玉米蚜和麦二叉蚜内共生菌groEL基因的克隆与原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚜虫是传播植物病毒的最重要的昆虫介体,由其传播的病毒病害造成多种农作物、蔬菜及经济作物的严重损失。阐明蚜虫传毒的分子机制可望为蚜传病毒病的防治找到新的思路。从病毒方面已对多种参与蚜虫传毒的因子进行了鉴定和功能分析,但对参与传毒的蚜虫介体因子报道很少。蚜虫Buchnera GroEL是一种与循回传播病毒密切相关的蛋白,因而受到广泛重视。本研究设计了特异性引物,利用PCR技术从玉米蚜(Rhopalosiphummaize)和麦二叉蚜(Schizaphis graminum)中克隆出蚜虫Buchnera groEL基因并进行原核表达研究,主要结果如下:
     (1)从杨凌生物型玉米蚜和麦二叉蚜中在国内外首先扩增出Buchnera groEL基因,测定了全长基因序列,并对相关的同源基因核苷酸进行了比较。玉米蚜和麦二叉蚜杨凌生物型Buchnera groEL基因(GenBank登录号分别为AF387863和AF434719)全长均为1647bp;推导GroEL蛋白序列结果表明其编码548个氨基酸。通过比较核苷酸和推导的氨基酸序列并绘制进化树,发现Buchnera spp.的亲缘关系不但与寄主的亲缘关系有关,还与不同的地理种群相关。
     (2)将克隆的玉米蚜和麦二叉蚜Buchnera groEL基因连接到原核表达载体pBV221、pET30a和pTrcHisA上,构建了含2个目的基因的6个表达原核表达载体:pBVRM、pBVSG,pETRM、pETSG和pTrcRM、pTrcSG。转化大肠杆菌进行诱导表达,SDS-PAGE检查表达结果:载体pBVRM和pBVSG在42℃诱导2h-6h,2个载体均可表达出63KD的非融合蛋白;pETPdVl和pETSG以及pTrcRM和pTrcSG经IPTG诱导2h-6h,4个载体均可表达出分子量为69KD的融合蛋白。在这6个原核表达产物中,pETRM和pETSG表达量最高,其次是pBVRM和pBVSG,pTrcRM和pTrcSG表达量最低。
     (3)纯化融合蛋白pETSGGroEL,免疫家兔,制备了GroEL蛋白的特异抗血清。
     (4)通过Western blot检测确证了原核表达的非融合蛋白与融合蛋白的同源性。
     蚜虫内共生菌Buchnera groEL基因的获得、初步的原核表达研究以及GroEL蛋白抗血清的制备,为进一步研究GroEL蛋白在蚜虫传毒中的作用方式和位点以及在基因工程途径的利用打下了基础。
Aphid is the most important insect vector transmitting plant virus.Many virus
    diseases of crop, vegetable and economic crop transmitted by aphid cause severe economic
    loss. Control on aphid-borne virus diseases may be wishful and have new methods if we
    fully understand the molecular mechanism of aphid transmission. Previous work about aphid transmission have identified and analyzed a lot of molecular determinants from plant virus. However, the aphid vector factors involved in aphid transmission only have a few reports. Buchnera GroEL of aphid is a protein involved in virus circulative transmission and paid much attention to.Our study designed two pairs of specific primers and cloned two molecular weight of 63ku from Schizaphis graminum, and Rhopalosiphum maize utilizing PCR technique and have done the prokaryotic expression, the main results are as follows:
    (1)Amplified the Buchnera groEL of Schizaphis graminum, and Rhopalosiphum maize Yangling Biotype at first time all over the world ,and sequenced the full lenghth gene.Furthermore,we compared the related nucleotide of ten homogenous genes.The two Buchnera groEL gene of Schizaphis graminum and Rhopalosiphum maize are all 1647bp.Their GenBank accession numbers are AF3 87863 and AF434719.The deduced amino acid sequences indicated the Buchnera groEL encode 548 amino acids.By compared the nucleotides and the deduced amino acid we protract their evolution tree and found the relative of Buchnera spp is related not only to the relative of the vector,but also to the vectors'biotype.
    (2) The cloned Buchnera groEL genes of Schizaphis graminum and Rhopalosiphum maize were ligated into pBV221,pET30a and pTrcHisA expression vector for construction of pBVRM,pBVSG, pETRM,pETSGPR,pTrcRM and pTrcSG. They were transformated into E. coli BL21(DE3),DH5a and JM109 for studying their expression. The SDS-PAGE electrophoresis results suggested that pBVRM and pBVSG containing aim gene can express 63 ku aim proteins, but have lower expression quantities;pETRM and pETSG
    
    
    fusion expression vectors can promote aim gene expression in high levels when induced by IPTG.The fusion proteins expressed have a molecular weight of 69 ku, expression quantities were higher and highest when induced by IPTG for 4h. Vector pTrcHisA could express aim fusion proteins whose MW is 69ku,too,but the product of pTrcSG and pTrcRM is the lowest in the three prokaryotic expression vectors by different receptor cell,sometimes even they can't be detected by SDS-PAGE.
    (3)Purified the fusion protein pETSG GroEL and immuned the rabbit to prepare for the antibody of the GroEL.
    (4)The Western blot indicated the prokaryotic expression is successful and the fusion
    and non-fusion protein are homogenous.
    We gained the Buchnera groEL gene of Schizaphis graminum, and Rhopalosiphum
    maize biotype through this study , and have done a primary study of expression. Based on this study, we can further probe the role during aphid transmission of Buchnera GroEL and utilize them through the ways of genetic engineering.
引文
[1] Sambrook, J.,Fritsch, E.F.,Maniatis,T.,分子克隆实验指南(第二版)(金冬雁、黎孟枫等译),北京:科学出版社,1992.
    [2] Ausubel,F.M.,et al.,精编分子生物学实验指南(严子颖、王海林译),北京:科学出版社,1999.
    [3] 李德葆、周雪平、许建平、何祖华,基因工程操作技术,上海:上海科学技出版社,1996
    [4] 吴云锋,植物病毒学原理与方法,西安:西安地图出版社,1999
    [5] 许峥、陈小明、郑卫东等,大肠杆菌分子伴侣GroEL和GroES蛋白的高效表达、纯化与鉴定,南京大学学报(自然科学),1997,33(1):69-75
    [6] 吴云锋,蚜虫传毒机制的研究,西北农业大学博士学位毕业论文,陕西杨凌,1994
    [7] 郭明,马铃薯Y病毒蚜传辅助成分(HC-Pro)基因的克隆和转基因研究,西北农业大学博士学位毕业论文,陕西杨凌,1998
    [8] 吴云峰、魏宁生,桃蚜口针中病毒附着位点的免疫荧光标记定位,西北农业大学学报,1995,23(2):28-30
    [9] 吴云锋、魏宁生,马铃薯Y病毒组二辅助成分的纯化和传毒功能研究,中国病毒学,1995,10(3):269-270
    [10] 吴云峰、魏宁生,三种非持久病毒蚜虫传播专化性研究.西北农业学报,1996,5(1):39-42
    [11] 吴云峰、周广和,非持久性病毒传播机制的研究进展,中国病毒学,1996,11(4):296-300
    [12] 吴云峰、李毅、魏宁生等,大麦黄矮病毒(BYDV)的循回传播机理,西北农业大学学报,1997,25(6):25-28
    [13] 吴云锋、魏宁生,麦蚜循回传毒过程的超微结构研究,西北农业学报,9,(3):6-9
    [14] 吴云锋、魏宁生、周广和,蚜虫与病毒间相互作用及循回传毒,世界农业,1996:10(35-37)
    [15] 吴云锋,蚜虫与病毒间的分子识别及传毒专化性,世界农业,1998,3:39-40
    [16] 王锡锋、常胜军、周广和,大麦黄矮病毒GAV株系在麦二叉蚜体内的运行途径研究,植物病理学报,1999,29(4):309-313
    [17] 叶荣、陈剑平、于善谦,植物病毒介体传播的分子机制,中国病毒学,1999,14(4):285-294
    [18] 李向东、李怀方、范在丰,马铃薯Y病毒属病毒的分子生物学研究进展,微生物学通报,1999,26(4):283-285
    [19] 李向东、李怀方、范在丰、裘维蕃,玉米矮花叶病毒HC-Pro在蚜虫传毒过程中的作用机制,植物病理学报,2000,30(3):217-221
    [20] 马占鸿、李怀方、裘维蕃,几种蚜虫对MDMV传毒效率及其口针中病毒附着位点(VAS)的免疫荧光标记,植物病理学报,1998,28(1):25-28
    [21] 梁小波,马铃薯Y病毒复制酶基因(Nib)和雪花莲凝集素(GNA)双价转基因植物的抗病性和抗虫性研究,2001,西北农业大学博士学位毕业论文,陕西杨凌
    [22] 郝麟惠、成卓敏、周广和,大麦黄矮病毒GPV株系外壳蛋白基因在E.coli中的表达及抗血清制备.植物病理学报,1996,26(4):297-300
    
    
    [23] 韩志勇、赵章杏、朱睦元,大麦黄矮病毒分子生物学研究进展,中国病毒学,1998,133(4):292-299
    [24] 马占鸿、周广和,玉米矮花叶病研究进展,植物保护,1999
    [25] 王升吉、吴元华,大豆花叶病毒分子生物学研究进展,农业生物技术学报,1998,6(3):286-291
    [26] 侯云德,分子病毒学,1990
    [27] 张智清、姚立红、侯云德,含P_RP_L启动子的原核高效表达载体的组建及其应用,病毒学报,1990,6(2):111-116
    [28] 崔晓峰,桃蚜和禾谷缢管蚜体内参与传毒的共生菌(Buchnera sp.)groEL基因的克隆与原核表达,西北农业大学博士学位毕业论文,陕西杨凌,2001
    [29] Alexander W.E.F, van der Wilk F.,Verbeek M.,Dullemans A.M.,van den Heuvel J.F.J.M..Faba bean necrotic yellows virus (Genus: Nanovirus) requires a helper factor for its aphid transmission, Virology, 1999, 262 (1): 210-219
    [30] Ammar E.D.,Mechanisms of plant virus transmission by Homopteran insects. Electron Microscopy of Plant Pathogens(Mendgen K. and Lesemann D.E. eds),Springer-Verlag,Berlin, 1991,133-146
    [31] Ammar E.D.,Jarlfors U.,and Pirone T.P. Association of potyvirus helper component protein with virions and the cuticle lining the maxillary food canal and foregut of and aphid vector. Phytopathology, 1994, 84:1054-1060
    [32] Atreya P.L.,Atreya C D.,and Pirone T.P. Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proc. Natl. Acad. Sci. USA, 1991,88:7887-7891.
    [33] Atreya,C.D.,Atreya,P.L.,Thornbury, D.W.,and Pirone,T.P. Site-directed mutations in the potyvirus HC-Pro gene affect helper component activity, virus accumulation, and symptom expression in infected tobacco plants. Virology, 1992,191:106-111.
    [34] Atreya,C.D.,Raccoh B.,Pirone T.P.A point mutation in coat protein abolishes aphid transmissibility of Potyvirus. Virology, 1990, 178:161-165
    [35] Atreya,P.L.,Lopez-Moya J.J.,Chu Me.t al. Mutational analysis of the coat protein Nterminal amino acids involved in potyvirus transmission by aphid. J.Gen. Virol., 1995,76:265-270
    [36] Bandla,M.D.,Campell,L.R.,Ullman,D.E.,and Sheerwood,J.L. Interaction of tomato spotted wilt tospovirus(TSWV) Glycoproteins with a thrips midgut protein,a protein cellular receptor for TSWV. Phytopathology, 1998,88:98-104
    [37] Baulcombe,D.C.,Lloyd,J.,Manoussopoulos,I. N.,Roberts,I. M.,and Harrison, B.D. Signal for potyvirus-dependent aphid transmission of potato aucuba mosaic-virus and the effect of its transfer to potato virus-X.J. Gen. Virology., 1993,74:1245-1253.
    [38] Baumann,P.,Baumann L.,Lai C.-Y.,Rouhbakhsh D.,Moran N.,and Clark M.Genetics,physiology and evolutionary relationships of genus Buchnera: intracellular symbionts of aphids.Annu. Rev. Microbiol. , 1995,49:55-94
    [39] Baumannn,P.,Munson,M.A.,Lai,C.-Y.,et al. Origin and properties of bacterial endosymbionts of aphids,whiteflies,and mealybugs. ASM News, 1993,59:21-24
    [40] Berger, P.H.,Pirone,T.P. The effect of helper compontent on the uptake and location of potyvirus in Myzus persicae Virology, 1986,153:256-261
    
    
    [41] Blanc,S.,Cerutti,M.,Chaabihi,H.,Louis,C.,Devauchelle,G.,and Hull,R.Gene Ⅱ product of an aphid-nontransmissible isolate of cauliflower mosaic virus expressed in a baculovirus system possesses aphid transmission factor activity. Virology , 1993,192:651-654
    [42] Blanc S. et al.Mutations in the potyvirus helper component protein:effects on interacionts with virions and aphids stylets.J. Gen. Virology,1998,79:3119-3122
    [43] Blanc S.,Schmidt,I.,Kuhl,G.,Esperandieu,P.,Lebeurier,G.,Hull,R., Cerutti, M.,and Louis,C. Paracrystalline structure of cauliflower mosaic-virus aphid transmission factor produced both in plants and in a heterologous system and relationship with a solubilized active form. Virology ,1993,197:283-292.
    [44] Blanc.S..Schmidt.I.,Vantard,M.,Scholthof ,H.B.,et al.The aphid transmission factor of cauliflower mosaic virus forms a stable complex with microtubules in both insect and plant cells.Proc.Natl.Acad.Sci. USA, 1996. 93:15158-15163.
    [45] Blanc,S.,Loceq-Moya J.J.,Wang,R.Y. et al. A specific interaction between coat protein and helper component correlate with transmission of a potyvirus. Virology. 1997,231:141-147
    [46] Braig,K..Otwinowski,Z..Hegde,R.,Biosvert,D.C.,Joachimiak,A.,Horwich, A.L.,and Sigler,P. The crystal structure of the bacterial chaperonin GroEL at 2. 8A. Nature, 1994, 371:578-586
    [47] Brault,V.,van den Heuvel,J.F.J.M.,Veerbeek,M.et al.Aphid transmission of beet western yellow luteovirus requires the minor capsid readthrough protein P74. EMBO J.. 1995,14:650-659
    [48] Bruyere,A.,Brault,V.,Ziegler-Graff, et al. Effects of mutations in the beet western yellows virus readthrough protein on its expression and packaging, and on virus accumulation, symptoms, and aphid transmission. Virology, 1997, 230:323-334.
    [49] Canto,T.,Lopez-Moya,J.,Serra-Yold,M.T.,et al. Different helper component mutations associated with lack of aphid transmissibility in two isolates of potato virus Y. Phytopathology, 1995, 85(12) : 1519-1524
    [50] Chaoyang Li,Diana Cox-Foster,Stewart M. Gray,Frederick Gildow. Vector specificity of barley yellow dwarf virus (BYDV) transmission: identification of potential cellular receptors binding BYDV-MAV in the aphid,sitobion avenae .2001. Virology 286:125-133
    [51] Chay,C.A. Aphid transmission and systemic plant infection determinants of barley yellow dwarf virus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology,1996, 219:57-65
    [52] Chen,B.,and Francki,R.I.B. Cucumovirus transmission by the aphid Myzus persicae is determined solely by the viral coat protein. J.Gen. Virol.,1990,71:939-944
    [53] Demler,S.,Roseman,A.M.,Hunter,A.S. et al. Expression and suppression of circulative aphid transmission in pea enation mosaic virus. J. Gen. Virol., 1997,72:511-523.
    [54] Douglas,A. E.(1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol 43: 17-37
    [55] Fenton,W. A.,Kashi,Y.,Furtak,K.,Horwich,A.L. Residues in chaperonin GroEL required for polypeptide binding and release.Nature , 1994,371: 614-619
    
    
    [56] Filichkin,S.A., Brumfield, S., Filichkin, T.P., and Young, M.J. In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. J. Virol. ,1997,71: 569-577
    [57] Flasinski S., and Cassidy B.G. Potyvirus aphid transmission requires helper component and homologous coat protein for maximal efficiency , Arch, of Virology, 1998,43 (11) :2159-2172
    [58] Gal-on, A., Antignus, Y., Rosner, A., and Raccah, B. A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J. Gen. Virology. , 1992, 73:2183-21 87.
    [59] Garret, A., Kerlan, C., and Thomas, D. The intestine is a site of passage for potato leafroll virus from the gut lumen into the haemocoel in the aphid vector, Myzus persicae Sulz. Archives of virology , 1993, 131: 377-392.
    [60] Garret,A., Kerlan, C., and Thomas, D. Ultrastructural study of acquisiton and retention of potato leafroll luteovirus in the alimentary canal of its aphid vector , Myzus persicae. Sulz. Arch. Virol, 1996,141:1279-1292
    [61] Gildow, F.E., Reavy,B., Mayo,M.A., Wbodford,T., and Duncan, G.H. Potato leafroll virus-like particles lacking readthrough protein are transmitted by Myzus persicae. Phytopathology, 1997,87:S33
    [62] Gildow, F.E.,and Gray,S.M. The aphid salivary gland basal lamina as a selective barrier associated with vector-specific transmission of barley yellow dwarf luteovirus. Phytopathology,1993, 83:270-277
    [63] Gildow,F.E. Coat-vesicle transport of luteoviruses through salivary glands of Myzus persicae . Phytopathology, 1982,72:1289-1296
    [64] Gildow,F.E. Evidence for receptor-mediated endocytosis regulating luteovirus acquisition by aphids. Phytopathology, 1993, 83:270-277
    [65] Gildow.F.E. Transcellular transport of barley yellow dwarf virus into the hemocoel of the aphid vector, Rhopalosiphum padi. Phytopathology, 1985,75:292-297
    [66] Gildow.F.E. Virus-membrane interactions involved in circulative transmission of luteoviruses by aphids.Curr Top. Vector Res., 1987,4: 93-120
    [67] Gildow,F.E.,Damstteegt V.D., Smith O.R.and Gray S.M. Cellular; mechanisms regulating circulative transmission and aphid vector specificity of soybean dwarf luteovirus. Phytopathology, 1994,84: 11 55-1156
    [68] Gildow,F.E.,Reavy,B.,Mayo,M.A.,et al. Aphid acquisition and cellular transport of potato leafroll virus-like particles lacking P5 readthrough protein. Virology,2000,90: 1153-1161
    [69] Govier D.A.,Kassanis B. A virus induced component of plant sap needed when aphids acquire potato virus Y from purified preparations. Virology, 1974, 78:420-426
    [70] Govier D.A.,Kassanis B. Evidence that a component other than the virus particles is need for aphid transmission of Potato Virus Y. Virology, 1974,57:285-286
    [71] Granier,F.,Durandtardif,M.,Cassedelbart,F.,Lecoq,H.,and Robaglia, C. Mutations in zucchini yellow mosaic-virus helper component protein associated with loss of aphid transmissibility. J. Gen. Virology, 1993,74:2737-2742.
    [72] Gray,S.M.,and Banerjee,N. Mechanisms of arthropod transmission of plant and animal viruses. Microbiol. Mol. Biol. Rev., 1999,63: 128-148.
    
    
    [73] Gray,S.M. Plant virus proteins involved in natural vector transmission. Trends Microbiol., 1997,4:259-264
    [74] Guo,D.,Merits,A.,Saarma,M.Self-association and mapping of interaction domains of helper component-proteinase of potato A potyvirus.J Gen Virol ,1999,80:1127-1131
    [75] Gunasighle N.,et al. Regions of the barley yellow dwarf virus readthrough protein that are required for aphid transmission. Phytopathology,1997,55:1232-1239
    [76] Hara,E.,Fukatsu,T.,Kakeda,K.,et al. The predominant protein in an aphid endosymbiont is homologous to an E. coli heat shock protein. Symbiosis, 1990,8:271-281
    [77] Harrison,B. D. Studies on the behavior of potato leaf roll viruses in the body of their aphid vector Myzu spersicae(Sulz).Virology,1985, 6:265-277
    [78] Haywood A.M. Virus receptor:binding,adesion strengthening,and changes in viral structure. J. Virol.,1994,68:1-5
    [79] Hoffmann,K.,M.Verbeek,A.Romano,A.M.Dullenmans,J.F.J.M.van den Heuvel and F.van der Wilk.Mechanical transmission of poleoviruses.Journal of Virological Methods.2001. 91(2) 197-201
    [80] Hogenhout,S.A.,van der Wilk,F.,Verbeek,M.,et al. Identification the determinants in the equatorial domain of Buchnera GroEL implicated in binding Potato leafroll virus J. Virol.,2000,72(10) :4541-4548.
    [81] Hogenhout,S.A.,van der Wilk,F.,Verbeek, M.,et al. Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic GroEL homolog J. Virol., 1998,72:358-365.
    [82] Huet.H..Gal-on A..Meir,E. et al. Mutations in the helper component protease gene of zucchini yellow-mosaic virus affects it ability to mediate aphid transmissibility. J.Gen.Virol, 1994,75:1407-1414
    [83] James C. K. Ng, Sijun Liu, Perry K.L. Cucumber Mosaic Virus Mutants with Altered Physical Properties and Defective in Aphid Vector Transmission Virology, 2000, 276(2) :395-403
    [84] Jayaram C.,van Deusen R.A.,Eggenberger A.L. et al. Characterization of a monoclonal antibody recognizing a DAG-containing epitope conserved in aphid transmissible potyvirus: evidence that the DAG motif is in a defined conformation. Virus Research, 1998,58:1-11
    [85] Johannes F.J.M.,van den Heuvel,Saskia A.Hogenhout and Frank van der Wilk.Recognition and receptors in virus transmission by arthropods.Trends in Microbiology. 1999. 7(2) :71-76
    [86] Jolly,C.A.,Mayo M.A. Changes in the amino acid sequence of coat protein readthrough domain of potato leafroll luteovirus affect the formation of an epitope and aphid transmission Virology, 1994,201:182-185
    [87] Kantrong,S.,Saunal,H., Briand ,J.P.,and Sako,N. A single amino acid substitution at N-terminal region of coat protein of turnip mosaic virus alters antigenicity and aphid transmissibility. Archives of Virology,1995,140(3) :453-467
    [88] Kasschau,K.D.,Cronin,S.,Carrington,J.C. Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase Virology, 1997, 228 (2) : 251-262
    
    
    [89] Kikkert,M.,Meurs,C.,van de Wetering,E. et al. Binding of tomato spotted wilt virus to a 94-kDa thrips protein. Phytopathology,1998,88:63-69
    [90] Klein,Gracjana and Costa Georgopoulos. Identification of important amino acid residues that modulate binding of E.coli GroEL to its various cochaperones.2001. Genetics 158(2) June:507-517
    [91] Lamh,J.W., Duncan G.H.,Reavy, B. et al. Assembly of virus-like particles in insect cells infected with a baculovirus containing a modified coat protein gene of potato leafroll loteovirus.J.Gen.Virol.,1996, 77:1349-1358
    [92] Lecoq,H.,Bourdin,D.,Raccah,B.,Hiebert,E. Characterization of a zucchini yellow mosaic virus isolate with a deficient helper component. Phytopathology,1991,81:1087-1091.
    [93] Lecoq,H.,Ravelonandro,M.,Wipfscheibel,C.,Monsion,M.,Raccah,B.,and Dunez,J. Aphid transmission of a non-aphid-transmissible strain of zucchini yellow mosaic poty virus from transgenic plants expressing the capsid protein of plum pox potyvirus. Molecular plant-microbe interactions ,1993,6: 403-406.
    [94] Lecoq,H.,and Pitrat,M. Specificity of the helper-mediatel aphid transmission of three poty viruses infecting muskmelon,Phytopathology, 1985,75:890-893
    [95] Legavre,T.,Maia.I.G.,Casse-Delbart,F.,Bernardi,F.and Robaglia,C. Switches in the mode of transmission select for or against a poorly aphid-transmissible strain of potato virus Y with reduced helper component and virus accumulation. Journal of General Virology, 1996,77: 1343-1347
    [96] Leh V.Jacquot E.,Geldreich A. et al. Aphid transmission of caulimovirus mosaic virus requires the viral PⅢ protein. EMBO J. 1999,18:7077-7085
    [97] Leh V.Jacquot E..Geldreich A. et al. Interaction between the open reading frame Ⅲ product and the coat protein is required for transmission of cauliflower mosaic virus by aphids.J.Virol.,2001,75: 100-106
    [98] Lentz,T.L. The recognition event between virus and host cell receptor:A target for antiviral agents. J.Gen.Virol. , 1990. 7 1 :75 1-766
    [99] Lim,W.L.,De Zoeten,G.A., Hagedorn,D.J. Scanning electron-microscopic evidence for attachment of a nonpersistently transmitted virus to its vector's stylets. Virology, 1977,79: 121-128
    [100] Limburg,D.D.,Mauk,P.A. and Godfery, L.D. Characteristics of beet yellows closterovirus transmission to sugar beets by Aphis fabae. Phytopathology, 1997,87:766-771
    [101] Lin,Z., Schwaitz,F.P.,and Eisenstein,E. The hydrophobic nature of GroEL substrate binding.J.Biol.Chem., 1995,270: 101 1-1014
    [102] Manoussopoulos, I. N. Acquisition and retention of Potato virus Y helper component in the transmission of Potato aucuba mosaic virus by aphids.Journal of Phytopathology.2001. 149(2) :103-106
    [103] Maria A. Ayllon, Luis Rubio, Andres Moya, Jose Guerri, Pedro Moreno The Haplotype Distribution of Two Genes of Citrus Tristeza Virus Is Altered after Host Change or Aphid Transmission Virology, 1999,255(1) :32-39
    [104] Martin,B.,Ccollar,J.L.,Tjallingii,W.F. et al. Intracellular ingestion and salivatiion by aphid may came the acquisition and inoculation of non-persistently transmittted
    
    plant virus.J.Gen. Virol., 1997,78: 2701-2705
    [105] Martin.J.,T.Larger,R.Boteva,et al.Chaperonin-mediates protein folding at the surface of GroEL through a molten-globule-like intermediate. Nature,1991,352:36-42
    [106] McGrath,P.F.,Lister,R.M.,Hunter,B.G. A domain of the readthrough protein of barley yellow dwarf virus(NY-RPV isolate)is essential for aphid transmission.European of Plant Pathology, 1996,102(7) :671-679
    [107] Mendeldohn,C.L.,Wimmer,E.,and Racaniello,V.R. Cellular receptor for poliovirus:molecular cloning,nucleotide sequence,and expression of a new member of the immunoglobulin superfamily.Cell, 1989,56:855-865
    [108] Morin.S.,Ghanim,M.,Sobot,I.,Czosnek,H. The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible Begomoviruses in the yeast two-hybrid system. Virology,2000,276(2) :404-415
    [109] Morin,S.,Ghanium,M.,Zeidan,M..et al. A GroEL homologue from endosumbiotic bacterria of the white-lfy Bemisia (abaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology, 1999,256:75-84
    [110] Munson. M.A.,and Baumann. P. Molecular cloning and nucleotide sequence of a putative trpDC(F)BA operon in Buchnera aphidicola (endosymbiont of the aphid Schizaphis graminum) J. Bacteriol,1993,175:6426-6432.
    [111] Murphy F.A.,Fauquet C.M.,Bishop d.H.L. et al. Virus taxonomy-classification and nomenclature of viruses. Sixth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag Wien .New York, 1995,341-347
    [112] Mushegian A R, Wolff J A. Richins R D, and Shepherd R J. Molecular analysis of the essential and nonessential genetic elements in the genome of peanut chlorotic streak caulimovims. Virology, 1995,206 (2) :823-834
    [113] Nakayashiki,H.,Tsuge,S.,Kobayashi,K.,Okuno,T.,Furusawa,I. Reasons for the low accumulation level of aphid transmission factor protein in infected-leaves with an aphid-non-transmissible cauliflower mosaic-virus isolate.CM1841. J.Gen.Virology,1993. ,74:2469-2472
    [114] Ng J.,Perry K.L. Stability of the aphid transmission phenotype in cucumber mosaic virus.Plant Pathology, 1999,48(3) :3388-3394
    [115] Nomoto,A. Cellular receptors for virus infection.Seminar in Virology, 1992,3:77
    [116] Ohtaka,C.,Nakamura,H.,and Ishikawa H. Structures of chaperonins from a intracellular symbiont and their functional expression in Escherichia coli GroE mutants.J. Bacteriol., 1992,174:1869-1874
    [117] Peiffer,H.L,Gildow,F.E.,Gray S.M. Two distinct mechanisms regulate luteovirus transmission efficiency and specificity at the aphid salivary gland. J.Gen. Virol., 1997,78:495-503
    [118] Peng,Y.H.,Kadoury,D.,Gal-On,A.,Huet,H.,Wang,Y.,Raccah,B. Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions Journal of General Virology,Vol79:897-904,
    [119] Peng,Y.H.,Kadoury,D.,Gal On,A. et al. Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus :effects on aphid transmission and binding to purified virions. J.Gen.Virol, 1998,79:897-904
    [120] Perry K.L.,Zhang L.,Shintaku,M.H.,and Palukaitis,P. Mapping
    
    determinants in cucumber mosaic virus for transmission by Aphis gossypii. Virology, 1994,205(2) :591-595
    [121] Perry K.L.,Zhang L.,and Palukaitis P. Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the aphids Myzus persicae and Aphis gossypii. Virology. 1998. 242:204-210
    [122] Pirone,T.P.,Blanc,S. Helper-dependent vector transmission of plant viruses.Annu.Rev.Phytopatho.1996. 34:227-247
    [123] Pirone,T.P.Viral gene and gene products that determine insect transmissibility.Seminar in virology. 1991. 2:81-87
    [124] Pirone T.P.,Harris K.F. Nonpersistent transmission of plant viruses by aphids.Annu.Rev. Phytopath. 1977. 15:55-73
    [125] Preuss,Monika and Andrew D.Miller.Interantion with GroEL destabilizes non-amphiphic secondary structure in a peptide.FFBS letters. 1999. 461(3) :131-135
    [126] Racaniello,V.R. Interaction of poleovirus with its cell receptor. Seminars in virology. 1992. 3:473-481
    [127] Roeland C.H.J. Van Ham,David Martinez-Torres,Andres Moya,and Amparo Latorre. Plasmid-encoded anthranilate synthase (TrpEG) in Buchnera aphidicola from aphids of the family Pemphigidae Appl. Envir. Microbiol.,1999. 65:117-125
    [129] Rouze-Jouan,J.,Terradot,L.,Pasquer,F.,Tanguy,S.,Giblot Ducray-Bourdin,D.The passage of Potato leafroll virus through Myzus persicae gut membrane regulates transmission efficiency.J Gen Virol.2001. 82:17-23
    [130] Rusanganwa,E.,and Gupta,R.S. Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti.Gene. 1993. 126:67-75
    [131] Sadeghi E.,Dedryver C.A. and Gauthier J.P. Role of acquisition and inoculation time in the expression of clonal variation for BYDV-PAV transmision in the aphid species Rhopalosiphun padi.Plant pathology. 1997. 46:502-508
    [132] Salomon, R. Proteolytic cleavage of the N-terminal region of potyvirus coat protein and its relation to host recovery and vector transmission. Archives of virology. 1992. 0:75-76.
    [133] Salomon,R.,Bernardi,F. Inhibition of viral aphid transmission by the N-terminus of the maize dwarf mosaic virus coat protein.Virology. 1995. 213(2) :676-679
    [134] Sasaya. T.,Torrance,L.,Cowan,G.,Ziegler,A. Aphid transmission studies using helper component proteins of Potato virus Y expressed from a vector derived from Potato virus X. J Gen Virol ,2000,81:1115-1119
    [135] Sato, S., and H. Ishikawa. Expression and control of an operon from an intracellular symbiont which is homologous to the groE operon. J. Bacteriol.. 1997. 179:2300-2304.
    [136] Schmidt,I.,Blanc,S.,Esperandieu,P. et al. Interaction between the aphid transmission factor and virus particles is a part of the molecular mechanism of cauliflower mosaic virus aphid transmission. Proc.Natl.Acad.Sci.USA. 1994. 91:8885-8889
    [137] Segal, G., and Ron,E.Z. The groESL operon of Agrobacterium tumefaciens: evidence for heat shock-dependent mRNA cleavage. J. Bacteriol. 1995. 177:750-757
    [138] Shah,P. A.,Aebi ,M.,and Tuor,U. Method to immobilize the aphid-
    
    pathogenic fungus Erynia neoaphidis in an alginate matrix for biocontrol.Appl. Envir. Microbiol.. 1998. 64:4260-4263
    [139] Stewart M. Gray and Nanditta Banerjee.mechnism of Arthropod transmission of plant and animal virus.Microbiology and Molecular Biology Reviews. 1999. 63(1) : 128-148
    [140] Sylvester,E.S. Circulative and propagative virus transmission by aphids. Annu. Rev. Entomol. 1980. 25:257-286
    [141] Thornbury D.W.,Hellmann G.M.,Rhoads R.E. et al.Purification and characterization of potato virus helper component. Virology. 1995. 144:260-267
    [142] Thornbury T.P.Comparative sequence of helper component (HC) region of PVY and HC-defetive strain,potato virus C.Virology. 1990. 178:573-578
    [143] Tilly.K..Murialdo.H.,and Georgopoulos,C. Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis.Proc.Natl.Acad.Sci.USA. 1981. 78:1629-1633.
    [144] Unterman.B.M.. Baumann.P. .and McLean,L.D. Pea aphid symbiont relationships established by analysis of 16S rRNA.J. Bacteriol. 1989. 171:2970-2674.
    [145] Urcuqui-Inchima,S., Walter,.J. ,Drugeon.G.,et al. Potyvirus helper component-proteinase self-interaction in the yeast two-hybrid system and delineation of the interaction domain involved.Virology. 1999. 258,(1) :95-99
    [146] van den Heuvel.J.F.J.M. Molecular basis of the interactions betwween luteoviruses and aphids.Agronomic, 1995,15:503-504
    [147] van den Heuvel, J.F.J.M., Verbeek.M., and Peters,D. The relationship between aphid-transmissibility of potato leafroll virus and surface epitopes of the viral capsid.Phytopathology, 1993,83:1125-1129
    [148] van den Heuvel,J.F.J.M.,Bruyere,A.,Hogenhout,S.A.,Ziegler-Graff,V, Brault,V.,Verbeek, M.,van der Wilk,F.,and Richards.,K. The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol ,1997,71:7258-7265.
    [149] van den Heuvel,J.F..I.M.,T.M.Boerma,and D.Peters. Transmission of potato leafroll virus from plants and artificial diets by Myzus persicae. Phytopathology ,1991,81:150-154
    [150] van den Heuvel,J.FJ.M.,Verbeek,M.,and van der Wilk,F. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae.L.Gen.Virol, 1994,75:2559-2565
    [151] van Ham,R.C.,Moya,A.,and Latorre. A Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola (endosymbiont of aphids) J. Bacteriol., 1997,179: 4768-4777
    [152] V.Brault,J.Mutterer,D.Scheidecker,M.T.Simonis,E.Herrbach,K.Richards, and V.Ziegler-Graff.Effects of point mutations in the readthough domain of the Beet Western Yellow Virus minor capsid protein on virus accumulation in planta and on transmission by aphids.Journal of Virology.2000. 74(3) :1140-1148
    [153] Wang,R.Y. and Prione T.P. Potyvirus transmission is not increased by pre-acqusition fasting of aphids reared on atificial diet. Journal of General Virology, 1996,77:3145-3148
    
    
    [154] Wang,J.Y.,Chay,C.,Gildow,F.E.,and Gray S.M. Readthrough protein associated with virions of barley yellow dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology ,1995,206(2) :954-962
    [155] Wang R.Y.,Ammar,E.D.,Thornbury D.W. et al. Loss of potyvirus transmissibility and helper component activity correlates with non-retention of virion in aphid stylets. J.Gen.Virol.,1996, 77:861-867
    [157] Wang R.Y.,Powell G.,Hardie J. and Prione T.P. Role of the helper component in vector-specific transmission of potyvirus. J.Gen. Virology,1998,79:1519-1524
    [158] Weissman,J.,Hohl,M.,Kovalenko,O.,et al. Mechanism of GroEL action: productive release of polypeptide from asequestered position under GroES.Cell,1995,83:577-587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700