旋转超声钻削先进陶瓷的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转超声钻削是一种先进陶瓷材料孔加工的高效加工方法。它是一种集普通超声钻削和磨削加工为一体的复合加工方法。相对于普通超声钻削,旋转超声钻削无论在降低加工成本还是提高加工效率方面都有了革命性的变化。
     本文在深入剖析旋转超声钻削技术现状以及存在问题的基础上,对旋转超声钻削先进陶瓷的实验和理论研究进行了深入的研究。论文的主要研究工作概括如下:
     1、在恒速进给加工条件下,实验比较了旋转超声钻削和普通钻削对加工过程的影响;系统研究了在恒速进给加工条件下,旋转超声钻削参数对加工过程的影响。
     2、分别推导出普通超声钻削和旋转超声钻削过程中,工件在单颗磨粒作用下的应力场分布模型;并从工件应力场的角度解析了旋转超声钻削材料去除率高于普通超声钻削材料去除率的现象。
     3、分别基于脆性断裂和塑性变形两种材料去除机理,推导出简单实用的旋转超声钻削材料去除率理论模型,并根据所推导的理论模型进行仿真,探讨了旋转超声钻削加工参数(超声振动振幅,超声振动频率,工作压力,旋转速度,磨粒数目,以及磨粒尺寸)对材料去除率的影响。
     4、通过使用数字显微镜跟踪观察旋转超声钻削过程中金刚石工具表面形貌变化,研究了旋转超声钻削先进陶瓷过程中的工具磨损机理。
     5、针对旋转超声钻削过程中排屑困难的难题,通过改进旋转超声钻削的传统金刚石工具,提出一种新型的加工工艺—断续旋转超声钻削;并对断续旋转超声钻削的加工效果进行了实验验证。
     通过实验研究和理论分析,本论文取得的主要成果和结论有:
     1、在恒速进给加工条件下,旋转超声钻削比普通钻削更具有加工优势。相对于普通钻削,旋转超声钻削能有效降低切削力,降低加工孔的表面粗糙度,以及避免先进陶瓷工件在加工中的破裂。
     2、在恒速进给加工条件下,主轴转速、进给速度、以及超声功率对旋转超声钻削加工过程具有显著的影响。旋转超声钻削过程中,切削力随着旋转速度或超声功率的提高而降低,随着进给速度的提高而提高。加工孔表面粗糙度随着旋转速度的提高而降低。
     3、从分析旋转超声钻削应力场可知,旋转超声钻削先进陶瓷过程中,工件应力场分布向磨粒的运动方向倾斜,在磨粒与工件接触区的前下方处容易产生磨削裂纹。该磨削裂纹在磨粒的划擦和撕裂作用下,会进一步向工件表面扩展,形成切屑,这有利于提
As one of the cost-effective machining methods for advanced ceramics, rotary ultrasonic drilling (RUD) is a hybrid machining process that combines the material removal mechanisms of conventional ultrasonic drilling and diamond grinding. Compared with conventional ultrasonic drilling, RUD revolutionizes the whole sector both in reducing the cost and in improving the efficiency.
    Based on the thorough analysis on the state of arts of RUD and the existing problems, the experimental and theoretical studies on RUD are conducted in this thesis. The main work of this thesis can be summarized as follows:
    1. Under the machining condition of constant feed rate, the effect of RUD and conventional diamond drilling on drilling process are compared. The effects of the process parameters of RUD on drilling process are systematically conducted.
    2. Based on a single-point diamond grinding model and the elasticity theory, the stress field model in conventional ultrasonic drilling and RUD are deduced. Based on the deduced models and the indentation fracture mechanics, material removal rate (MRR) in RUD being higher than that in conventional ultrasonic drilling is explained.
    3. Based on the two modes of material removal (brittle fracture mode and ductile mode), two MRR theoretical models in RUD are developed. The influences of parameters (ultrasonic amplitude, ultrasonic frequency, static force, rotating speed, grit number, and grit diameter) on MRR are studied in RUD.
    4. The tool wear mechanism is studied by using a digital microscope to observe the topography of the diamond tool in RUD of advanced ceramics.
    5. A new technical method— intermittent rotary ultrasonic drilling (IRUD)— is introduced by improving the conventional tool of RUD. The experiment is conducted to compare the effect of IRUD and conventional RUD on drilling process.
    Through experimental study and theoretical analysis, the following achievements and conclusions can be obtained:
    1. Under the machining condition of constant feed rate, RUD is superior to conventional diamond drilling. Compared with conventional diamond drilling, RUD can significantly decrease the cutting force, decrease the surface roughness of drilled holes, and avoid the fracture of advanced ceramics during RUD process.
    2. Spindle speed, feed rate, and ultrasonic power have significant effects on RUD process
引文
[1] 叶国珍,叶宏明.先进陶瓷材料的研究现状和发展趋势.今日科技,2002,10:38-40
    [2] 兆文.美国先进陶瓷发展监图.新材料产业,2005,3:38-44
    [3] 铃木弘茂.工程陶瓷.北京:科学出版社,1989
    [4] L. Balamuth. Ultrasonic vibration assist cutting tools. Metalworking Proceeding, 1964, 108(24): 75-77
    [5] D. Kremer. New developments on ultrasonic machining. SME Technical Paper, MR522, 1991, 13
    [6] D. Clifton, Y. Imal, J.A. McGeough. Some ultrasonic effects on machining materials encountered in the offshore industries, Proceeding of 30th International MATADOR Conference, 1993, 119-123
    [7] M.A. Moreland. Ultrasonic impact grinding: what it is: what it will do. In: Proceeding of 22nd Abrasive Engineers Society Conference, 1984, 111-117
    [8] M.A. Moreland. Versatile performance of ultrasonic machining. Ceramic Bulletin, 1988, 67(6): 1045-1047
    [9] M.C. Shaw. Ultrasonic grinding. Microtechnic, 1956, 10(6): 257-265
    [10] R. Gilmore. Ultrasonic machining and orbital abrasion techniques. SME Technical paper AIR, NM419, 1989, 1-20
    [11] E.A. Neppiras, R.D. Foskett. Ultrasonic machining-Ⅱ. Operating conditions and performance of ultrasonic drills. Phil ipsTechnical Review, 1957, 18(12): 368-379
    [12] D. Moore. Ultrasonic impact grinding. In: Proceeding of Non-traditional Machining Conference, Cincinnate, 1985, 17-139
    [13] M.S. Koval'chenko, A.V. Paustovskii, V.A. Perevyazko. Influence of properties of abrasive materials on the effectiveness of ultrasonic machining of ceramics. Soviet Powder Metallurgy and Metal Ceramics, 1986, 25(7): 560-562
    [14] R. Gilmore. Ultrasonic machining of ceramics. SME paper, MS90-346, 1990, 12
    [15] L.D. Rozenberg, V.F. Kazantsev, et al.. Ultrasonic cutting. Consultants Bureau, New York, 1964
    [16] J.B. Kohls. Ultrasonic manufacturing process: Ultrasonic machining and ultrasonic impact grinding. The Carbide and Tool Journal, 1984, 16(5): 12-15
    [17] V. Soundarajan, V. Radhakrishnan. An experimental investigation on the basis mechanisms involved in ultrasonic machining. International Journal of MTDR, 1986, 26(3): 307-321
    [18] A. Satyanarayana, B.G. Krishna Reddy. Design of velocity transformers for ultrasonic machining. Electrical India, 1984, 24(14): 11-20
    [19] H. Iwanek, G. Grathwohl, N. Brugger. Machining of ceramics by different methods. Ceramics Materials and Components for Engine. 1986, 417-423
    [20] H.L. Oh, D. Pankow, J. Finnie. The mechanism of ultrasonic machining of brittle solids. In: Proceeding of International Conference of Engine, Tokyo, Part Ⅱ, 1974, 109-113
    [21] R. Gilmore. Ultrasonic machining. SME Technical paper, EM89-123, 1989, 168-172
    [22] Z.J. Pei, N. Khanna, P.M. Ferrira. Rotary ultrasonic machining of structural ceramics- a review. Ceramic Engineering and Science Proceedings, 1995, 16: 259-278
    [23] D. Prabhakar. Machining advanced ceramic materials using rotary ultrasonic machining process. M.S. Thesis, University of Illinois at Urbana-Champaign, 1992
    [24] D.V. Cleave. Ultrasonic gets bigger jobs in machining and welding, Iron Age, 1976, 69-72
    [25] K.F. Graff. Ultrasonic machining. Ultrasonic, 1975, 103-109
    [26] D.P. Stinton. Assessment of the state of the art in machining and surface preparation of ceramics. ORNL/TM- Report. Oak Ridge National Laboratory, Oak Ridge, TN, November 1988
    [27] 艾冬梅,贾志新.小孔加工技术发展现状.机械工程师,2001,1:8-10
    [28] 轧钢,秦华伟,许永娃,张裕生.旋转超声波加工的试验研究.新工艺新技术新设备,2000,6:56-59
    [29] 范国良,陈传梁.超声加工概况和未来展望.电加工,1994,6:7-11
    [30] 张其馨,冯友彬,张广玉,罗建伟.碳纤维复合材料超声钻孔的研究.机械工程学报,1994,32(3):97-101
    [31] Z.C. Li, Z.J. Pei, P. Kwon, WoM. Zeng, C. Treadwell. Experimental study on cutting force in rotary ultrasonic machining of zicronia/alumina composites, Transactions of the North American Manufacturing Research Institute of SME, 2005, 33: 89-96
    [32] 辛志杰,刘刚.超声波振动内圆磨削.华北工学院学报,1996,17(2):185-188
    [33] 史兴宽,康仁科,卢海鹏.内圆超声振动磨削装置的设计.磨床与磨削,1997,1:52-54
    [34] 曲云霞.超声振动磨削对工件表面粗糙度的影响.河北工业大学学报,1997,26(3):100-104
    [35] Z.J. Pei, P. M. Kapoor, S. G. Haseikorn. Rotary ultrasonic machining for face milling of ceramics. International Journal of Machine Tools & Manufacture, 1995, 35: 1033-1046
    [36] 肖德贤.旋转超声波铣削加工技术的实验研究.大连理工大学硕士论文,2004
    [37] T.G. Bifano, T.A. Dow, R.O. Scattergood, Ductile-regime grinding: a new technology for machining brittle materials. In: Transactions of the ASME, Journal of Engineering for Industry, 1991, 113: 184-189
    [38] Anonymous. Ultrasonic drilling with a diamond impregnated probe. Ultrasonics, 1964, 2: 1-4
    [39] Anonymous. An improved ultrasonic machine tool for glass and ceramics. Industrial Diamond Review, 1966, 26: 274-78
    [40] P. Legge. Ultrasonic drilling of ceramics. Industrial Diamond Review, 1964, 24: 20-24
    [41] P. Legge. Machining without abrasive slurry. Ultrasonic, 1966, 157-162
    [42] K.W. Hards. Ultrasonic speed diamond machining. Ceramics Age, 1966, 82(12): 34-36
    [43] Dawe Instruments Ltd., Dawe Type 1138A Ultrasonic machine tool. Metalworking production, 1967, 77
    [44] L.G. Chechins, G.N. Tikhonov. Ultrasonic machining with a tool charged with diamond power. Electrophysical and Electrochemical Methods of Machining, MDNTP, 1968
    [45] A.I. Markov et al. Ultrasonic drilling of deep holes in quartz with a bonded abrasive-diamond tool. Electrophysical and Electrochemical Methods of Machining, NllMASH, No.5-6, 1969
    [46] W.R. Tyrrell. Rotary ultrasonic machining. SME Technical Paper, MR.70-516, 1970
    [47] Anonymous. Drilling deep holes in glass. Ultrasonic, 1973, 103
    [48] A.I. Markov, I.D. Ustinov. A study of the ultrasonic diamond drilling of nonmetallic materials. Industrial Diamond Review, 1972, 97-99
    [49] A.I. Markov et al. Ultrasonic drilling and milling of hard non-metallic materials with diamond tools, Machine & Tooling, 1977, 48(9): 45-47
    [50] M. Kubota, Y. Tamura, N. Shimamura. Ultrasonic machining with a diamond impregnated tool, Bulletin of Japanese Society of Precess Engine, 1977, 11(3): 127-132
    [51] P.G. Petruka et al. Ultrasonic diamond drilling of deep holes in brittle materials. Russian Engineering Journal, 1970, 50(10): 70-74
    [52] D. Prabhakar, P.M. Ferreira, M. Haselkorn. An experimental investigation of material removal rates in rotary ultrasonic machining, Transactions of the North American Manufacturing Research Institution of SME, 1992, Vol.ⅹⅹ: 211-218
    [53] H.Dam, J. Jensen, P. Quist. Surface characterization of ultrasonic machined ceramics with diamond impregnated sonotrode. Machining of Advanced Materials, NIST Special Publication 847, Edited by S. Jahanmir. NIST, Gaitherburg, MD, 1993: 125-33
    [54] D. Prabhakar, Z.J. Pei, P.M. Ferreira, M. Haseikom. A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics. Transactions of the North American Manufacturing Research Institution of SME, 1993, Vol.ⅩⅪ: 167-172
    [55] Z. J. Pei, P. M. Ferreira, M. Haseikorn. Plastic flow in rotary ultrasonic machining of ceramics. Journal of Material Processing Technology, 1995, 48: 771-777
    [56] Z. J. Pei, D. Prabhakar, P. M. Ferreira, M. Haseikorn. A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. International Journal of Machine Tools & Manufacture, 1995, 177: 142-151
    [57] Z. J. Pei, P. M. Ferreira. Modeling of Ductile-mode Material Removal in Rotary Ultrasonic machining. International Journal of Machine Tools & Manufacture, 1998, 38: 1399-1418
    [58] 张胜宇.数字式超声波发生器的研制.哈尔滨工业大学硕士学位论文,2005
    [59] 刘金华.超声磨削加工机及其模块化设计研究.天津大学硕士学位论文,2001
    [60] 赵名.超声旋转钻用超声发生器的设计与研究.哈尔滨工业大学硕士学位论文,2004
    [61] 刘殿通.超声磨削加工机床及其电源的研制.天津大学硕士学位论文,2001
    [62] 董惠娟.超声旋转加工振动系统及加工过程控制的研究.哈尔滨工业大学博士学位论文,1999
    [63] 李章东.Al2O3-ZrO2纳米复相陶瓷材料超声振动磨削机理研究.河南科技大学硕士论文,2005
    [64] 张永宏.超声振动磨削消除陶瓷加工表面缺陷的机理研究.西南交通大学硕士学位论文,2000
    [65] 何朝晖.微小孔旋转超声轴向振动钻削技术研究.四川大学硕士学位论文,2004
    [66] 秦华伟.旋转式超声波加工的机理研究.太原理工大学硕士学位论文,2001
    [67] A. Rasmos-Fernandez, E Montoya-vitini, J.A. Gallego-juarez. Automation system for dynamic control of resonance in high power and high Q ultrasonic transducers. Ultrasonics, 1985, 7: 151-156
    [68] 张镜澄.差动变量器桥式自动频率跟踪电路.应用声学,1988,7(4):17-19
    [69] 范世忠,张福成,丁大成.锁相式超声振动系统频率自动跟踪的初步研究.应用声学,1992,11(1):28-33
    [70] 黄景荣.超声振动加工中的自动频率跟踪.合肥工业大学学报,1997,20(6):83-87
    [71] 张其馨等.便携式旋转超声钻研究.制造技术与机床,1994,8:8-12
    [72] 张其馨等.电流反馈式超声发生器的频率跟踪研究.哈尔滨工业大学学报,1995,27(6):56-61
    [73] 戴向国,傅水根等.旋转超声加工智能超声波发生器的研究.清华大学学报,2002,42(2):182-184
    [74] 朱昌平,陈兆华.超声换能器的宽带阻抗匹配器研究.声学技术,1994,13(2):79-81
    [75] 鲍善惠.压电换能器的动态匹配.应用声学,1998,17(2):16-20
    [76] 林仲茂.有力、电负载和损耗时夹心式压电换能器的共振频率和效率.应用声学,1983,2:22-27
    [77] 林仲茂.超声变幅杆的原理和设计.北京:科学出版社,1987
    [78] 戴向国,谷诤巍,傅水根,张学政.变幅杆连接结构对超声能量传递效果的影响.清华大学学报,2004,44(2):160-162
    [79] M. Wiereigroch, J. Wojewoda, A.M. Krivtsov. Dynamics of ultrasonic percussive drilling of hard rocks. Journal of Sound and Vibration, 2004, 15(2): 187-205
    [80] T.G. Bifano, T.A. Dow, R.O. Scattergood. Ductile-regime grinding: a new technology for machining brittle materials. Transactions of the ASME, Journal of Engineering for Industry, 1991, 113: 184-189
    [81] P.N. Blake, R.O. Scattergood. Ductile-regime machining of germanium and silicon. Journal of American Ceramic Society, 1990, 73: 949-957
    [82] J.M. Boettger, M.K. Ker, P. Shore, D.J. Stephenson. Influence of ductile mode grinding on the strength of silicon based ceramics. Machining of Advanced Materials, NIST Speicial Publication 847, 1993, 353-358
    [83] B.J. Hockey. Observation on mechanically abraded aluminum oxide crystals by transmission electron microscope. The Science of Ceramics Machining and Surface Finishing, 1970, 333-339
    [84] B.G. Koepke, R.J. Stokes. A study of grinding damage in magnesium oxide single crystals. Office of Naval Research Technical Report HR-69-283, 1969, 5-26
    [85] W. Konig, J. Wemhoner. Optimizing grinding of SiC. Ceramic Bulletin 1989, 545-548
    [86] P. Molloy, M.G. Schinker, W. Doll. Brittle fracture mechanisms in single-point glass abrasion. International Technical Symposium on Optical and Electro-Optical applications and Science and Engineering, The Hague, NL, SPIE vol. 802, 1987
    [87] T. Nakasuji, S. Kodera, S. Hara, H. Matsunaga, N. Ikawa, S, Shimada. Diamond turning of brittle materials for optical components. Annals of CIRP 1990, 39(1): 89-92
    [88] J.S. Strenkowski, G.D. Hiatt. A technique for predicting the ductile regime in single point diamond turning of brittle material. Fundamental Issues in Machining, ASME, 1990, 43: 67-80
    [89] K. Subramanian, S. Ramanath. Mechanism of material removal in the precision grinding of ceramics, Technology and Machine Development and Improvement, ASME, 1992, 1-19
    [90] T. Sugita, K.Ueda, K.Endoh. Possibility of plastic deformation type material removal in microcutting of glass ceramics—erodur. In: Seminar of the 7th international Precision Engineering, 1986, 52(12): 144-147
    [91] S. Yoshida, H. Ito. The present and future of ductile-regime grinding of optical parts, Bulletin of Japanese Society of Precision Engineering 1990, 24(4): 239-243
    [92] Neelesh K. Jain, Vijay K. Jain. Modeling of material removal in mechanical type advanced machining processes: a state-of-art review. International Journal of Machine Tools & Manufacture, 2001, 41: 1573-1635
    [93] B.L. Anantha Ramu, R. Krishnamurthy, C. V. Gokularathnam. Machining performance of toughened zirconia ceramic and cold compact alumina ceramic in ultrasonic drilling. Journal of mechanical working technology, 1989, 20: 365-375
    [94] 张辽远,贾春德,薛航.金刚石工具头超声波旋转加工的实验研究.沈阳工业学院学报,1995,14:35-42
    [95] P. Hu, J.M. Zhang, Z.J. Pei, C. Treadwell. Modeling of material removal rate in rotary ultrasonic machining: designed experiments. Journal of Materials Processing Technology, 2002, 129: 339-344
    [96] M. Komaraiah, P. Narasimha Reddy. A study on the influence of workpiece properties in ultrasonic machinng. International journal of machine tools & manufactures, 1993, 33(3): 495-505
    [97] I. Ken-ichi, S. Hitoshi, N. Tetsuhiro, U. Michio. A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials. Precision Engineering, 1998, 22: 196-205
    [98] M. Adithan, V. C. Venkatesh. Effect of system parameters on tool wear in ultrasonic drilling. Journal of the Institution of Engineers, 1976, 57: 33-35
    [99] Z. X. Jia, X. Ai. Influence of constant machining parameters on material removal rate in ultrasonic drilling, Modeling, Measurement & Control B, 1995, 57: 9-24
    [100] Z.J. Pei, D. Prabhakar, P. M. Ferreira, M. Haselkorn. Rotary ultrasonic drilling and milling of ceramics. Ceramic Transactions, 1995, 49: 185
    [101] Y. Y. Liu, Y. Z. Chen. Ultrasonic circular vibration drilling for deep holes. Meitan Xuebao/Journal of China Coal Society, 1996, 21: 8-9
    [102] M. Adithan. Abrasive wear in ultrasonic drilling. Tribology. 1983, 16: 253-255
    [103] 刘殿通,于思远,陈锡让.工程陶瓷小孔的超声磨削加工.电加工与模具,2000,5:22-25
    [104] 于思远,赵艳红,刘殿通.超声磨削加工工程陶瓷小孔的实验研究.电加工与模具,2001,4:31-34
    [105] M. Adithan. Tool wear studies in ultrasonic drilling. Wear, 1974, 29: 81-93
    [106] H. Hocheng, K.L. Kuo, J.T. Lin. Machinability of zirconia ceramics in ultrasonic drilling. Materials and Manufacturing Processes, 1999, 14: 713-724
    [107] J. K. Jana, A. Satyanarayana. Production of fine diameter holes on ultrasonic drilling machine. Journal of the Institution of Engineers, 1973, 54: 36-40
    [108] O. Keisaku, T. Chisato, M. Ryoji, I. Satosi. Machining of ceramics-Machining characteristics of ceramics in ultrasonic core-drilling. Journal of Mechanical Engineering Laboratory, 1988, 42: 159-168
    [109] 杨继先,张永宏,杨素梅.陶瓷深孔精密高效加工的新方法—超声振动磨削.兵工学报,1998,19(3):287-288
    [110] 张勤河.超声振动钻削加工陶瓷的研究.新技术新工艺,1997,1:19-20
    [111] 杨继先,张永宏,杨素梅,赫利兵.超声振动磨削陶瓷深孔试验研究.兵器材料科学与工程,1998,21(3):41-44
    [112] R. Hahin, P. Schulze. Effective applications of ultrasonic machining of glass and ceramics. American Ceramic Society Bulletin, 1993, 72(8): 102-106
    [113] G. Ya, H. W. Qin, Y. W. Xu, Y. S. Zhang. An experimental investigation on rotary ultrasonic machining. Key Engineering Materials, 2001, 203: 277-280
    [114] H. Hocheng, N. H. Tai, C. S. Liu. Assessment of ultrasonic drilling of C/SiC composite material. Composites: Part A, 2000, 31: 132-142
    [115] J. Cusumano, J. Huber, K. T. Marshall. Ultrasonic drilling of boron fiber composites. Modern Plastics, 1974, 52(6): 88-90
    [116] P. Hu, et al. Experimental investigation on coolant effect in rotary ultrasonic machining. Proceedings of the NSF workshop on research needs in Thermal aspects of material removal processes. Stiliwater. OK, June 2002
    [117] Z.C. Li, Y. Jiao, T.W. Deines, Z.J. Pei, C. Treadwell. Development of an innovative coolant system for rotary ultrasonic machining. International Journal of Manufacturing Technology and Management, 2005, 7(4): 318-328
    [118] 赵福令,冯冬菊,史俊才,郭东明.陶瓷材料超声旋转加工技术.电加工与模具,2001,1:1-5
    [119] K. W. Hards. Ultrasonic speed diamond machining. Ceramic age, 1966, 82(12): 34-36
    [120] Y. Jiao, W.J. Liu, Z.J. Pei, X.J. Xin, C. Treadwell. Study on edge chipping in rotary ultrasonic machining on ceramics: integration of designed experiment and FEM analysis. Journal of Manufacturing Science and Engineering, 2005, 127(4): 143-148
    [121] 张辽远,慕丽,赵志刚.金刚石工具头超声波复合加工的实验研究.机械设计与制造,2003,1:107-109
    [122] K. Ishikawa, H. Suwabe, T. Nishide, M. Uneda. A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials. Precision Engineering, 1998, 22(4): 196-205
    [123] Z.C. Li, Liang-wu Cai, Z.J. Pei, C. Treadwell. Finite element simulation of rotary ultrasonic machining for advanced ceramics. Proceeding of ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, November 13-19, 2004
    [124] Z.C. Li, Liang-wu Cai, Z.J. Pei, C. Treadweil. Edge-chipping reduction in rotary ultrasonic machining of ceramics: Finite element analysis and experimental verification. International Journal of Machine Tools & Manufacture, 2006
    [125] M. Komaraiah, M.A. Manan, P. Narasimba Reddy, S. Victor. Investigation of surface roughness and accuracy in ultrasonic machining. Precision Engineering, 1988, 10(2): 59-65
    [126] M. Komaraiah, P.N. Reddy. Relative performance of tool materials in ultrasonic machining. Wear, 1993, 161(2): 1-10
    [127] 徐芝纶.弹性力学.北京:高等教育出版社,1990
    [128] 龚江宏.陶瓷材料断裂力学.北京:清华出版社,2001
    [129] M.C. Shaw. Principles of abrasive processing. Oxford University press, New York, 1996
    [130] S. Malkin. Grinding technology: theory and application of machining with abrasive, Society of Manufacturing Engineering, Dearborn, MI, 1996
    [131] Jahanmir. Tribology issues in machining. Machining Science and Technology, 1998, 2(1): 137-154
    [132] H. Yoshikawa, T. Sata. Study on wear of grinding wheels. Journal of Engineering for Industry, 1963, 85(1): 39-43
    [133] H.Y. Yoshikawa. Fracture wear of grinding wheels. ASME Production Engineering Research Conference, 1963, 209-217
    [134] D.K. Bruckner. Remarks on the wearing process in grinding, Industrie-Anzieger, 1960, 82: 23-28
    [135] H.Y. Yoshikawa. Criterion of grinding wheel tool life. Bulletin Japanese Society of Grinding Engineers, 1963, 3: 29-32
    [136] S.Y. Luo. Investigation of the worn surfaces of diamond sawblades in sawing granite. Journal of Materials Processing Technology, 1997, 70: 1-8
    [137] R.C. Hahn, R. Lindsay. On the effects of real area of contact and normal stress in grinding. Annals of the CIRP, 1967, 15: 197-204
    [138] H. Tsuwa. An investigation of grinding wheel cutting edges. Journal of Engineering for Industry 1964, 86(2): 371-382
    [139] S. Malkin, N.H. Cook. The wear of grinding wheels, Part 1—attritious wear. Journal of Engineering for Industry, 1971, 93(4): 1120-1128
    [140] T.W. Hwang, C.J. Evans, E.P. Whitenton, S. Malkin. High speed grinding of silicon nitride with electroplated wheels: Wear and wheel life. American Society of Mechanical Engineers, Manufacturing Engineering Division, MED 10, 1999, 431-441
    [141] J.Tang, K. Syoji, D. Dornfeld. Diamond wheel wear sensing with acoustic emission-wheel wear mechanisms and effects of process variables. Proceedings of the ASPE Spring Topical Meeting, 1996, 109-114
    [142] T.W. Liao, K. Li, S.B. McSpadden, I.J. O'Rourke. Wear of diamond wheels in creep-feed grinding of ceramics materials: Mechanisms. Wear, 1997, 211(1): 94-103
    [143] S.Malkin, N.H. Cook. The wear of grinding wheels, part 2—fracture wear. Journal of Engineering for Industry, 1971, 93(4): 1129-1133
    [144] T.W. Liao, K. Li, S.B. McSpadden. Wear mechanisms of diamond abrasive during transition and steady stages in creep-feed grinding of structural ceramics. Wear, 2000, 242(1): 28-37
    [145] 曾伟民 锯切过程中工具与花岗石界面热特性研究.华侨大学硕士学位论文,2002
    [146] 李远.花岗石超大切深锯切机理和技术研究.华侨大学博士学位论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700