掺铥双包层光纤激光器理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺铥光纤激光器发射谱覆盖1.5μm至2.2μm波段,其中含有两个大气窗口和一个强水吸收峰,由于其波段位于人眼安全区,所以被广泛的应用于激光医学、遥感探测、激光雷达、军事等领域,是光纤激光器领域里的研究热点。
     本文从理论和实验方面对掺Tm3+双包层光纤激光器进行了研究。主要内容如下:
     1介绍掺铥光纤激光器的基本原理,归纳和阐述了双包层光纤激光器的关键技术。研究了铥元素的能级结构特点,对其光谱特性进行了分析,在此基础上介绍了掺Tm3+光纤激光器的三种泵浦方案3H6→3F4、3H6→3H5、3H6→3H4,并就三种泵浦方案的泵浦过程进行了分析。3H4能级在其泵浦波长处的吸收截面远大于3H5和3F4能级,3H6→3F4泵浦方案属于二能级系统,难以实现粒子数反转,而3H5能级存在激发态吸收,理论得出3H6→3H4的泵浦方案较优
     2理论上,从速率方程出发,建立了掺Tm3+双包层光纤激光器的理论模型,获得了激光器泵浦阈值功率和输出光功率的解析表达式。使用COMSOL软件模拟出光在光纤传输过程中的基模分布。在MATLAB仿真环境中,进一步分析泵浦光和信号光功率分布、光纤长度、后腔镜反射率、阈值功率、掺杂浓度以及泵浦结构对输出功率的影响。
     3实验上,对实心双包层光纤和光子晶体光纤端面进行研磨处理,并对比机器研磨和手工研磨两种技术,改进和提高相关实验操作技术。其次搭建和调试掺铥光纤激光器系统,采用前端泵浦技术,实现2.89W激光输出,斜率效率为27.5%,不稳定度为3.7%。
Emission spectra of Tm3+-doped fiber laser which contains two atmospheric windows and a strong water absorption peak covers from 1.5μm to 2.2μm. Because the wavelength is safe to man's eyes, it is being applied in many areas such as laser medicine, long-distance detective systems, laser radar, and military fields, and it is a new research focus in the fiber laser field.
     In this paper, Tm3+-doped double clad fiber laser is researched in theory and experiment. The main contents are summarized as follows:
     1 The basic theory of Thulium-doped fiber laser is introduced, and the key technologies of double-clad fiber lasers are introduced and elaborated. For the energy level structure of thulium, we researched the characteristic of it and analyzed the absorption spectrum, present three kinds of pump scheme of the Tm3+-doped fiber laser:3H6→3F4、3H6→3H5、3H6→3H4,and analysis the pumping process. The absorption cross section of 3H4 at the pump wavelength is larger than the others, the pumping scheme of 3H6→3F4 is hard to reverse the particle for it is two energy system, the energy 3H5 has excite state absorption, than, conclude that the pumping scheme 3H6→3H4 is more excellent.
     2. In theory, based on the rate equations, an analytical model of Tm3+-doped double clad fiber laser is developed, and the analytical expressions of output power and threshold pump power of fiber laser are obtained. The distribution and transmission of the fiber fundamental mode are simulated by the COMSOL software. The power distribution of pumping light and signal light in fiber, fiber length, rear cavity mirror reflectivity, threshold power, doping concentration and pump geometry which can influence the characteristic of the fiber laser are deeply investigated in the MATLAB simulation environment.
     3. In experiment, comparing the technology of hand-grinding with machine-polishing, end face of solid double-clad fiber and photonic crystal fiber are primarily grinded with the details of experimental operation technique being improved. The Tm3+-doped fiber laser with Fabry-Perot cavity is carried out, and the maximum output power obtained is 2.89W, and the slope efficiency is up to 27.5%, and the instability is 3.7%. The experimental results and some problems are reasonably analyzed, and then some ideas and suggestions are presented.
引文
[1]郭玉彬,霍佳雨.光纤激光器及其应用.北京:科学出版社,2008
    [2]E.Snizer. Optical maser action of Nd3+ in a Bartium crown glass[J]. Phy.Rev.Lett,1961,7 (12):444-449.
    [3]S D Jackson,T A King. High-power diode-cladding-pumped Tm-doped silsca fiber laser. Optics Letters.1998.23(18):1462-1464.
    [4]吴天.1.7μm波长单频掺铥光纤激光器研制成功.光电子技术与信息.
    [5]Shen D.Y,Sahu J.K,Clarkson W.A. High-power widely tunable Tm:fiber lasers pumped by an Er,Yb co-doped fiber laser at 1.6μm.Opt.Express.2006.14(13):261-267
    [6]E.Slobodtchikov, P.F.Moulton. Efficient,High-Power,Tm-doped Silica Fiber Laser. Adv. Solid-state Photon. Conf. Postdeadline Paper,2007.
    [7]Gavin Frith, Adrian Carter. Highly efficient 70W all-fiber Tm-doped laser system operating at 1908nm. OECC/ACOFT.2008.
    [8]Peter F. Moulton,Senior Member. Tm-Doped Fiber Lasers:Fundamentals and Power Scaling. Quantum electronics.2009.15(1):85-91.
    [9]Timothy S. Mc Comb, R.Andrew Sims. High-power widely tunable thulium fiber lasers. Applied optics.2010,49(32):6236-6242.
    [10]杜戈果,刘东峰,王贤华等.掺Tm3+石英光纤频率上转换过程中的实验研究.激光与红外.1999.29(2):102-106.
    [11]董淑福,陈国夫,王贤华等.Tm3+:Ho3+共掺石英光纤激光器的实验研究.光子学报.2004.33(2):129-132.
    [12]Xia Lin-zhong, DO Ge-guo. Cladding-pumped Tm3+-doped Silica Fiber Laser with High Output Power and Good Beam Quality.光子学报.2008.37(6):1089-1092.
    [13]胡辉,杜戈果等.国产掺铥双包层光纤光谱特性研究.应用光学.2010.31(3):478-482.
    [14]沈德元,王飞等.通过离子间有效交叉弛豫实现掺Tm3+光纤激光器的高功率和高效率运转.徐州师范大学学报,2010.28(2):2-4.
    [15]Stuart D Jackson, Terence A King. Theoretical modeling of Tm-doped silica fiber lasers. IEEE J. Quantum Electron.1999.17(5):948-956.
    [16]M.J.F.Dignonnet. Rear-Earth-Doped Fiber Lasers and Amplifiers. Second Edition.2001, Revised and Expanded, New York Basel.
    [17]G.A.Ball, W.H.Glem. Design of a single-mode linear cavity erbium fiber laser utilizing Bragg reflectors[J]. Light wave Technology,1992,10(10):1338-1343.
    [18]占生宝,赵尚弘,石磊等.环形腔双包层掺Tm3+光纤激光器的动态特性研究.Semiconductor optoelectronics.2006,27(5):526-530.
    [19]Ido Kelson, Amos A. Hardly,Strongly pumped fiber lasers[J].Quantum Electron.1998,34(9): 570-577
    [20]王凤蕊.掺镱双包层光纤激光器理论及实验研究,博士学位论文,中国工程物理研究院,2005年5月
    [21]Jianqiu Xu, Mahendra Prabhu. Efficient double-clad thulium-doped fiber laser with a ring cavity. OCIS.2001,40(12):1984-1988
    [22]黎大军,杜戈果.LD泵浦掺铥(Tm3+)光纤激光器的数值分析.2007,28(4):439-444
    [23]张云军.包层泵浦掺Tm3+光纤激光器的研究.博士学位论文.哈尔滨工业大学.2006年12月
    [24]S. Kurkov, O. L. Medvedkov, V. L. Karpov,et al.Photosensitive Yb-doped double-clad fiber for fiber lasers,Conf.Optical Communications, Paper WM4-1,Optical Socierty of Amerrica,1999
    [25]S. Seo, D. I. Chang, Y.G.Choi,et al. Cavity design for highly efficient single mode laser in Yb-doped double clad fiber[J]. Electronics Letterds,2002,38(17):953-954
    [26]A. Liu, K. Ueda. The absorption characteristics of circular, offset, and rectangular double-clad fibers[J]. Optics Communications,1996,5-6(132):511-518
    [27]X. Peng, F. Song, S. Jiang. Fiber-Taper-Coupled L-Band Er3+-doped Tellurite Glass Microsphere Laser. Proceedings of SPIE-The International Society for Optical Engineering, v 4990,2003, p 22-29
    [28]J. Ripin, L. Goldberg. High efficiency side-coupling of light into optical fibres using imbedded v-grooves[J]. Electronics Letters,1995,31(25):2204-2205
    [29]L. Goldberg, B. Cole, E. Snitzer. V-groove side-pumped 1.5μm fibre amplifier[J]. Electronics Letters,1997,33(25)2127-2129
    [30]Th.Weber, W. Luthy, H. P. Weber, et al. A longitudinal and side-pumped single transverse mode doubled-clad fiber laser with a special silicone coating[J].Optics Communications, 1995,115:99-104
    [31]黄权 高功率掺Yb3+双包层光纤激光器研究硕士学位论文广西师范大学2006年4月
    [32]P. K. Jeffrey, W. M. Sean, et al. A new method for Side pumping of Double-Clad Fiber Sources [J]. Quantum Electronics,2003,39(4):529-539
    [33]魏瑞.掺铥光纤激光器.硕士学位论文.北京交通大学,2007年12月
    [34]Rown D C, H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J. Quantum Electronics.2001,37 (2):207-217
    [35]Edo S, Luthy W, Weber H P·The effective absorption coefficient in double-clad fibers.Opt Commun,1993,99:331-335
    [36]黄文龙高功率镱(Yb3+)离子掺杂双包层光纤激光器的研究硕士学位论文吉林大学2004年5月
    [37]付圣贵高功率双包层光纤激光器的理论与实验研究博士学位论文南开大学2005年4月
    [38]王辉,光纤通信[M].北京: 电子工业出版社.2004,39-48
    [39]P. Diament, Wave Transmission and Fiber Optics (Macmillan, New York, (1990), Chap.3
    [40]ZENTENO L.H igh2power double2clad fiber lasers[J].IEEE J L ight2wave Technol,1993,11(9):1435-1446.
    [41]黄枢.光纤端面处理与熔接质量对光纤激光器输出功率的影响.石家庄铁路职业技术学院学报.2007,6:14-18
    [42]周艳艳,于凤霞.光纤端面的质量与光纤光学性能的关系.光学技术.2005,31(6):806-808
    [43]刘德福,段吉安.光纤端面研磨加工的表面质量.机械工程学报.2006,42(2):187-190
    [44]何业明,研磨优质光纤陶瓷芯端面的要素[J].光电产品世界
    [45]颜森林,伍仕宝.泵浦起伏对掺铒光纤激光器稳定性的影响.应用科学学报.2001,19(2):131-134
    [46]陈青艳.单波长光纤激光器的稳定输出研究.硕士学位论文.北京交通大学.2008年5月
    [47]徐翔.光纤激光器稳功率研究.硕士学位论文.黑龙江大学.2007年5月
    [48]杨建虎,戴世勋,姜中宏.稀土离子的上转换发光及研究进展.物理学进展.2003,23(3):284-298
    [49]张晓萍,谭志红.各向异性内包层对双包层光纤特性影响的分析.光学学报,2002,22(8):927-932
    [50]A.Liu, K.Ueda. The absorption characteristics of circular, of set and rectangular double-clad fibers. Opt. Commun.132(1996):511-518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700