高速铣削航空铝合金刀具失效机理及刀具寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削加工技术是先进实用的制造技术,正成为切削加工的主流,具有强大的生命力和广阔的应用前景。然而,高速切削刀具的工作条件比在普通切削加工下更为恶劣,刀具失效过快一直是制约高速切削加工广泛应用的一个关键问题。高速切削时,刀具具有不同于普通切削的失效机理,需要新的理论和方法来进行研究。航空航天行业是高速切削技术应用最为广泛的行业之一,在高速铣削航空铝合金时遇到了刀具失效等方面的许多问题。本文针对高速铣削航空铝合金7050-T7451的刀具失效机理和刀具寿命进行了系统研究。
     高速切削时切削加工工艺对刀具的早期失效有着重要的影响,研究了高速铣削航空铝合金时刀具的合理选用和高速切削共振区的判定方法。根据变速度单因素实验测出切削力和表面粗糙度,提出了一种具有可操作性的判断高速切削共振区的方法。研究表明,这种方法和理论分析一致,从而证明了其可行性。
     研究了高速铣削7050-T7451时的切削变形程度、切屑形成和剪切角。指出高应变、高应变率和高温是高速切削不同于普通切削的特点。通过快速落刀实验研究了切屑根部形貌,剧烈扭曲的滑移线间接证明了粘结磨损存在。通过实验分别研究了高速车削和高速铣削7050-T7451时的切屑形态及变化规律。
     研究了整体涂层硬质合金刀具和超细晶粒硬质合金可转位刀具高速铣削航空铝合金的铣削力及其变化规律。首先利用七参数法对圆弧头立铣刀进行了几何建模,然后建立了两种切削刀具的力学模型,最后分别对整体式和可转位式圆弧头铣刀进行了切削力正交实验,建立了铣削力经验公式。
     研究了高速铣削航空铝合金7050-T7451时的切削温度。提出了高速铣削航空铝合金切削温度的“导热反求”方法,利用红外热像仪和数值模拟方法确定了铣削过程中的切削温度。通过研究发现切削温度随切削速度提高而升高,到了1000m/min后升高幅度变缓,证明M.C.Gee曲线比Salomon曲线更具合理性。通过高速断续车削实验得到了切削与空切时的温度差,为求解刀具所受到的热应力提供了基础数据。
     建立了基于高速切削过程热力耦合不均匀强应力场的刀具失效理论,并将其运用到分析高速铣削航空铝合金的刀具磨损和刀具寿命研究中,利用数值模拟方法研究了热力耦合不均匀强应力场对高速铣削刀具失效的影响。通过研究发现,热力耦合不均匀强应力场的等效应力远远小于超细晶粒硬质合金的抗拉强度,刀具因高周循环应力冲击而逐渐破坏,表明应力疲劳对刀具失效起到重要作用。通
High speed machining (HSM) is one of the advanced manufacturing technologies and is going mainstream because of its many advantages. However, the short tool life is one of the great obstacles in the application of HSM because of severe cutting conditions. As failure mechanisms of cutting tools in HSM is different with those in conventional machining, new theory and research method should be presented. Although HSM was firstly used in Aeronautics & Astronautics industry, there are still many problems in tool failure especially in high speed machining monolithic parts. Tool failure mechanism and tool life have been studied in high speed milling of aluminum alloy 7050-T7451.
    High speed machining process plays an important role in tool failure. The appropriate selection and proper use of cutting tools have been researched as well as the determination of resonance regions in high speed milling of aluminum alloy. A new and maneuverable method to determine the resonance regions has been presented according to the fact that vibration will result in the increase of cutting forces and roughness of machined workpiece. With this method, just a single factor experiment should be conducted in which cutting speed is variable. Experimental result is consistent with theoretical analysis.
    Research on mechanism of cutting deformation is the basis to study cutting force, cutting temperature and tool wear. The degree of deformation, chip formation and shear angle theory have been studied. It is pointed that high strain, high strain rate and high temperature are the main characteristics of high speed machining process. It is found that the intense distort of sliding lines indicates the existing of adhesion wear. The chip patterns have been observed by experiments in high speed turning and milling respectively.
    Milling forces in high speed milling of aluminum alloy 7050-T7451 have been researched by theoretical analysis and experimental approaches with coated solid cemented carbide cutting tool and uncoated superfine grain cemented carbide inserts. Geometry modeling of radius end milling cutting tool is established by seven-parameter method presented by Altintas. The cutting force models of above two kinds of cutting tools have been established. Also the empirical formulae have been
引文
1.艾兴等编著,高速切削加工技术.北京:国防工业出版社,2003
    2.刘战强.高速切削技术的研究与应用.山东大学.博士后出站报告.2001
    3. R. Komanduri, D. G. Flom, M. Lee. Highlights of the Darpa Advanced Machining Research Program. Journal of Engineering for Industry. Transactions of ASME. 1985, Vol. 107(4):325~335
    4. R.Komanduri. Status of High-speed Machining. Carbide&Tool Journal.1986, Vo1.18(6):6~11
    5.梁彦军,高峰.我国高速加工技术现状及发展趋势.工具技术,2002,Vol.36(1):16~20
    6. R. C. Dewes, D.K. Aspinwall. A Review of Ultra High Speed Milling of Hardened Steels. Journal of Materials Process Technology. 1997,(69):1~17
    7.李沪曾,郭重庆,林建平等.高速铣削加工技术在汽车模具制造中的应用.机械与电子.2003,(1):26~28
    8.郭新贵,汪德才,李从心.高速切削技术及其在模具工业中的应用.现代制造工程,2001,(9):31~33
    9. Z. N. Farhat. Microstructural Characterization of WC-TiC-Co Cutting Tools during High-speed Machining of P20 Mold Steel. Materials Characterization. 2003, (51): 117~130
    10.刘战强,艾兴,宋世学.高速切削技术的发展与展望.制造技术与机床.2001,(7):5~7
    11. S. Ashley. High-speed Machining Goes Mainstream. Mechanical Engineering. 1995, Vol. 117(5):56~61
    12. Jeong-Du Kim, Youn-hee Kang. High-speed Machining of Aluminum Using Diamond End Mills. International Journal of Machine tool & Manufacture. 1997,(37): 1155~1165
    13. J. Tlusty. High-speed Machining. Annals of the CIRP, 1993,Vol.42(2): 733~738
    14. Norihiko Narutaki. High-Speed Machining of Titanium Alloy. Annals of the CIRP. 1997,Vol. 46(1):3~7
    15. N. Narutaki, Y. Yamane, K. Hayashi et al. High-Speed Machining of Inconel 718 with Ceramic Tools. Annals of the CIRP. 1993, Vol. 42(1): 103~106
    16. Kitagawa, A.Kubo,K.Maekawa. Temperature and Wear of Cutting in High-Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn. Wear, 1997,(202): 142~148
    17. A.Gatto.L.Juliano. Chip Formation Analysis in High Speed Machining of a Nickel Base Superalloy with Silicon Carbide Whisker-reinforced Alumina. International Journal of Machine Tool & Manufacture. 1994,(34):1147~1161
    18. T.I.Ei-Wardany, E.Mohammed,M.A.Elbestawi. Cutting Temperature of Ceramic Tools in High Speed Machining of Difficult-to-cut Materials. International Journal of Machine Tools & Manufacture. 1996,(36):611~634
    19. E. O. Ezugwu, J.Bormey, Y.Yamane. An Overview of the Machinability of Aeroengine Alloys. Journal of Materials Processing Technology. 2003,(134):233~253
    20. L.N.Lopez de lacalle, J.Perez, J.I.Llorente, J.A.Sanchez. Advanced Cutting Conditions for the Milling of Aeronautical alloys. Journal of Material Processing Technology. 2000,(100): 1~11
    21. A.Chakraborty, K.K.Ray, S.B.Bhaduri. Comparative Wear Behavior of Ceramic and Carbide Tools during High Speed Machining of Steel. Materials and Manufacturing Processes. 2000, Vol. 15(2):269~300
    22. G. Poulachon, A.Moisan. Contribution to the Study of the Cutting Mechanisms during High Speed Machining of Hardened steel. Annals of the CIRP. 1998,Voi.47(1): 73~76
    23. P.Koshy, R.C.Dewes,D,K.Aspinwall. High Speed End Millling of Hardened AISI D2 Tool Steel(~58 HRC). Journal of Materials Processing Technology. 2002,(127):266~273
    24. T.J.Broskea. High Speed Machining of Gray Cast Iron with Polycrystalline Cubic Boron Nitride. Carbide and Tool Journal. 1987,Vol. 19(5): 17~20
    25. Chen Ping,K. Toshihiro. High Performance Machining of Austempered Ductile Iron. Journal of the Japan Society of Precision Engineering/Seimitsu Kogaku Kaishi. 1995,Vol.61 (4):542~546
    26. L.Iuliano,L.Settineri,A.Gatto. High-speed Turning Experiments on metal matrix composites.Composites Part A. 1998,(29): 1501~1509
    27. S.Smith and J.Tlusty, Current Trends in High-Speed Machining. Journal of Manufacturing Science and Engineering, Transaction of the ASME. 1997,Vol. 119(11): 664~666
    28.张伯霖.高速加工技术在美国的最新发展.制造技术与机床.1999,(4):5~6
    29. Shaw.M.C, Vyas A. Chip Formation in Machining Hardened Steels. Annals of the CIRP. 1993,42(1):77~82
    30. Elbestawi M A, Chen L, Becze C E et al, High-speed Milling of Dies and Molds in Their Hardened State. Annals of the CIRP. 1997, 46(1):57~62
    31.艾兴,刘战强,黄传真等.高速切削综合技术.航空制造技术.2002,(3):20~23
    32. T.J.Burns, M.A.Davies. On Repeated Adiabatic Shear Band Formation during High-speed Machining. International Journal of Plasticity. 2002,(18):487~506.
    33. A.Molinari, C.Musquar, G.Sutter. Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modeling. International Journal of Plasticity. 2002,(18):443~459
    34. Yuan Ning,M.Rahman, Y.S.Wong. Investigation of Chip Formation in High Speed End Milling. Journal of Materials Processing Technology. 2001,(113):360~367
    35.梁锡昌,郑小光,徐国斌.超高速铣削的理论研究.机械工程学报.2001,Vol.37(3):109~112
    36.张伯霖,谢影明,肖曙红.超高速切削的原理与应用.中国机械工程.1995,(6):14~17
    37.虞付进.高速切削机理的研究现状与思考.机械工程师.2003,(10):12~15.
    38.桂贵生,何庆.高速加工机理与关键技术的研究进展.农业机械学报.2004,Vol.35(4):192~195.
    39. C.K.Toh. CuRer Path Strategies in High Speed Rough Milling of Hardened Steel. Materials and Design 2006,(27):107~114
    40. Thomas Phillip Jacobs Jr. Specialized Procedures for Efficient High speed machining. Charlotte: Doctorial dissertation. University of North Carolina at Charlotte. 2002
    41. I.F.Dagiloke,A.Kaldos.S.Douglas,B.Mills.High-speed Machining: an Approach to Process Analysis. Journal of Materials Processing Technology 1995,(54):82~87
    42. A.Kaldos.I.F.Dagiloke A.Boyle.Computer Aided Cutting Process Parameter Selection for High Speed Milling. Journal of Materials Processing Technology. 1996,(61):219~224
    43.吴国玥 译.高速铣削中动态特性对工件质量的影响.国外金属加工.2000,(1):31~35.
    44. X.Yan,K.Shirase. M.Hirao T.Yasui. Evaluation and Improvement of Productivity in High-speed NC Machining. Transactions of ASME.2000, Vol. 122(8):556~56
    45.黄健求.高速切削加工时工艺系统的动刚度与加工精度的研究.东莞理工学院学报.2000,Vol.7(2):25~28
    46. D.A.Axinte,R.C.Dewes. Surface Integrity of Hot Work Tool Steel after High Speed Milling-Experimental Data and Empirical Models. Journal of Materials Processing Technology 2002,(127):325-335
    47. Luis N.Lopez de Lacalle,A.Lamikiz, J.A.Sanehez et al. Improving the Surface Finish in High Speed Milling of Stamping Dies. Journal of Materials Processing Technology. 2002,(123):292~302
    48. Dai Gil Lee,Jung Do Suh, Hak Sung Kim et al. Design and Manufacture of Composite High Speed Machine Tool Structures. Composites Science and Technology. 2004,(64): 1523~1530
    49.张伯霖,黄晓明,李志英.高速加工中心及其应用.机电工程技术.2001,Vol.30(5):11~14
    50.周正干,王美清,李和平等.高速加工中心的核心部件及其关键技术.机床与液压,2000(6):53~56
    51.张伯霖,夏红梅,黄晓明.高速主轴设计制造中若干问题的探讨.制造技术与机床.2001,(7):12~14.
    52.张伯霖,张志润,肖曙红.超高速加工机床与机床的零传动.中国机械工程.1997,(5):37~41.
    53. S.-G.Lee,S.-H. Yang. CNC Tool-Path Planning for High-Speed High-Resolution Machining Using a New Tool-Path Calculation Algorithm. The International Journal of Advanced Manufacturing Technology. 2002,(20):326~333
    54. Hector Dominguez, Rogelio Alvarez, Juan Carlos Jauregui. Development of A High Speed Machiniing CNC. Proceedings of the 2001 IEEE International Conference on Control Applications. September 5~7,2001,Mexico City, Mexico. 224~229
    55. Chung-Shin Chang. A Study, of High Efficiency Face Milling Tools. Journal of Materials Processing Technology. 2000,(100): 12~29
    56. G.E.D'Errico,E.Guglielmi,G.Rutelli. A Study of Coatings for End Mills in High Speed Metal Cutting. Journal of Materials Processing Technology. 1999,(92-93):251~256
    57. Hideharu Kato, Kazuhiro Shintani, Hitoshi Sumiya. Cutting Performance of A Binder-less Sintered Cubic Boron Nitride Tool in High-speed Milling of Gray Cast Iron. Journal of Materials Processing Technology. 2002,(127):217~221
    58.艾兴,刘战强等.高速切削刀具材料的进展和未来.制造技术与机床.2001,(8):21~25
    59.刘战强,艾兴,高速切削刀具的发展现状.工具技术.2001,vol.25(3):3~8
    60.赵炳桢.高速铣削刀具安全技术现状.工具技术.1999,(33):4~7
    61.赵文祥,杨广勇.超高速切削加工的刀具系统.水利电力机械.1996,(6):35~39
    62.王西彬,师汉民.高速切削刀具的研究.机械工艺师.1998,(8):39~41
    63. N.M.Renevier, H.Oosteding, U.Konig, et al. Performance and Limitation of Hybrid PECVD(hard coating)-PVD Magnetron Sputtering (MoS_2/Ti composite) Coated Inserts Tested for Dry High Speed Milling of Steel and Grey Cast Iron. Surface and Coatings Technology.2003,(163-164):659~667
    64. Mirjam Arndt, Thorsten Kacsich. Performance of New A1TiN Coatings in Dry and High Speed Cutting. Surface and Coatings Technology. 2003,(163-164):674~680
    65.刘战强、黄传真、郭培全编著.先进切削加工技术及应用.北京:机械工业出版社,2005
    66.刘静安,谢水生等.铝合金材料的应用与技术开发.北京:冶金工业出版社,2004
    67.张士林,任颂赞主编.简明铝合金手册.上海:上海科学技术文献出版社,2001
    68.郭旺,翟建军.飞机结构件的数控加工技术研究.机械制造与自动化.2005,Vol.34(1):52~55
    69.姜金三.超高速加工在航空制造中的应用.CAD/CAM与制造业信息化.2004,(4):101~103
    70.张振明,许建新,田锡天等.飞机结构件数控加工工艺决策知识获取.航空工艺技术.1995(4):6~8
    71.陈小明.飞机零件的高速高效加工.航空制造技术.2004,(4):44~47
    72.张曙.加工飞机结构件的加工中心.航空制造技术.2005(4):30~33
    73. S.Smithm D.Dvorak,Tool Path Strategies for High Speed Milling Aluminum Workpiece with Thin Webs. Meehatronis. 1998,(8):291~300
    74.王炎.飞机整体结构件数控加工技术应用中的问题与对策.航空制造工程,1998,(4):28-30
    75.董辉跃.航空整体结构件加工过程的数值仿真.浙江大学博士论文.2004.8
    76. Salomon C. Process for the Machining of Metals or Similarly Acting Materials When Being Worked by Cutting Tools. German Patent, 523594.1931.04
    77. P.Leznaski, M.C.Shaw, Tool Face Temperatures in High Speed Milling, Journal of Engineering for industry. 1990,(5):112~133
    78. R.C.Dewes, E.Ng, K.S.Chua, et al. Temperature Measurement when High Speed Machining Hardened Mould/Die Steel, Journal of Material Processing Technology 1999, (92-93) 293~301
    79.TH.洛拉得泽著,艾兴等译.切削刀具的强度和耐磨性.北京:机械工业出版社.1988
    80. Ueda T, Tanaka. H, Torii A, Sugita T, Measurement of Grinding Temperature of Active Grains Using Infrared Radiation Pyrometer with Optical Fiber. Annals of the CIRP. 1993, Vol. 42(1):405~408
    81. Takashi Ueda, Mahufdz AI Huda, Keiji Yamada et al. Temperature Measurement of CBN Tool in Turning of High Hardness of High Hardness Steel. Annals of the CIRP.1999, Vol. 48(1):63~66
    82. Takashi Ueda, Masahiko Sato Kazuo Nakayama, The Temperature of A Single Crystal Diamond Tool in Turning. Annals of the CIRP. 1998,(47):41~44
    83. T. Ueda, A.Hosokawa, K.Oda, K.Yamada, Temerperature on Flank Face of Cutting Tool in High Speed Milling. Annals of the CIRP. 2001,Vol.50(1): 37~40
    84.艾兴.高速切削技术和刀具材料现状与展望.世界制造技术与装备市场(WMEM).2001,(3):32~3
    85.张伯霖,杨庆东,陈长年等编.高速切削技术及应用.北京:机械工业出版社,2002
    86. Heller. Defines High-Speed.Machinery and Production Engineering. 1999(11): 25~26
    87.何宁.高速切削技术.工具技术.2003,Vol.37(11):8~11
    88.沈耿.薄板件切削加工控制变形的工艺措施.现代制造工程.2003,(4):50~52
    89. Z.Q.Liu,X.Ai,H.Zhang et al. Wear Patterns and Mechanisms of Cutting Tools in High-speed Face Milling. Journal of Materials Processing Technology. 2002(129):222~226
    90.刘战强,艾兴.高速切削刀具磨损寿命的研究.工具技术.2001,Vol.35(12):3~7
    91.刘战强,艾兴.高速切削刀具磨损表面形态研究.摩擦学学报.2002(22):468~471
    92.王春梅.高速切削立铣刀的安全性研究.山东大学硕士论文,2001
    93.张松.高速旋转刀具系统的安全性研究.山东大学博士学位论文,2004
    94.刘战强,万熠,艾兴.高速铣削过程中表面粗糙度变化规律的试验研究.现代制造工程.2002,(12):10~11
    95.王遵彤.基于实例推理的高速切削数据库HISCUT的系统.山东大学博士学位论文,2003
    96.王遵彤,刘战强,万熠等.相似度及基于实例推理在高速切削数据库中的应用.2003,Vol.22(3):431~434
    97.孟辉.高速切削温度动态有限元建模与数值模拟.山东大学硕士论文,2005
    98.杨广勇.超高速切削时的T-V关系与切削力.北京理工大学学报.1996,Vol.36(6):263~266
    99.金城哲,贾春德,张志军.高速切削中锯齿形切屑的研究.机械设计与制造.2001,(10):83
    100.张志军,贾春德.超高速切削机理的研究.沈阳工业学院学报.1999,Vol18(1):41~45
    101.张志军,贾春德,田明德.高速车铣技术的研究.机械设计与制造.1999,(4):63~64
    102.王敏杰,段春争,刘洪波.正交切削切屑形成中绝热剪切行为的实验研究.中国机械工程.2004,(18):1603~1606
    103.段春争,王敏杰.切削高强度结构钢形成的绝热剪切带微结构观察.大连理工大学学报.2004,Vol.44(2):244~248
    104.文东辉,刘献礼,肖露等.硬态切削机理研究的现状与发展.工具技术.2002,Vol.36(6):3~7
    105.刘文芝,NAK80材料高速铣削机理及应用研究.天津大学硕士论文,2004
    106.何宁.难加工材料高效切削理论与应用研究.南京航空航天大学博士论文,1996
    107.任开强.高强度钛合金的高速铣削研究.南京航空航天大学硕士论文,2003
    108. L.Li, N.He,M.Wang,Z.G.Wang. High Speed Cutting of Inconel 718 with Coated Carbide and Ceramic Inserts. Journal of Materials Processing Technology. 2002,(129): 127~130
    109.苌浩,何宁,满忠雷.TC4的铣削加工中铣削力和刀具磨损研究.航空精密制造技 术.2003,Vol.39(3):30~33
    110.陈明,袁人炜,凡效勇等.三维有限元分析在高速铣削温度研究中应用.机械工程学报.2002,Vol.38(7):76~79.
    111.陈明,袁人炜等.铝合金高速铣削中切削温度动态变化规律的实验研究.工具技术,2000,Vol.34(5):7~10
    112.陈明,袁人炜.高速切削过程切削条件优化研究最新动态.机械设计与研究.1999,(3):61~67
    113.凡孝勇.旋转刀具/切削数据库应用研究.上海交通大学硕士学位论文,2000.
    114.袁人炜.难加工材料高速铣削机理及工艺.上海交通大学博士学位论文,2000
    115.张伯霖,超高速切削的关键技术.机床.1993,(11):3~6
    116.龚锦超,高速铣削刀具与工艺参数优化.同济大学硕士学位论文,2004
    117. A.Molinari, M.Nouari. Modeling of Tool Wear by Diffusion in Metal Cutting. Wear. 2002, (252):135~149
    118. J.Kopac,M.Sokovic,S.Dolinsek. Tribology of Coated Tools in Conventional and HSC Machining. Journal of Materials Processing Technology. 2001,(118):377~384
    119. Haron O.Gekonde, S.V.Subramanian. Triboiogy of Tool-chip Interface and Tool Wear Mechanisms. Surface and coatings Technology.2002,(149): 151~160
    120. Slavko Dolinsek, Borivoj Sustarsic, Janez Kopac. Wear Mechanisms of Cutting Tools in High-speed Cutting Processes. Wear.2001,(250):349~356
    121. M.Sokovic, J.Kopac,L.A.Dobrzanski,M.Adamiak. Wear of PVD-coated Solid Carbide End Mills in Dry High-speed Cutting. Journal of Materials Processing.2004,(157-158):422~426
    122. Adrian Sharman, Richard C.Dewes, David K.Aspinwall. Tool Life when High Speed Ball Nose End Milling Inconel 718~(TM). Journal of Materials Processing Technology 2001,(118):29~35
    123. Z.N.Farhat. Wear Mechanism of CBN Cutting Tool during High-speed Machining of Mold Steel. Materials Science and Engineering. 2003,(361): 100~110
    124.龙震海,王西彬,刘志兵.高速铣削难加工材料时硬质合金前刀面磨损机理及切削性能研究.摩擦学学报.2005,Vol.25(1):83~87
    125. Xie,Lijing.Estimation of Two-dimension Tool Wear Based on Finite Element Method. Germany, Dissertation of Karlsruhe University. 2004
    126. Rodolfo E.Haber, Jose E.Jimenez, C.Ronei Peres et al. An Investigation of Tool-wear Monitoring in a High-speed Machining Process. Sensors and Actuators A 2004,(116):539~545
    127. P.C.Wanigarathne, A.D.Kardekar, O.W.Dillon,et al. Progressive Tool-wear in Machining with Coated Grooved Tools and Its Correlation with Cutting Temperature. Wear. 2005, (259): 1215~1224
    128. Samir Khrais. High Speed Machining Tool Wear Mirco-structure. University of Akron. Ph.D dissertation, 2003
    129. J.A.Ghani,I.A.Choudhury, H.H.Masjuki. Wear Mechanism of TiN Coated Carbide and Uncoated Cermets Tools at High Cutting Speed Applications. Journal of Materials Processing Technology 2004,(153-154): 1067~1073
    130. Karinna M.Vernaza Pena. Thermal measurements during high speed machining. University of Notre Dame,Doctorial dissertation, 2002
    131.赵新,朱承元,易克平等.铝合金高速铣削切屑温度实验研究.电子机械工程.2004,20(1):37~39
    132.王立江,蔡绍勤,骆红云.PCD刀具断续切削铝合金时力学特性的试验研究.汽车工艺与材料.2001,(2):4~7
    133.付敏.高速铣削铝合金加工技术的研究.哈尔滨理工大学硕士论文,2004
    134. J.F.Kelly, M.G.Cotterell. Minimal Lubrication Machining of Aluminum Alloys. Joumal of Materials Processing Technology 2002,(120):327~334
    135.于信汇,赵仲义,诸乃雄.铝合金材料的超高速铣削.机械工艺师.1994,(2):9~12
    136. Balkrishna Rao, Yung C.Shin. Analysis on High-speed Face-milling of 7075-T6 Using Carbide and Diamond cutters. International Journal of Machine Tools & Manufacture 2001,(41): 1763~1781
    137. G.List, M.Nouari, D.Ghin, et al. Wear Behaviour of Cemented Tools in Dry Machining of Aluminium Alloy. Wear. 2005 (259): 1177~1189
    138. M.Nouari,G.List.F.Girot et al. Effect of Machining Parameters and Coating on Wear Mechanisms in Dry drilling of Aluminium alloys. International Journal of Machine Tools and Manufacture. 2005,(45): 1436~1442
    139. M.Nouad, G.List,F.Girot et al. Experimental Analysis and Optimization of Tool Wear in Dry Machining of Aluminium Alloys. Wear. 2003 (255): 1359~1368
    140.熊建武.薄切削铝合金时硬质合金刀具扩散磨损机理的研究.河海大学常州分校学报.2001,Vol.15(4):38~41
    141.方刚,曾攀.金属正交切削工艺的有限元模拟.机械科学与技术.2003,Vol.22(4):641~645
    142. Lajczok M R. A Study of Some Aspects of Metal Cutting By the Finite Element Method. NC State University,Ph. D. Dissertation, 1980
    
    143. Usui E, Shirakashi T. Mechanics of Machining-from Descriptive to Predictive Theory, on the art of Cutting Metals-75 Years Later Atribute. American Society of Mechanical Engineering, Pressure Vessel Directive (PED), 1982,7~12
    
    144. Strebjiwsjum H S, Carroll J.T. A Finite Element Model of Orthogonal Metal Cutting. Proceedings of the North American Manufacturing Research Conference, Bethlehem, Pennsylvania, 1987:506~509
    
    145. Strenkow ski J S, Moon K J. Finite Element Prediction of Chip Geometry and Tool-workpiece Temperature Distribution in Orthogonal Metal Cutting. Transaction of ASME Journal of Engineering Industry. 1990,(127): 313~318
    
    146. Sasahara H, Obikawa T, Shirakashi T. FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer. Journal of Materials Processing Technology. 1996,(62): 448~453
    
    147. Ceretti E., Fallbohmer P., Wu W. T. el at. Application of 2D FEM to Chip Formation in Orthogonal Cutting. Journal of Materials Processing Technology, 1996,Vol.59(1~2):169~l80
    
    148. Ceretti E, lucch i M , Altan T. FEM Simulation of Orthogonal Cutting: Serrated Chip Formation. Journal of Materials Processing Technology, 1999,(95):17~26
    
    149. Ceretti E, Lazzaroni C, Menegardo L et al. Turning Simulation Using a Three-dimension FEM Code. Journal of Materials Processing Technology, 2000,(98): 99~103
    
    150. Ceretti E, Taupin E,Altan T. Simulation of Metal Flow and Fracture Application in Orthogonal Cutting, blanking and cold extrusion. Annals of the CIRP. 1997, Vol.46 (1):187~190
    
    151. Zhang L C. On the Separation Criteria in the Simulation of Orthogonal Metal Cutting using the Finite Element Method. Journal of Materials Processing Technology. 1999, Vol.(88~ 89): 273~278
    
    152. Huang J M, Black J T. An Evaluation of Chip Separation Criteria for the FEM Simulation of Machining. ASME, Journal of Manufacturing Science and Engineering.1996,Vol.(118): 118~545
    
    153. S. Lei, Y.C. Shin, F.P. Incropera. Thermo-mechanical Modeling of Orthogonal Machining Process by Finite Element Analysis. International Journal Manufacture Tools & Manufacture. 1999,(39):731~750
    
    154. A.K. Tieu, X.D. Fang, D. Zhang. FE Analysis of Cutting Tool Temperature Field with Adhering Layer Formation. Wear.1998, (214): 252~258
    155.李军辉,谭建平,熊勇刚等.基于ANSYS的可转位刀片有限元分析.机械设计与制造.2003,Vol19.(2):38~40
    156.白传悦.刀具机械应力的有限元研究.西北轻工业学院学报.1998,Vol.16(1):71~77
    157.郭强,三维复杂槽型铣刀片切削温度数学模型及温度场分析研究.哈尔滨理工大学硕士学位论文.2001
    158.殷保祖.加工铝及其铝合金刀具及其切削参数的选择.中国电子学会机械工程分会2003年论文集.2003:326~330
    159.唐委校.高速切削稳定性及其动态优化研究.山东大学博士学位论文,2005
    160.黄燊华编.切削力学.北京:机械工业出版社,1988
    161.张幼桢 编.金属切削原理及刀具.北京:国防工业出版社,1990
    162. S.Engin,Y.Altintas, Mechanics and Dynamics of General Milling Cutters. Part Ⅰ: Helical End Mills. International Journal of Machine Tools & Manufacture 2001, (41):2195~2212
    163. Janez Gradisek, Martin Kalveram, Klaus Weinert. Mechanistic Identification of Specific Force Coefficients for A General End Mill. International Journal of Machine Tools & Manufacture. 2004,(44):401~414
    164. Shih-Ming Wang, Chu-Hsiang Chiou, Yuan-Ming Cheng. An Improved Dynamic Cutting Force Model for End-milling Process. Journal of Materials Processing Technology. 2004(148): 317~327
    165. Kuang-Hua Fuh, Ren-ming Hwang. A Predicted Milling Force Model for High-speed end milling operation. International Journal of Machine Tool and Manufacture. 1997,Vol.37(7):969~979
    166. C.K.Toh. Static and Dynamic Cutting Force Analysis when High Speed Rough Milling Hardened Steel. Materials and Design. 2004,(25):41~50
    167.刘战强,万熠,艾兴.高速铣削中切削力的研究.中国机械工程.2003,Vol.14(9):734~738
    168.平尾正利,寺导淳雄,朱浩允等.高速切削时切削热舉動關研究.精密工學會志,1998,Vol.64(7):1067~1071
    169. C. E. Leshock, Y. C. Shin, Investigation on Cutting Temperature in Turning by a Tool-work Thermocouple Technique. Transactions of the ASME. Journal of Manufacturing Science and Engineering. 1997,(119):502~508
    170. S.W.Kim, C.M.Lee, D.W.Lee, J.S.Kim, Y.H.Jung, Evaluation of the Thermal Characteristics in High-speed Ball-end Milling. Journal of Materials Processing Technology, 2001, (113) 406~409
    171. N.A.Abukhshim, P.T.Mativenga, M.A.Sheikh. Heat Generation and Temperature Prediction in Metal Cutting: A Review and Implications for High Speed Machining. International Journal of Machine Tools & Manufacture. 2006, (46):782~800
    172. Mark R.Miller, George Mulhooland. Charles Anderson. Experimental Cutting Tool Temperature Distributions. Journal of Manufacturing Science and Engineering. 2003,Vol. 125 (11):667~4573
    173. Hong-Tsu Young. Cutting Temperature Response to Flank Wear. Wear, 1996(201): 117~120
    174. G.Sutter, L.Faure, A.Molinari et al. An Experimental Technique for the Measurement of Temperature Fields for the Orthogonal Cutting in High Speed Machining. International Journal of Machine Tool & Manufacture. 2003, (43):671~678
    175. D.O'Sullivan, M.Cotterell, Temperature Measurement in Single Point Turning. Journal of Materials Processing Technology 2001,(118): 301~308
    176.刘战强,黄传真,万熠等.切削温度测量方法综述.工具技术.2002,Vol.36(8):3~6
    177. P.Kwon, T.Schiemann, R.Kountanya. An Inverse Estimation Scheme to Measure Steay-state tool-chip Interface Temperature using An Infrared Camera. International Journal of Machine Tool and Manufacture. 2001,(41): 1015~1030
    178. Jehnming, Lin. Inverse Estimation of the Tool-work Interface Temperature in End Milling. International Journal of Machine Tools and Manufacture. 1995,Vol.35(5):751~760
    179. K.K.Hong, C.Y.Lo. An Inverse Analysis for the Heat Conduction during A Grinding Process. Journal of Materials Processing Technology. 2000,(105):87~94
    180.倪正顺,帅词俊,钟掘.热挤压模具热力耦合三维数值分析.中南大学学报(自然科学版),2004.(2):86~90
    181.陶文铨,李永堂.工程热力学.武汉:武汉理工大学出版社,2001
    182. Zhong Hu, et al, Computer Simulation of the Deep Extrusion of A Thin-walled Cup using Thermo-mechanically Coupled Elasto-plastic FEM, Journal of Materials Processing Technology. 2000,(102):128~137
    183. Woei-Shyan Lee,Wu-Chung Sue, Chi-Feng Lin et al. The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy. Journal of Materials Processing Technology. 2000,(100): 116~122
    184.杨立斌,张辉,彭大暑等.7075铝合金高温流变行为的研究.热加工工艺.2002,(1):1~5
    185.杨勇,柯映林,董辉跃.金属切削加工中航空铝合金板材的本构模型冲国有色金属学报, 2005,(15):854~859
    186.王孟君,杨立斌,甘春雷等.6063铝合金高温流变本构方程,2003,Vol.31(6):20~22
    187. Tien-chien Jen. Nonlinear Numerical Analysis in Transient Cutting Tool Temperatures. Journal of Manufacturing Science and Engineering. Vol.15:48~56
    188.孙炳楠,洪滔,杨骊先编著.工程弹塑性力学.杭州:浙江大学出版社.1998
    189.龚曙光主编,ANSYS基础应用及范例解析.北京:机械工业出版社.2003
    190.美国金属学会编,硬质合金工具的破损及其断裂韧性.北京:冶金工业出版社.1989
    191.舒士明,许育东,曹文荣.WC-Co系硬质合金抗热冲击疲劳性能的研究.金属热处理.1998,(3):26~28
    192.黄传真.新型复相陶瓷刀具材料的研制及切削可靠性研究.山东工业大学博士学位论文,1994
    193. S.Ishihara, H.Shibata, T.Goshima, A.J.Mcevily. Thermal Shock Induced Microcmcking of Cermets and Cemented Carbides. Scripta Materialia. 2005, (52): 559~563
    194.刘如铁,李溪滨,熊拥军.含硫镍基合金与YJ2硬质合金对偶的高温摩擦磨损特征.机械科学与技术.2003,Vol.22(5):812~814
    195.张文生.硬质合金端铣刀的铣削冲击.黑龙江矿业学院学报.1996,Vol.6(2):49~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700