裂纹发展趋势预估及转轮安全评估基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳裂纹是构件断裂事故的主要根源之一,混流式水轮机转轮叶片经常出现大量贯穿性疲劳裂纹,严重危及电站的安全运行。混流式水轮机转轮叶片出现裂纹或断裂的事故仍屡见不鲜,多在停机检修时,用超声、磁粉探伤等方法检测转轮裂纹,而对裂纹在线监测,动态的预测裂纹扩展趋势仍是一项技术难题。目前所遵循的水轮机转轮定期检查的规定已越显弊端,对转轮叶片的裂纹状态进行监测已经越来越迫切。本文以国家自然科学基金项目(50465002)——“混流式水轮机转轮叶片裂纹监测的理论和方法研究”为背景,研究疲劳裂纹扩展趋势预测;利用声发射技术对疲劳裂纹进行动态监测,根据裂纹的声发射信号对裂纹的状态进行分析;对转轮安全评估方法研究,为实现水轮机转轮状态监测奠定理论基础。
     论文首先介绍了疲劳裂纹扩展机理、疲劳裂纹扩展预测方法,利用灰色模型和神经网络对疲劳裂纹扩展进行预估。
     针对水轮机转轮叶片产生的疲劳裂纹,通过三点弯曲疲劳试验,采用声发射技术对金属疲劳裂纹的产生、发展、断裂过程进行监测,与传统的裂纹检测技术相比,声发射不仅能够实时的捕捉到疲劳裂纹的产生,而且能够得到与理论上疲劳裂纹扩展速率曲线相似的变化规律,建立了裂纹声发射信号特征参量与应力强度因子之间的数学关系式,并利用人工神经网络对裂纹的扩展阶段声发射源进行了模式识别,判断裂纹的危害程度。
     介绍水轮机转轮结构、裂纹产生的位置,分析裂纹产生的原因和提出预防裂纹产生的措施。根据混流式水轮机转轮裂纹的实际情况,研究基于声发射和振动技术对转轮叶片裂纹在线监测的理论方法,并对转轮进行疲劳寿命计算和安全评估基础方法研究,为实现对转轮在线监测和故障诊断奠定理论基础。
Fatigue crack is one of the main sources of component fault accident, Francis turbine runner blades often run a lot of fatigue cracks; seriously endanger the safe operation of power plants. The accident of Francis turbine runner blade cracks or faults is still commonplace, but the measures of detecting runner cracks, such as the ultrasound, magnetic detection, the Francis turbine need to be shut down at maintenance time, the crack monitoring on line and dynamic forecast crack growth trend is still a technical problem. At present, the shortcomings of turbine runner inspection by regular have been more and more significant, and the state of the runner blades cracks monitoring has become increasingly urgent.
     In this paper, the project 'Research of Theory and Method on Monitoring Crack of Francis Turbine Runner Blade' supported by national fund of natural science (50465002) as the background, research on fatigue crack propagation forecasting approach; using acoustic emission technology dynamic monitoring fatigue crack, according to analysis by the crack of the AE signal to analysis the crack state; application acoustic emission and vibration technology to runner safety assessment, which established the basis of theory in realizing on-line monitoring the status of the turbine runner.
     Firstly, the fatigue crack growth mechanism and the fatigue crack growth prediction method were discussed. Also, the grey model and neural networks were used for the fatigue crack growth forecast, and gives the turbine crack forecast method, and made the adaptation Analysis.
     Faced to Francis turbine runner blades the fatigue crack on the fatigue crack growth mechanism, using acoustic emission technology detect metal fatigue crack on the rise, development, fracture process, through the stretch and three-point bending fatigue test to prove that with the traditional Compared to detect cracks, AE can not only real-time capture of a fatigue crack, and can be theoretically and fatigue crack growth rate curve similar to the changes in the law. The introduction of the AE parameters and crack growth rate between the formula and the establishment of a crack AE signal characteristics and parameters of stress intensity factor between the mathematical relationships. Neural networks were used to the crack expansion phase of the pattern recognition.
     After analyzing the turbine runner structure, the crack of the causes and prevention measures to crack the traditional overhaul of the deficiencies, and the turbine runner crack the online monitoring and fault diagnosis of necessity were discussed, too. According to Francis turbine runner crack the overhaul of the actual situation, to launch technology based on AE and vibration technology to conduct a security assessment runner, and the runner-line monitoring and fault diagnosis.
引文
[1]蔡泽高,刘以宽等.金属磨损与断裂[M].上海:上海交通大学出版社,1985
    [2]覃大清,刘光宁,陶星明.混流式水轮机转轮叶片裂纹问题[J].大电机技术,2005(4):39-44
    [3]杨明纬.声发射检测[M].北京:机械工业出版社2005,1
    [4]徐章遂,徐英等.裂纹漏磁定量检测远离与应用[M].北京:国防工业出版社,2005,9
    [5]李思源,陈亚茹.疲劳裂纹的工程预测方法[J].机械强度,2000,22(2)142-145
    [6]潘家祯、柳凯等.用N-R模型预测微裂纹的疲劳扩展[J].内蒙古工业大学学报,1997.16(3):60-64
    [7]徐可君,江龙平,隋育松.疲劳裂纹灰色预测的方法[J].燃气轮机技术,2002,15(4):45-47
    [8]师小红,徐章遂,孙钦蕾.基于灰色神经网络的发射塔架疲劳裂纹扩展预测[J].电测与仪表,2006,43(484):21-22
    [9]王珉,郎元福等.基于神经网络的疲劳裂纹扩展率的初步估算[J].甘肃工业大学学报,2001,4:29-32
    [10]孙道恒,胡俏等.基于裂纹闭合解析模型和神经网络理论的疲劳裂纹扩展速率的计算[J].机械工程学报,1998,34(5):60-65
    [11]邓韧,李著信,樊友洪等.基于神经网络的疲劳短裂纹扩展速率时序预测方法[J].机械强度,2006,28(5):757-760
    [12]郑新侠,李小燕.结构钢疲劳裂纹扩展门槛值预测的新方法[J].西安石油学院学报,2003,18(3)50-54
    [13]巍然.水轮发电机组状态监测与故障诊断系统研究[D].硕士学位论文,西安理工大学,2001-3
    [14]徐东海.水电机组状态监测及故障诊断研究[D].硕士学位论文,清华大学,2003.11
    [15]李成家,张双平,康振国等.水轮机转轮裂纹的检测分析与研究[J].西北电力技术,2001,(6):21
    [16]赵奇,李二伟,薛世钦等.进口水轮机转轮叶片的裂纹分析及处理[J].检验检疫科学,2003,13(4):4-6
    [17]曹剑绵,陈昌林.大型水轮机转轮异常振动及叶片裂纹分析[J].西南交通大学学报(增刊),2002,37(11):68-72
    [18]覃大清,刘光宁,陶星明.混流式水轮机转轮叶片裂纹问题[J].大电机技术,2005(4):39-44
    [19]陈香林,混流式水轮机叶片流固耦合动力特性研究[D].硕士学位论文,昆明理工大学,2004.12.
    [20]Hans-Jorg Huth,Fatigue design of hydraulic turbine runners[D].PhD thesis,Norwegian university,2005
    [21]罗永要,王正伟,梁权伟.混流式水轮机转轮动载荷作用下的应力特性[J].清华大学学报(自然科学版),2005,45(2):235-237
    [22]A.Garg.Characterization of damage initiation and propagation in graphite epoxy laminates by acoustic emission[J].Engng Fract Mach 1985,22:598-609
    [23]刘学文,袁祖贻,缪龙秀等.焊接结构疲劳损伤的实时监控[J].北方交通大学学报,1996,20(4):399-403
    [24]刘孝敏,K.M.Holford.钢板桁架疲劳裂纹生长模型和声发射特征的研究[J].中国科学技术大学学报.1998,28(3):326-330
    [25]李光海.声发射源识别技术的研究[D].博士学位论文,华南理工大学,2002,10
    [26]耿荣生,李伟.飞机主梁疲劳裂纹萌生声发射信号的识别方法[J].航空学报,1996,17(3):368-372
    [27]李耀东,黄成祥,侯力.模态声发射技术在构件疲劳裂纹检测中的应用[J].振动与冲击,2005,24(2):122-125
    [28]王栓柱.金属疲劳[M].福州:福建科学技术出版社,1986,5:1-4
    [29]机械设计手册编委会.机械设计手册[M].北京:机械工业出版社,2004,9
    [30]苏尔茨(Surech,S).材料的疲劳[M].北京:国防工业出版社,1993,10
    [31]李庆芬,胡胜海,朱世范.断裂力学及其在工程应用[M].哈尔滨:哈尔滨工程大学出版社,2004,7
    [32]赵少汴.抗疲劳设计[M].北京:机械工业出版社,1995
    [33]蔡振源.表面裂纹理论及其应用[M].西安:西北工业大学出版社,1987
    [34]王泓.材料疲劳裂纹扩展和断裂定量规律的研究[D].西北工业大学博士论文,2002,1:36-37
    [35]nSoft 2004/FE Fatigue theory of the nCode book[D].2004
    [36]邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1986.
    [37]蒋卫东,李夕兵.时数分离残差模型及在尾矿坝渗流预测中的应用[J].安全与环境工程2003,10(3):45-47
    [38]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005
    [39]罗四维.人工神经网络建造[M],北京:中国铁道出版社,1998
    [40]郑中兴.材料无损检测与安全评估[M].中国标准出版社,2004.P260-268.
    [41]沈功田,耿荣生,刘时风.声发射信号的参数分析方法[J].无损检测,2002,24(2):72-76.
    [42]GB/T18182-2000.金属压力容器声发射检测及结果评价方法[S].北京:中国标准出版社出版,2000
    [43]Avraham berkovits and Daining Fang.Study of fatigue crack characteristics by acoustic emission[J].Engineering fracture mechanics.1995(51):401-416
    [44]T.M.Roberts,M.Talebzadeh.Acoustic emission monitoring of fatigue crack propagation[J].Journal of constructional steel research.2003(59):695-712
    [45]M.Surgeon and M.Wevers.Modal annalysis of acoustic emission signals from CFRP laminates[J].NDT&E International 1999(32):311-322
    [46]Pullin R,Holford KM and Baxter MG.Modal analysis of acoustic emission signals from artificial and fatigue crack sources in aerospace grade steel[J].Damage assessment of structures vi key engineering materials.2005(293-294):217-224
    [47]I.Seale,S.Ziola,P.Rutherford.Crack detection in lap-joints using acoustic emission[J].SPIE.1999(24):212-223
    [48]Rodolfo E.Habe,Jose E.Jimenez,C.Ronei Peres and Jose R.Alique.An investigation of tool-wear monitoring in a high-speed machining process[J].Sensors and Actuators A:physical.2004(116):539-545
    [49]王成江,舒乃秋,放电声发射波的小波提纯与消噪[J].高压电器,2003,39(6):8-10
    [50]罗发龙,李衍达.神经网络信号处理[M].北京:电子工业出版社.2000.3
    [51]J.Yang,G.A.Dumont.Classification of acoustic emission signals via Hebbian feature extraction[J].In IJCVV-91-Seattle.International Joint Conference on Neural Networks,IEEE,New York.1991,1:113-118
    [52]沈功田.金属压力容器的声发射源特性及识别方法的研究[D].博士学位论文,清华大学,1998
    [53]李光海,刘时风.声发射信号分析技术及进展[C].中国第十届声发射学术研讨会论文集,大庆,2004:52-61
    [54]A Berkovits and D Fang,Study of fatigue crack characteristics by acoustic emission[J].Engineering Fracture Mechanics,1995(51):410-416
    [55]T.M.Roberts,M.Talebzadeh.Fatigue life prediction based on crack propagation and acoustic emission count rates[J].Journal of constructional steel research.2003(59):679-694
    [56]Z Gong,DL DuQuesnay and SL McBride,Measurement and interpretation of fatigue crack growth in 7075 aluminum alloy using acoustic emission monitoring[J].Journal of Testing and Evaluation,1998(26):567-574
    [57]张守茁.裂纹扩展时声发射信号特性讨论[J].内蒙古工业大学学报,1994,13(4),29-36
    [58]沈功田,周裕峰,中国第七届声发射学术研讨会论文集[C].北京,1997,136-141
    [59]易若翔,刘时风.人工神经网络在声发射检测中的应用[J].无损检测,2002.24(11):488-491
    [60]飞思科技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社,2005
    [61]戴光,李伟,张颖等.基于人工神经网络方法识别声发射信号的有效性[J].大庆石油学院学报,2001,25(1):63-66
    [62]刘时风.焊接缺陷声发射检测信号谱估计及神经网络模式识别研究[D].博士学位论文,清华大学,1996
    [63]顾四行.水轮机转轮裂纹及其处理[J].水电站机电技术,1992,16(3):1-7
    [64]H Grein.混流式水轮机振动的成因及预防[J].东方电机,2001(2):23-26
    [65]王远江.岩滩与李家峡水电站水轮机转轮裂纹的原因和处理[J].水力发电,1999,(5):43-45
    [66]樊世英.混流式水轮机转轮裂纹原因分析及预防措施[J].水力发电,2002(5):38-41
    [67]黄文,吴彤峰,毛汉领.水轮机转轮叶片应力分布及其裂纹成因[J].实用测试技术,1999(3):33-34
    [68]罗伟文,郑时雄,黄振峰等.大型混流式水轮机转轮叶片裂纹及其成因分析[J].机 械工程师,2006(8)98-100
    [69]黄振峰,沈炜良,温洁明.岩滩水电厂水轮机动应力测试[J].广西大学学报(自然科学版),1999,9(24):43-45.
    [70]陈凯,陆军,何万成.红石电站水轮机转轮叶片裂纹的分析及处理[J].水力发电,2003,29(1):54-56
    [71]邬海军.水轮机叶片三维有限元刚强度与振动特性研究[D].硕士学位论文,西安理工大学,2005.3
    [72]晋风华,陈光大.水电厂振动监测分析系统的研究[J].四川水力发电.2002,21(4)81-83
    [73]沈东,褚福涛,陈思.水轮发电机组振动故障诊断方法研究[J].红水河.2000,19(1)61-63
    [74]孙春方.混流式水轮机转轮裂纹扩展探讨[J].动力工程,2002,22(6):1827-1831
    [75]张艾萍,暴丽.声发射技术在化工设备状态监测与故障诊断中的应用[J].化工机械,2004,30(2)93-95
    [76]徐彦廷,戴光,李伟.地上立式金属储罐在线声学检测及评价方法研究[C].中国第九届声发射学术研讨会论文集,2001:84-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700