJ, Dam P, Poole FL2nd, Yin Y, Zhou F, Chou WC, Xu Y,Goodwin L, Sims DR, Detter JC, Hauser LJ, Westpheling J and Adams MW.Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium"Anaerocellum thermophilum" DSM6725. J Bacteriol2009,191:3760-3761.
    [90] Yang SJ, Kataeva I, Wiegel J, Yin Y, Dam P, Xu Y, Westpheling J and Adams MW.Classification of 'Anaerocellum thermophilum' strain DSM6725asCaldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol2010,60:2011-2015.
    [91] Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, Poole FL2nd, Westpheling J,Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ, Henrissat B, Xu Y andAdams MW. Insights into plant biomass conversion from the genome of theanaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM6725. NucleicAcids Res2011,39:3240-3254.
    [92] Zverlov V, Mahr S, Riedel K and Bronnenmeier K. Properties and gene structureof a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile'Anaerocellum thermophilum' with separate glycosyl hydrolase family9and48catalytic domains. Microbiology1998,144:457-465.
    [93] VanFossen AL, Ozdemir I, Zelin SL, Kelly RM. Glycoside hydrolase inventorydrives plant polysaccharide deconstruction by the extremely thermophilicbacterium Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng.2011,108(7):1559-69.
    [94] Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O,Prieur D, Querellou J, Ripp R. An integrated analysis of the genome of thehyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol2003,47:1495-1512.
    [95] Fiala G, Stetter KO. Pyrococcus furiosus sp. nov. Represents a novel genus ofmarine heterotrophic archaebacteria growing optimally at100degrees C. ArchMicrobiol1986,145:56-61.
    [96] Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T. Completegenome sequence of the hyperthermophilic archaeon Thermococcuskodakaraensis KOD1and comparison with Pyrococcus genomes. Genome Res2005,15:352-363.
    [97] Ando S, Ishida H, Kosugi Y, Ishikawa K. Hyperthermostable endoglucanasefrom Pyrococcus horikoshii. Appl Environ Microbiol2002,68:430-433
    [98] Gonzalez JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, YanagibayashiM, Tamaoka J, Kato C. Pyrococcus horikoshii sp. nov., a hyperthermophilicarchaeon isolated from a hydrothermal vent at the Okinawa Trough.Extremophiles1998,2:123-130.
    [99] Cannio R, Di Prizito N, Rossi M, Morana A. A xylan-degrading strain ofSulfolobus solfataricus: isolation and characterization of the xylanase activity.Extremophiles2004,8:117-124.
    [100] Sensen CW, Charlebois RL, Chow C, Clausen IG, Curtis B, Doolittle WF,Duguet M, Erauso G, Gaasterland T, Garrett RA. Completing the sequence ofthe Sulfolobus solfataricus P2genome. Extremophiles1998,2:305-312.
    [101] Morana A, Paris O, Maurelli L, Rossi M, Cannio. Gene cloning and expressionin Escherichia coli of a bi-functional β-Dxylosidase/α-L-arabinosidase fromSulfolobus solfataricus involved in xylan degradation. Extremophiles2007,11:123-132.
    [102] She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ,Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A. The complete genomeof the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A2001,98:7835-7840.
    [103] VanFossen AL, Lewis DL, Nichols JD, Kelly RM. Polysaccharide degradationand synthesis by extremely thermophilic anaerobes. Ann NY Acad Sci2008,1125:322-337.
    [104] Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK,Peterson JD, Nelson WC, Ketchum KA. Evidence for lateral gene transferbetween Archaea and bacteria from genome sequence of Thermotoga maritima.Nature1999,399:323-329.
    [105] Van Ooteghem SA, Jones A, Van Der Lelie D, Dong B, Mahajan D. H2production and carbon utilization by Thermotoga neapolitana under anaerobicand microaerobic growth conditions. Biotechnol Lett2004,26:1223-1232
    [106] Balk M, Weijma J, Stams AJ. Thermotoga lettingae sp. nov., a novelthermophilic, methanol-degrading bacterium isolated from a thermophilicanaerobic reactor. Int J Syst Evol Microbiol2002,52:1361-1368.
    [107] Takahata Y, Nishijima M, Hoaki T, Maruyama T. Thermotoga petrophila sp. nov.and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from theKubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol2001,51:1901-1909.
    [108] Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sletyr UB, StetterKO.Thermotoga maritima sp. nov. represents and new genus of uniqueextremely thermophilic eubacteria growing up to90-C. Arch Microbiol1986,144:324-333.
    [109] Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G, Egan A, Garcia JL,Ollivier B: Thermotoga elfii sp. nov., a novel thermophilic bacterium from anAfrican oil-producing well. Int J Syst Bacteriol1995,45:308-314.
    [110] Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL,Daniel RM, Stackebrandt E, Morgan HW. Description of Caldicellulosiruptorsaccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremelythermophilic, cellulolytic bacterium. FEMS Microbiol Lett1994,120:263-266.
    [111] Bolshakova EV, Ponomariev AA, Novikov AA, Svetlichnyi VA,Velikodvorskaya GA. Cloning and expression of genes coding for carbohydratedegrading enzymes of Anaerocellum thermophilum in Escherichia coli.Biochem Biophys Res Commun1994,202:1076-1080.
    [112] Freier D, Mothershed CP, Wiegel J. Characterization of Clostridiumthermocellum JW20. Appl Environ Microbiol1988,54:204-211.
    [113] Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA. Crystal structure ofthermostable family5endocellulase E1from Acidothermus cellulolyticus incomplex with cellotetraose. Biochemistry.1996,35:10648–10660.
    [114] Huang XP, Monk C. Purification and characterization of a cellulase (CMCase)from a newly isolated thermophilic aerobic bacterium Caldibacilluscellulovorans gen. nov., sp. nov. World J Microbiol Biotechnol.2004,20:85-92.
    [115] Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R, Gilbert HJ, Shoham Y.CelI, a noncellulosomal family9enzyme from Clostridium thermocellum, is aprocessive endoglucanase that degrades crystalline cellulose. J Bacteriol,2003,185:391-398.
    [116] Bauer MW, Driskill LE, Calen W, Snead MA, Mathur E, Kelly RM. Anendoglucanase, EglA, from the hyperthemophilic archeon Pyrococcus furiosushydrolyzes β-1,4bonds in mixed linkage (1–3),(1–4)-β-D-glucans and cellulose.J Bacteriol.1999,181:284-290.
    [117] Halldórsdóttir S, Thórólfsdóttir ET, Spilliaert R, Johansson M,Thorbjarnardóttir SH. Palsdottir A. Cloning, sequencing and overexpression of aRhodothermus marinus gene encoding a thermostable cellulase of glycosylhydrolase family12. Appl Microbiol Biotechnol,1998,49:277-284.
    [118] Irwin DC, Spezio M, Walker LP, Wilson DB. Activity studies of eight purifiedcellulases:specificity, synergism, and binding domain effects. Biotechnol Bioeng,1993,42:1002–1013.
    [119] Lin SB, Stutzenberger FJ. Purification and characterization of themajor β-1,4-endoglucanase from Thermomonospora curvata. J ApplBacteriol.1995,79:447-453.
    [120] Liebl W, Ruile P, Bronnenmeier K, Riedel K, Lottspeich F, Greif I. Analysis of aThermotoga maritima DNA fragment encoding two similar thermostablecellulases, CelA and CelB, and characterization of the recombinant enzymes.Microbiology,1996,142:2533-2542.
    [121] Bok JD, Dinesh A, Yernool DA, Eveleigh DE. Purification, characterization,and molecular analysis of thermostable cellulases CelA and CelB fromThermotoga neapolitana. Appl Environ Microbiol,1998,64:4774-4781.
    [122] Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv,2000,18:355-383.
    [123] Karboune S, Geraert PA, Kermasha S. Characterization of selected cellulolyticactivities of multi-enzymatic complex system from Penicillium funiculosum. JAgric Food Chem,2008,56:903-909.
    [124] van Wyk N, den Haan R, van Zyl WH. Heterologous co-production ofThermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae.Appl Microbiol Biotechnol,2010,87,1813-1820.
    [125] Galante YM, De Conti A, Monteverdi R. Application of Trichoderma enzymes infood and feed industries. In: Harman GF, Kubicek CP,(EDs). Trichoderma andGliocladium-Enzymes, biological control and commercial applications. London:Taylor&Francis,1998327-342.
    [126] Bowman GR, Beauchemin KA, Shelford JA. The proportion of the diet to whichfibrolytic enzymes are added affects nutrient digestion by lactating dairy cows. JDairy Sci,2002,85:3420-3429.
    [127] Carneiro MSC, Lordelo MM, Cunha LF, Freire JPB. Effects of dietary fibresource and enzyme supplementation on faecal apparent digestibility,short chain fatty acid production and activity of bacterial enzymes in thegut of piglets. Anim Feed Sci Technol,2008,146:124-136.
    [128] Woyengo TA, Sands JS, Guenter W, Nyachoti CM. Nutrient digestibility andperformance responses of growing pigs fed phytase-and xylanase-supplementedwheat-based diets. J Anim Sci,2008,86:848-857.
    [129] Pendleton, B. The regulatory environment. In: Muirhea S, editor. Direct-fedmicrobial, enzyme, and forage additive compendium. Minnetonka, MN: TheMiller Publishing Co,2000.
    [130] Bhat MK, Hazlewood GP. Enzymology and other characteristics of cellulasesand xylanases. In: Bedford M, Partridge G editors. Enzymes in farm animalnutrition. Oxon, U.K: CABI Publishing,2001, pp1-11.
    [131] Gubitz GM, Mansfield SD, Bohm D, Saddler JN. Effect of endoglucanases andhemicellulases in magnetic and flotation deinking of xerographicand laser-printed papers. J Biotechnol,1998,65:209-215.
    [132] Bajpai, P. Application of enzymes in the pulp and paper industry. BiotechnolProg,1999,15:147-157.
    [133] Buchert J, Oksanen J, Pere J, Siika-Aho M, Suurn kki A, Viikari L.Applications of Trichoderma reesei enzymes in the pulp and paper industry.In:Harman GE, Kubicek CP editors. Trichoderma and Gliocladium. London:Taylor&Francis.1998, pp.343-364.
    [134] Bukhtojarov FE, Ustinov BB, Salanovich TN, Antonov AI, Gusakov AV, OkunevON, Sinitsyn AP. Cellulase complex of the fungus Chrysosporium lucknowense:isolation and characterization of endoglucanases and cellobiohydrolases.Biochemistry (Mosc),2004,69:542-551.
    [135] Hinz SWA, Pouvreau L, Joosten R, Bartels J, Jonathan MC, Wery J, Schols HA.Hemicellulase production in Chrysosporium lucknowense C1, J Cereal Sci,2009,50:1-6.
    [136] Yingjuan F, Menghua Q, Huiren H. Effect of types and properties on thedeinkability of wastepaper. Trans Chin Pulp Paper,2005,20:155-159.
    [137] Shufang W, Shaojun D, Zhongzheng L. Function of endocellulase in thedeinking process of mixed office waste paper. Chem Ind Forest Prod,2005,25:87-90.
    [138] Morbak AL, Zimmermann W. Deinking of mixed office paper, old newspaperand vegetable oil based ink printed paper using cellulase, xylanases and lipases.Progr Paper Recycling,1998,7:14-27.
    [139] Buchert J, Koponen JM, Suutarinen M, Mustranta A, Lille M, T rr nen R,Poutanen K. Effect of enzyme aided pressing on anthocyanin yieldand profiles in bilberry and blackcurrant juices. J Sci Food Agric,2005,85:2548-2556.
    [140] Ramadan MF, Thomas MJ. Impact of enzymatic treatment on chemicalcomposition, physicochemical properties and radical scavenging activity ofgoldenberry (Physalis peruviana L.) juice. J Sci Food Agric,2007,87:52-460.
    [141] Kapasakalidis PG, Rastall RA, Gordon MH. Effect of a cellulase treatment onextraction of antioxidant phenols from black currant (Ribes nigrum L.) pomace.J Agric Food Chem,2009,57:4342-4351.
    [142] Ranalli A, Sgaramella A, Surricchio G. The new``Cytolase0'' enzymeprocessing aid improves quality and yields of virgin olive oil. Food Chem,1999,66:443-454.
    [143] Yamada M, Amano Y, Horikawa E, Nozaki K, Kanda T. Mode of action ofcellulases on dyed cotton with a reactive dye. Biosci Biotechnol Biochem,2005,69:45-50.
    [144] Gomes I, Sarkar PK, Rahman SR, Rahim MA, Gomes DJ. Production ofCellulase from Talaromyces emersonii and evaluation of its application ineco-friendly functional finishing of jute-based fabrics. Bangladesh J Microbiol,2007,24:109-114.
    [145] Shimonaka A, Koga J, Baba Y, Nishimura T, Murashima K, Kubota H. Specificcharacteristics of family45endoglucanases from Mucorales in the use oftextiles and laundry. Biosci Biotechnol Biochem,2006,70:1013-1016.
    [146] http://www.novozymes.com.cn/AboutUs/News/content.asp?news_id=360
    [147] Mcfarland KC, Hanshu D, Teter S, Vlasenko E, Feng X, Cherry J.Development of improved cellulase mixtures in a single production organism.ACS Symposium Series,2007,972:19-31.
    [148] Sathitsuksanoh N, Zhu Z, Ho TJ, Bai MD, Zhang Y.-HP. Bamboosaccharification through cellulose solventbased biomass pretreatment followedby enzymatic hydrolysis at ultra-low cellulase loadings. Biores. Technol.2010,101:4926–492
    [149] Liao H, Zhang XZ, Rollin JA, Zhang YH. A minimal set of bacterial cellulasesfor consolidated bioprocessing of lignocellulose. Biotechnol J.20116:1409-18.
    [150] Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass:biochemical and molecular perspectives. J Ind Microbiol Biotechnol,2008,35:377–391.
    [151] Dashtban M, Schraft H, Qin, W. Fungal bioconversion of lignocellulosicresidues, opportunities&perspectives. Review. Int J Biol Sci,2009,5:578-595.
    [152] Zakpaa HD, Mak-Mensah EE, Johnson FS. Production of bio-ethanol fromcorncobs using Aspergillus niger and Saccharomyces cerevisae in simultaneoussaccharification and fermentation. Afr J Biotechnol,2009,8:3018-3022.
    [153] Abd El-Zaher, FH, Fadel M. Production of bioethanol via enzymaticsaccharification of rice straw by cellulase produced by Trichoderma reesei undersolid state fermentation. New York Sci J,2010,3:72-78.
    [154] Bayer EA, Lamed R, Himmel ME. The potential of cellulases and cellulosomesfor cellulosic waste management. Curr Opin Biotechnol,2007,18:237-245.
    [155] Maki, M, Leung, KT, Qin, W. The prospects of cellulase-producing bacteria forthe bioconversion of lignocellulosic biomass. Int J Biol Sci,2009,5:500-516.
    [156] Lochner A, Giannone RJ, Rodriguez M Jr, Shah MB, Mielenz JR, Keller M,Antranikian G, Graham DE, Hettich RL. Use of label-free quantitativeproteomics to distinguish the secreted cellulolytic systems of
    Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl Environ
    Microbiol.2011,77(12):4042-54.
    [1] Zhang YH, Cui J, Lynd LR, Kuang LR (2006) A transition from celluloseswelling to cellulose dissolution by o-phosphoric acid: evidence fromenzymatic hydrolysis and supramolecular structure. Biomacromolecules7:644-648
    [2] Altschul SF, Madden TL, Sch ffer AA, Zhang J, Zhang Z, Miller W andLipman DJ. Gapped BLAST and PSI-BLAST: a new generation of proteindatabase search programs. Nucleic Acids Res1997,25:3389-3402.
    [3] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA,McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD,Gibson TJ and Higgins DG. Clustal W and Clustal X version2.0.Bioinformatics2007,23:2947-2948.
    [4] Waterhouse, A.M., Procter, J.B., Martin, D.M.A, Clamp, M. and Barton, G. J."Jalview Version2-a multiple sequence alignment editor and analysisworkbench" Bioinformatics2009,25:1189-1191.
    [5] Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction ofsignal peptides: SignalP3.0. J Mol Biol.2004,16;340(4):783-95.
    [6] Studier FW. Protein production by auto-induction in high density shakingcultures. Protein Expr Purif2005,41:207-234.
    [7] Miller G.L., Use of dinitrosalicylic acid reagent for determination of reducingsugar. Anal Chem1959,31:426–428.
    [8] Wang YG, Wang XN, Tang RT, Yu SS, Zheng BS, Feng Y. A novel thermostablecellulase from Fervidobacterium nodosum. J Mol Catal B-Enzym.201066:294-301
    [9] Su X, Mackie RI, Cann IK. Biochemical and Mutational Analyses of aMultidomain Cellulase/Mannanase from Caldicellulosiruptor bescii. ApplEnviron Microbiol.2012Apr;78(7):2230-40.
    [10] Wang WK, Kruus K, Wu JH. Cloning and expression of the Clostridiumthermocellum celS gene in Escherichia coli. Appl Microbiol Biotechnol.1994,42(2-3):346-52.
    [11] Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA.Crystal structure of a bacterial family-III cellulose-binding domain: a generalmechanism for attachment to cellulose. EMBO J.1996,15(21):5739-51.
    [12] Cai S, Zheng X, Dong X. CBM3d, a novel subfamily of family3carbohydrate-binding modules identified in Cel48A exoglucanase ofCellulosilyticum ruminicola. J Bacteriol.2011,193(19):5199-206.
    [13] Chiriac AI, Cadena EM, Vidal T, Torres AL, Diaz P, Pastor FI. Engineering afamily9processive endoglucanase from Paenibacillus barcinonensisdisplaying a novel architecture. Appl Microbiol Biotechnol.2010,86(4):1125-34.
    [14] Te'o VS, Saul DJ and Bergquist PL. celA, another gene coding for amultidomain cellulase from the extreme thermophile Caldocellumsaccharolyticum. Appl Microbiol Biotechnol1995,43(2):291-6.
    [15] Irwin DC, Spezio M, Walker LP, Wilson DB. Activity studies of eight purifiedcellulases: Specificity, synergism, and binding domain effects. BiotechnolBioeng.1993,42(8):1002-13.
    [16] Chiriac AI, Cadena EM, Vidal T, Torres AL, Diaz P, Pastor FI. Engineering afamily9processive endoglucanase from Paenibacillus barcinonensisdisplaying a novel architecture. Appl Microbiol Biotechnol.2010,86(4):1125-34.
    [17] Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB. Rolesof the catalytic domain and two cellulose binding domains ofThermomonospora fusca E4in cellulose hydrolysis. J Bacteriol.1998,180(7):1709-14.
    [18] Li Y, Irwin DC, Wilson DB. Processivity, substrate binding, and mechanism ofcellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol.2007,73(10):3165-72.
    [19] Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial celluloseutilization: fundamentals and biotechnology. Microbiol Mol Biol Rev.2002,66(3):506-77.
    [20] Blumer-Schuette SE, Lewis DL, Kelly RM. Phylogenetic, microbiological,and glycoside hydrolase diversities within the extremely thermophilic, plantbiomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol.2010,76(24):8084-92.
    [21] Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, DoeppkeC, Davis M, Westpheling J and Adams MW. Efficient degradation oflignocellulosic plant biomass, without pretreatment, by the thermophilicanaerobe "Anaerocellum thermophilum" DSM6725.Appl Environ Microbiol2009,75:4762-4769.
    [22] Lochner A, Giannone RJ, Rodriguez M Jr, Shah MB, Mielenz JR, Keller M,Antranikian G, Graham DE, Hettich RL. Use of label-free quantitativeproteomics to distinguish the secreted cellulolytic systems ofCaldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl EnvironMicrobiol.2011,77(12):4042-54.
    [23] Zverlov V, Mahr S, Riedel K and Bronnenmeier K. Properties and gene structureof a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile'Anaerocellum thermophilum' with separate glycosyl hydrolase family9and48catalytic domains. Microbiology1998,144:457-465.
    [24] Riedel K, Ritter J, Bauer S, Bronnenmeier K. The modular cellulase CelZ ofthe thermophilic bacterium Clostridium stercorarium contains athermostabilizing domain. FEMS Microbiol Lett.1998,164(2):261-7.
    [25] Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R, Gilbert HJ, Shoham Y.CelI, a noncellulosomal family9enzyme from Clostridium thermocellum, is aprocessive endoglucanase that degrades crystalline cellulose. J Bacteriol.2003,185(2):391-8.
    [26] Jindou S, Xu Q, Kenig R, Shulman M, Shoham Y, Bayer EA, Lamed R. Novelarchitectural theme of family-9glycoside hydrolases identified in cellulosomalenzymes of Acetivibrio cellulolyticus and Clostridium thermocellum. FEMSMicrobiol Lett.2006,254(2):308-16.
    [27] Gal L, Gaudin C, Belaich A, Pages S, Tardif C, Belaich JP. CelG fromClostridium thermocellum: a multidomain endoglucanase acting efficiently oncrystalline cellulose. J Bacteriol.1997,179(21):6595-601.
    [28] Arai T, Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K. Sequence of celQand properties of celQ, a component of the Clostridium thermocellumcellulosome. Appl Microbiol Biotechnol.2001Dec;57(5-6):660-6.
    [29] Sakon J, Irwin D, Wilson DB, Karplus PA. Structure and mechanism ofendo/exocellulase E4from Thermomonospora fusca. Nat Struct Biol.1997,4(10):810-8.
    [30] Oliveira OV, Freitas LC, Straatsma TP, Lins RD. Interaction between the CBMof Cel9A from Thermobifida fusca and cellulose fibers. J Mol Recognit.2009,22(1):38-45.
    [31] Burstein T, Shulman M, Jindou S, Petkun S, Frolow F, Shoham Y, Bayer EA,Lamed R. Physical association of the catalytic and helper modules of afamily-9glycoside hydrolase is essential for activity. FEBS Lett.2009,583(5):879-84.
    [32] Mandelman D, Belaich A, Belaich JP, Aghajari N, Driguez H, Haser R. X-Raycrystal structure of the multidomain endoglucanase Cel9G from Clostridiumcellulolyticum complexed with natural and synthetic cello-oligosaccharides. JBacteriol.2003,185(14):4127-35.
    [33] Bronnenmeier, K., Staudenbauer, W.L. Cellulose hydrolysis by a highlythermostable endo-1,4-b-glucanase (Avicelase I) from Clostridiumstercorarium.1990. Enzyme Microb. Technol.12,431–436.
    [34] Zhang XZ, Sathitsuksanoh N, Zhang YH. Glycoside hydrolase family9processive endoglucanase from Clostridium phytofermentans: heterologousexpression, characterization, and synergy with family48cellobiohydrolase.Bioresour Technol.2010,101(14):5534-8.
    [35] Jauris S, Rücknagel KP, Schwarz WH, Kratzsch P, Bronnenmeier K,Staudenbauer WL. Sequence analysis of the Clostridium stercorarium celZgene encoding a thermoactive cellulase (Avicelase I): identification ofcatalytic and cellulose-binding domains. Mol Gen Genet.1990,223(2):258-67.
    [36] Vlasenko E, Schülein M, Cherry J, Xu F. Substrate specificity of family5,6,7,9,12, and45endoglucanases. Bioresour Technol.2010,101(7):2405-11.
    [37] Fujita K, Shimomura K, Yamamoto K, Yamashita T, Suzuki K. A chitinasestructurally related to the glycoside hydrolase family48is indispensable forthe hormonally induced diapause termination in a beetle. Biochem BiophysRes Commun.2006,345(1):502-7.
    [38] Kruus K, Wang WK, Ching J, Wu JH. Exoglucanase activities of therecombinant Clostridium thermocellum CelS, a major cellulosome component.J Bacteriol.1995,177(6):1641-4.
    [39] Guimar es BG, Souchon H, Lytle BL, David Wu JH, Alzari PM. The crystalstructure and catalytic mechanism of cellobiohydrolase CelS, the majorenzymatic component of the Clostridium thermocellum Cellulosome. J MolBiol.2002,320(3):587-96.
    [40] Berger E, Zhang D, Zverlov VV, Schwarz WH. Two noncellulosomalcellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolysecrystalline cellulose synergistically. FEMS Microbiol Lett.2007,268(2):194-201.
    [41] Vazana Y, Mora s S, Barak Y, Lamed R, Bayer EA. Interplay betweenClostridium thermocellum family48and family9cellulases in cellulosomalversus noncellulosomal states. Appl Environ Microbiol.2010,76(10):3236-43.
    [42] Reverbel-Leroy C, Pages S, Belaich A, Belaich JP, Tardif C. The processiveendocellulase CelF, a major component of the Clostridium cellulolyticumcellulosome: purification and characterization of the recombinant form. JBacteriol.1997,179(1):46-52.
    [43] Parsiegla G, Reverbel C, Tardif C, Driguez H, Haser R. Structures of mutantsof cellulase Cel48F of Clostridium cellulolyticum in complex with longhemithiocellooligosaccharides give rise to a new view of the substratepathway during processive action. J Mol Biol.2008,375(2):499-510.
    [44] Liu CC, Doi RH. Properties of exgS, a gene for a major subunit of theClostridium cellulovorans cellulosome. Gene.1998,211(1):39-47.
    [45] Zhang XZ, Zhang Z, Zhu Z, Sathitsuksanoh N, Yang Y, Zhang YH. Thenoncellulosomal family48cellobiohydrolase from Clostridiumphytofermentans ISDg: heterologous expression, characterization, andprocessivity. Appl Microbiol Biotechnol.2010,86(2):525-33.
    [46] Kakiuchi M, Isui A, Suzuki K, Fujino T, Fujino E, Kimura T, Karita S, SakkaK, Ohmiya K. Cloning and DNA sequencing of the genes encodingClostridium josui scaffolding protein CipA and cellulase CelD andidentification of their gene products as major components of the cellulosome. JBacteriol.1998,180(16):4303-8.
    [47] Irwin DC, Zhang S, Wilson DB. Cloning, expression and characterization of afamily48exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem.2000,267(16):4988-97.
    [48] Devillard E, Goodheart DB, Karnati SK, Bayer EA, Lamed R, Miron J,Nelson KE, Morrison M. Ruminococcus albus8mutants defective in cellulosedegradation are deficient in two processive endocellulases, Cel48A and Cel9B,both of which possess a novel modular architecture. J Bacteriol.2004,186(1):136-45.
    [49] Shen H, Gilkes NR, Kilburn DG, Miller RC Jr, Warren RA. CellobiohydrolaseB, a second exo-cellobiohydrolase from the cellulolytic bacteriumCellulomonas fimi. Biochem J.1995,311(Pt1):67-74.
    [50] Sánchez MM, Pastor FI, Diaz P. Exo-mode of action of cellobiohydrolaseCel48C from Paenibacillus sp. BP-23. A unique type of cellulase amongBacillales. Eur J Biochem.2003,270(13):2913-9.
    [51] Bronnenmeier K, Rücknagel KP, Staudenbauer WL. Purification andproperties of a novel type of exo-1,4-β-glucanase (avicelase II) from thecellulolytic thermophile Clostridium stercorarium. Eur J Biochem.1991,200(2):379-85.
    [52] Avitia CI, Castellanos-Juárez FX, Sánchez E, Téllez-Valencia A,Fajardo-Cavazos P, Nicholson WL, Pedraza-Reyes M. Temporal secretion of amulticellulolytic system in Myxobacter sp. AL-1. Molecular cloning andheterologous expression of cel9encoding a modular endocellulase clustered inan operon with cel48, an exocellobiohydrolase gene. Eur J Biochem.2000,267(24):7058-64.
    [53] Qian X. The effect of cooperativity on hydrogen bonding interactions in nativecellulose Iβ from ab initio molecular dynamics simulations. Mol Simulation2008,34(2):183–191
    [54] Zhang Y-HP, Lynd LR. Toward an aggregated understanding of enzymatichydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng2004,88:797–824.
    [55] Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA. Trichodermareesei cellobiohydrolases: why so efficient on crystalline cellulose? BiochemSoc Trans.1998,26(2):173-8.
    [56] Percival Zhang YH, Himmel ME and Mielenz JR. Outlook for cellulaseimprovement: screening and selection strategies. Biotechnol Adv2006,24:452-481.
    [57] Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK,Samatova NF, Mielenz JR. Impact of pretreated Switchgrass and biomasscarbohydrates on Clostridium thermocellum ATCC27405cellulosomecomposition: a quantitative proteomic analysis. PLoS One.2009,4(4):e5271.
    [58] Gold ND, Martin VJ. Global view of the Clostridium thermocellumcellulosome revealed by quantitative proteomic analysis. J Bacteriol.2007,189(19):6787-95.
    [59] Zverlov VV, Kellermann J, Schwarz WH. Functional subgenomics ofClostridium thermocellum cellulosomal genes: identification of the majorcatalytic components in the extracellular complex and detection of three newenzymes. Proteomics.2005,5(14):3646-53.
    [60] Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, HettichRL, Guss AM, Dubrovsky G, Lynd LR. Deletion of the Cel48S cellulase fromClostridium thermocellum. Proc Natl Acad Sci U S A.2010,107(41):17727-32.
    [61] Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, Poole FL2nd,Westpheling J, Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ,Henrissat B, Xu Y, Adams MW. Insights into plant biomass conversion fromthe genome of the anaerobic thermophilic bacterium Caldicellulosiruptorbescii DSM6725. Nucleic Acids Res.2011,39(8):3240-54.
    [1] Zhang YH, Cui J, Lynd LR, Kuang LR (2006) A transition from celluloseswelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatichydrolysis and supramolecular structure. Biomacromolecules7:644-648
    [2] Altschul SF, Madden TL, Sch ffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ.Gapped BLAST and PSI-BLAST: a new generation of protein database searchprograms. Nucleic Acids Res1997,25:3389-3402.
    [3] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliamH, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ andHiggins DG. Clustal W and Clustal X version2.0. Bioinformatics2007,23:2947-2948.
    [4] Gouet P, Courcelle E, Stuart DI and Métoz F. ESPript: analysis of multiplesequence alignments in PostScript. Bioinformatics1999,15:305-308.
    [5] Studier FW. Protein production by auto-induction in high density shakingcultures. Protein Expr Purif2005,41:207-234.
    [6] Wang YG, Wang XN, Tang RT, Yu SS, Zheng BS, Feng Y. A novel thermostablecellulase from Fervidobacterium nodosum. J Mol Catal B-Enzym.201066:294-301
    [7] Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducingsugar. Anal Chem1959,31:426–428.
    [8] Jeng WY, Wang NC, Lin MH, Lin CT, Liaw YC, Chang WJ, Liu CI, Liang PH,Wang AH. Structural and functional analysis of three β-glucosidases frombacterium Clostridium cellulovorans, fungus Trichoderma reesei and termiteNeotermes koshunensis. J Struct Biol.2011Jan;173(1):46-56.
    [9] Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ.1998. Automated docking using a Lamarckian genetic algorithm and anempirical binding free energy function. J. Comput. Chem.19:1639–1662.
    [10] Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck: Aprogram to check the stereochemical quality of protein structures. J ApplCrystallogr26(2):283-291
    [11] Stephen G. Withers, R. Antony J. Warren, IP. Street, KR, Julie B.K and Ruedi A.Unequivocal demonstration of the involvement of a glutamate residue as anucleophile in the mechanism of a "Retaining" Glycosidase. J Am Chem SOC1990,112:5887-5889
    [12] Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem68:487–522
    [13] Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M,Keller M, McMillan JD, Sheehan J and Wyman CE. How biotech can transformbiofuels. Nat Biotechnol.2008,26:169-172.
    [14] McCarter JD, Withers SG. Mechanisms of enzymatic glycoside hydrolysis. CurrOpin Struct Biol.1994,4(6):885-92.
    [15] Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, DoeppkeC, Davis M, Westpheling J and Adams MW. Efficient degradation oflignocellulosic plant biomass, without pretreatment, by the thermophilicanaerobe "Anaerocellum thermophilum" DSM6725.Appl Environ Microbiol2009,75:4762-4769.
    [16] Hong MR, Kim YS, Park CS, Lee JK, Kim YS, Oh DK. Characterization of arecombinant β-glucosidase from the thermophilic bacterium Caldicellulosiruptorsaccharolyticus. J Biosci Bioeng.2009,108(1):36-40.
    [17] Zverlov V, Mahr S, Riedel K and Bronnenmeier K. Properties and gene structureof a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile'Anaerocellum thermophilum' with separate glycosyl hydrolase family9and48catalytic domains. Microbiology1998,144:457-465.
    [18] Krogh KB, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J,Olsson L. Characterization and kinetic analysis of a thermostable GH3β-glucosidase from Penicillium brasilianum.Appl Microbiol Biotechnol.2010,86(1):143-54.
    [19] Saha BC, Freer SN and Bothast RJ. Production, purification, and properties of athermostable β-Glucosidase from a color variant strain of Aureobasidiumpullulans. Appl Environ Microbiol1994,60:3774-3780.
    [20] Yoon JJ, Kim KY, Cha CJ. Purification and characterization of thermostableβ-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown onmicrocrystalline cellulose. J Microbiol.2008,46(1):51-55.
    [21] Song X, Xue Y, Wang Q and Wu X. Comparison of three thermostableβ-glucosidases for application in the hydrolysis of soybean isoflavoneglycosides. J Agric Food Chem2011,59:1954-1961.
    [22] Venturi LL, Polizeli Mde L, Terenzi HF, Furriel Rdos P and Jorge JA.Extracellular β-D-glucosidase from Chaetomium thermophilum var.coprophilum: production, purification and some biochemical properties. J BasicMicrobiol2002,42:55-66.
    [23] Zanoelo FF, Polizeli Mde L, Terenzi HF and Jorge JA. Β-glucosidase activityfrom the thermophilic fungus Scytalidium thermophilum is stimulated byglucose and xylose. FEMS Microbiol Lett2004,240:137-143.
    [24] Rojas A, Arola L and Romeu A. β-Glucosidase families revealed by computeranalysis of protein sequences. Biochem Mol Biol Int1995,35:1223-1231.
    [25] Murray P, Aro N, Collins C, Grassick A, Penttil M, Saloheimo M, Tuohy M.Expression in Trichoderma reesei and characterisation of a thermostable family3β-glucosidase from the moderately thermophilic fungus Talaromycesemersonii. Protein Expr Purif.2004,38(2):248-57.
    [26] Benoliel B, Po as-Fonseca MJ, Torres FA, de Moraes LM. Expression of aglucose-tolerant β-glucosidase from Humicola grisea var. thermoidea inSaccharomyces cerevisiae. Appl Biochem Biotechnol.2010,160(7):2036-44.
    [27] Ng IS, Tsai SW, Ju YM, Yu SM and Ho TH. Dynamic synergistic effect onTrichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi.Bioresour Technol2011,102:6073-6081.
    [28] Tsukada T, Igarashi K, Yoshida M, Samejima M. Molecular cloning andcharacterization of two intracellular β-glucosidases belonging to glycosidehydrolase family1from the basidiomycete Phanerochaete chrysosporium. ApplMicrobiol Biotechnol.2006,73(4):807-814.
    [29] Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, BhatMK. Purification and characterisation of an extracellular β-glucosidase withtransglycosylation and exo-glucosidase activities from Fusarium oxysporum.Eur J Biochem.1994,224(2):379-385.
    [30] Montero, M.; Romeu,A. Kinetic study on the β-glucosidase catalysed reactionof Trichoderma viride cellulase Appl. Microbiol. Biotechnol.1992,38,350-353
    [31] Decker CH, Visser J, Schreier P. Β-glucosidase multiplicity from Aspergillustubingensis CBS643.92: purification and characterization of four β-glucosidasesand their differentiation with respect to substrate specificity, glucose inhibitionand acid tolerance. Appl Microbiol Biotechnol.2001,55(2):157-63.
    [32] Yan TR, Lin CL. Purification and characterization of a glucose-tolerantβ-glucosidase from Aspergillus niger CCRC31494. Biosci Biotechnol Biochem.1997,61(6):965-70
    [33] Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M. Heterologousexpression and characterization of a glucose-stimulated β-glucosidase from thetermite Neotermes koshunensis in Aspergillus oryzae. Appl MicrobiolBiotechnol.2011,89(6):1761-71.
    [34] Saha, B. C., S. N. Feer, R. J. Bothast.1995. Thermostable β-glucosidases, p.197–207. In J. N. Saddler and N. H. Penner (ed.), Enzymatic degradation ofinsoluble carbohydrates. American Chemical Society, Washington, D.C.
    [35] Lynd LR, Weimer PJ, van Zyl WH and Pretorius IS. Microbial celluloseutilization: fundamentals and biotechnology. Microbiol Mol Biol Rev.2002,66:506-577
    [36] Chir JL, Wan CF, Chou CH and Wu AT. Hydrolysis of cellulose in synergisticmixtures of β-glucosidase and endo/exocellulase Cel9Afrom Thermobifidafusca. Biotechnol Lett2011,33:777-782.
    [37] Kim HW and Ishikawa K. Complete saccharification of cellulose at hightemperature using endocellulase and β-glucosidase from Pyrococcus sp. JMicrobiol Biotechnol2010,20:889-892.
    [38] Wang Y, Tang R, Tao J, Gao G, Wang X, Mu Y and Feng Y. Quantitativeinvestigation of non-hydrolytic disruptive activity on crystalline cellulose andapplication to recombinant swollenin. Appl Microbiol Biotechnol2011,91:1353-1363.
    [39] Kruus K, Andreacchi A, Wang WK, Wu JH.(1995) Product inhibition of therecombinant CelS, an exoglucanase component of the Clostridium thermocellumcellulosome. Appl Microbiol Biotechnol44:399-404.
    [1] Lynd LR, Weimer PJ, van Zyl WH and Pretorius IS. Microbial celluloseutilization: fundamentals and biotechnology. Microbiol Mol Biol Rev.2002,66:506-577
    [2] Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, HettichRL, Guss AM, Dubrovsky G, Lynd LR. Deletion of the Cel48S cellulase fromClostridium thermocellum. Proc Natl Acad Sci U S A.2010,107(41):17727-32.
    [3] Zhang XZ, Zhang Z, Zhu Z, Sathitsuksanoh N, Yang Y, Zhang YH. Thenoncellulosomal family48cellobiohydrolase from Clostridiumphytofermentans ISDg: heterologous expression, characterization, andprocessivity. Appl Microbiol Biotechnol.2010,86(2):525-33.
    [4] Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R, Gilbert HJ, Shoham Y.CelI, a noncellulosomal family9enzyme from Clostridium thermocellum, is aprocessive endoglucanase that degrades crystalline cellulose. J Bacteriol.2003,185(2):391-8.
    [5] Tolonen, A. C., Chilaka, A. C., Church, G. M., Targeted gene inactivation inClostridium phytofermentans shows that cellulose degradation requires thefamily9hydrolase Cphy3367. Mol. Microbiol.2009,74,1300–1314.
    [6] Wang YG, Wang XN, Tang RT, Yu SS, Zheng BS, Feng Y. A novel thermostablecellulase from Fervidobacterium nodosum. J Mol Catal B-Enzym.201066:294-301
    [7] Zhang YH, Cui J, Lynd LR, Kuang LR (2006) A transition from celluloseswelling to cellulose dissolution by o-phosphoric acid: evidence fromenzymatic hydrolysis and supramolecular structure. Biomacromolecules7:644-648
    [8] Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducingsugar. Anal Chem1959,31:426–428.
    [9] Ng IS, Tsai SW, Ju YM, Yu SM and Ho TH. Dynamic synergistic effect onTrichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi.Bioresour Technol2011,102:6073-6081.
    [10] Zhu, Z., Sathitsuksanoh,N., Zhang,Y.-H. P., Direct quantitative determinationof adsorbed cellulase on lignocellulosic biomass with its application to studycellulase desorption for potential recycling. Analyst2009,134,2267–2272.
    [11] Zhang, X.-Z., Zhang,Y.-H.P., Simple, fast and high-efficiency transformationsystem for directed evolution of cellulase in Bacillus subtilis. Microb.Biotechnol.2011,4,98–105.
    [12] Fan L T, Lee Y-H and Beardmore DH, Mechanism of the enzymatic hydrolysisBioalcohol production of cellulose: Effects of major structural features ofcellulose on enzymatic hydrolysis. Biotechnol Bioeng,1980,22:177-199.
    [13] Fan LT, Lee YH, Beardmore D R. The influence of major structural features ofcellulose on rate of enzymatic hydrolysis. Biotechnol Bioeng,1981,23419-424.
    [14] Wald S, Wilke CR, Blanch HW, Kinetics of enzymatic hydrolysis of cellulose.Biotechnol Bioeng,1984,26:225-230.
    [15] Zhu L, O'Dwyer JP, Chang VS, Granda CB, Holtzapple MT. Structuralfeatures affecting biomass enzymatic digestibility. Bioresour Technol,2008,99:3817-3828.
    [16] Mcfarland K C, Hanshu D, Teter S, Vlasenko E, Feng X, Cherry J.Development of improved cellulase mixtures in a single production organism.ACS Symposium Series,2007,972:19-31.
    [17] Sathitsuksanoh, N., Zhu, Z., Ho, T.-J., Bai, M.-D., Zhang, Y.-H. P.. Bamboosaccharification through cellulose solventbased biomass pretreatment followedby enzymatic hydrolysis at ultra-low cellulase loadings. Biores. Technol.2010,101:4926–492
    [18] Liao H, Zhang XZ, Rollin JA, Zhang YH. A minimal set of bacterial cellulasesfor consolidated bioprocessing of lignocellulose. Biotechnol J.20116:1409-18.
    [19] Gonza lez-Blasco G, Sanz-Aparicio J, Gonza lez B, Hermoso JA, Polaina J.Directed evolution of β-glucosidase A from Paenabacillus polymyxa tothermal resistance. J Biol Chem,2000,275:13708-13712.
    [20] Cherry JR, Fidanstef AL. Directed evolution of industrial enzymes: an update.Curr Opin Biotechnol,2003,14:438-443.
    [21] Wang T, Liu X, Cheng G, Zhang Y, Gao P. Directed evolution for engineeringpH profile of endoglucanase III from Trichoderma reesei, Biomol Eng,2005,22:89-94.
    [22] Johannes TW, Zhao H. Directed evolution of enzymes and biosyntheticpathways, Curr Opin Microbiol,2006,9:261-265.
    [23] Schulein M. Protein engineering of cellulases. Biochem Biophys Acta,2000,1534:239-252.
    [24] Wilson DB. Studies on Thermobifida fusca plant cell wall degrading enzymes.Chem Rec,2004,4:72-82.
    [25] Baker JO, Ehrman CI, Adney WS, Thomas SR, Himmel ME. Hydrolysis ofcellulose using ternary mixtures of purified cellulases. Appl. Biochem.Biotechnol.1998,70:395–403.
    [26] Zhang S, Wolfgang DE, Wilson DB. Substrate heterogeneity causes thenonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol. Bioeng.1999,66:35–41.
    [27] Irwin D, Spezio M, Walker L, Wilson DB. Activity studies of eight purifiiedcellulases: specificity, synergism and binding domain effects. Biotechnol.Bioeng.1993,42:1002–1013.
    [28] V ljam e P, Sild V, Nutt A, Pettersson G, Johansson G. Acid hydrolysis ofbacterial cellulose reveals different modes of synergistic action betweencellobiohydrolase I and endoglucanase I. Eur J Biochem.1999,266(2):327-34.
    [29] Baker JO, Ehrman CI, Adney WS, Thomas SR, Himmel ME. Hydrolysis ofCellulose Using Ternary Mixtures of Purified Cellulases. Appl BiochemBiotechnol.1998,70-72:395-403.
    [30] Boisset C, Pétrequin C, Chanzy H, Henrissat B, Schülein M. OptimizedMixtures of Recombinant Humicola insolens Cellulases for theBiodegradation of Crystalline Cellulose. Biotechnol Bioeng.2001,72(3):339-45.
    [31] Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON,Burlingame R, Emalfarb M, Baez M, Sinitsyn AP. Design of Highly EfficientCellulase Mixtures for Enzymatic Hydrolysis of Cellulose. Biotechnol Bioeng.2007,97(5):1028-38.
    [32] Engel P, Krull S, Seiferheld B, Spiess AC. Rational approach to optimizecellulase mixtures for hydrolysis of regenerated cellulose containing residualionic liquid. Bioresour Technol.2011
    [33] Kataria R, Ghosh S. Saccharification of Kans grass using enzyme mixturefrom Trichoderma reesei for bioethanol production. Bioresour Technol.2011,102(21):9970-5.
    [34] Zhou J, Wang YH, Chu J, Luo LZ, Zhuang YP, Zhang SL. Optimization ofcellulase mixture for efficient hydrolysis of steam-exploded corn stover bystatistically designed experiments. Bioresour Technol.2009Jan;100(2):819-25.
    [35] Jing D, Li P, Xiong XZ, Wang L. Optimization of cellulase complexformulation for peashrub biomass hydrolysis. Appl Microbiol Biotechnol.2007,75(4):793-800.
    [36] Jeoh T, Wilson DB, Walker LP. Cooperative and Competitive Binding inSynergistic Mixtures of Thermobifida fusca Cellulases Cel5A, Cel6B, andCel9A. Biotechnol Prog.2002,18(4):760-9.
    [37] Wang D, Sun J, Yu HL, Li CX, Bao J, Xu JH. Maximum Saccharification ofCellulose Complex by an Enzyme Cocktail Supplemented with Cellulase fromNewly Isolated Aspergillus fumigatus ECU0811. Appl Biochem Biotechnol.2012,166(1):176-86.
    [38] Anne S. Meyer, Lisa Rosgaard, Hanne R. S rensen, The minimal enzymecocktail concept for biomass processing. Journal of Cereal Science,2009,50:337-344.
    [39] Gusakov A, Sinitsyn A. A theoretical analysis of cellulase product inhibition:effect of cellulase binding constant, enzyme/substrate ratio, and β-glucosidaseactivity on the inhibition pattern. Biotechnol Bioeng.1992,40:663-71.
    [40] Kim E, Irwin DC, Walker LP. Wilson DB. Factorial optimization of asix-cellulase mixture', Biotechnol Bioeng,1998,5:494:501.
    [41] Berlin A, Maximenko V, Gilkes N, Saddler J. Optimization of enzymecomplexes for lignocellulose hydrolysis. Biotechnol Bioeng.2007,97:287-296.
    [42] Boisset C, Petrequin C, Chanzy H, Henrissat B, Schulein M. Optimizedmixtures of recombinant Humicola insolens cellulases for the biodegradationof crystalline cellulose. Biotechnol Bioeng,2001,72:339-345.
    [43] Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS.Evaluation of minimal Trichoderma reesei cellulase mixtures on differentlypretreated Barley straw substrates. Biotechnol Prog.2007,3:1270-6.
    [44] Hong J,Ye X,WangY, ZhangYHP. Bioseparation of recombinant cellulosebinding module-protein by affinity adsorption on an ultra-high-capacitycellulosic adsorbent. Anal. Chim. Acta.2008,621:193–199.
    [45] Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, S rlie M, Eijsink VG.An Oxidative Enzyme Boosting the Enzymatic Conversion of RecalcitrantPolysaccharides. Science.2010,330(6001):219-22.
    [46] Dimarogona M, Topakas E, Olsson L, Christakopoulos P. Lignin boosts thecellulase performance of a GH-61enzyme from Sporotrichum thermophile.Bioresour Technol.2012,110:480-7.
    [47] Phillips CM, Beeson WT, Cate JH, Marletta MA. Cellobiose Dehydrogenaseand a Copper-Dependent Polysaccharide Monooxygenase Potentiate CelluloseDegradation by Neurospora crassa. ACS Chem Biol.2011,6:1399-406.
    [48] Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD.Oxidoreductive Cellulose Depolymerization by the Enzymes CellobioseDehydrogenase and Glycoside Hydrolase61. Appl Environ Microbiol.2011,77:7007-15.
    [49] Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J,Hooman S, Viikari L, Vehmaanper J, Koivula A. Cloning, expression, andcharacterization of novel thermostable family7cellobiohydrolases.Biotechnol Bioeng.2008,101(3):515-28.
    [50] Wohlfahrt G, Pellikka T, Boer H, Teeri TT, Koivula A. Probing pH-dependentfunctional elements in proteins: modification of carboxylic acid pairs inTrichoderma reesei cellobiohydrolase Cel6A. Biochemistry.2003,42(34):10095-103.
    [51] Busto MD, Ortega N, Perez-Mateos M. Characterization of microbialendo-β-glucanase immobilized in alginate beads. Acta Biotechnol.1998,18:189–200.
    [52] Szijártó N, Siika-aho M, Sontag-Strohm T, Viikari L. Liquefaction ofhydrothermally pretreated wheat straw at high-solids content by purifiedTrichoderma enzymes. Bioresour Technol.2011,102:1968-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700