外源基因在集胞藻6803中高效表达及调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝藻是一类能进行光合放氧作用的原核生物。集胞藻6803 (Synechocystis sp. strainPCC 6803)是一种单细胞蓝藻。该株系具有天然DNA转化系统,细胞结构简单,生长速度快,适应性强,是第一个完成基因组序列测定的光合生物。另外,它还能利用简单无机物合成有机物,并且表达的外源基因产物不易形成包含体。因此,利用转基因蓝藻制备基因工程药物的下游加工过程相对简化,是理想的基因工程研究的模式藻。但是,蓝藻中外源基因的表达效率低下,一直制约着蓝藻基因工程的长足发展。
     本研究以增强型绿色荧光蛋白基因egfp (enhanced green fluorescent protein)作为外源基因,构建适用于插入各种调控元件的同源重组整合平台——P0载体;然后利用该整合平台,通过插入各种已知的和未知的调控元件、自然转化、继代筛选,从而获得了多种转基因株系;通过比较各种转基因株系中外源基因的表达水平,对各种调控元件进行评价,从而筛选出能高效表达蓝藻外源基因的调控元件,具体步骤如下:
     (1)利用P0载体,在其报告基因上游分别插入聚球藻7942中groESL基因的温度诱导型启动子以及SD序列(GGAGAG),转化集胞藻6803,得到转基因Pg和Pg-s藻株。利用蛋白免疫印迹,研究不同生长时期、不同温度以及不同诱导时间下转基因株系中外源egfp基因的表达情况。研究结果表明,处于衰退期的转基因株系中外源基因的表达水平最高;并在此生长时期下,该启动子最适宜的诱导条件是在42℃诱导30分钟。通过比较各转基因藻中外源基因的表达情况发现:添加SD序列后则使外源基因的表达水平提高了1.6倍,而含groESL基因启动子和SD序列的Pg-s藻株中外源基因的表达水平比未添加启动子的P0藻株提高了2.0倍。综上所述,在集胞藻6803中,异源groESL基因启动子和SD序列的串联可明显提高蓝藻细胞中外源基因的表达水平。
     (2)利用P0载体,在报告基因上游插入聚球藻7002中cpcβ基因的光诱导型启动子,并转化集胞藻6803,获得转基因藻Pc。通过蛋白免疫印迹,研究不同光强、不同诱导时间以及不同CO2浓度对转基因株系中外源egfp基因的表达情况。结果表明:10μEm-2·s-1的光强诱导4小时后,转基因株系中外源基因的表达水平达到最高,而且低浓度的CO2也可以明显增强外源egfp基因的表达。
     (3)通过基因芯片数据和生物信息学的分析,初步确定ndhC-K-J操纵子可能的启动子区域,并插入到PO载体报告基因的上游区域,转化集胞藻6803,获得转基因株系P330。通过蛋白免疫印迹,研究不同生长时期、不同高光诱导时间以及二氧化碳浓度下转基因株系中外源基因的表达情况。结果表明,该未知启动子在高光诱导4小时,低二氧化碳培养条件下,使外源egfp基因的表达水平达到最高。通过比较Pg-s与P330藻株中外源基因的表达情况,揭示ndhC-K-J操纵子可能的启动子区域对外源基因的启动效果更为显著;P330藻株中外源基因的表达水平比Pg-s藻株提高4.2倍,比P0藻株提高8.2倍;蛋白定量结果表明,在转基因P330藻株中,外源egfp基因的表达量可达总蛋白的1.725%。
     本研究在构建同源重组双交换平台的基础上,分析来源于聚球藻7942的groESL基因启动子、聚球藻7002的cpcβ基因启动子、SD序列以及集胞藻6803自身ndhC-K-J操纵子可能的启动子区域对集胞藻6803中外源基因表达水平的影响。蛋白免疫印迹结果表明,这些调控元件均在一定程度提高了集胞藻6803中外源基因的表达效率,其中,ndhC-K-J操纵子可能的启动子区域对外源基因表达水平的提高幅度最大。以上结果为最终解决蓝藻细胞这一新型宿主系统中外源基因表达效率低下的问题注入了新的希望,为将来利用转基因蓝藻制备基因工程药物奠定了实验基础。
Cyanobacteria are autotrophic prokaryotes performing oxygenic photosynthesis similar to that of higher plants. Synechocystis sp. strain PCC 6803 (Synechocystis 6803) is a unicellular cyanobacterium, and its complete genome is first characterized in phothosynthetic organisms. Moreover, this unicellular cyanobacterium possesses many characteristics, incuding the natural DNA transformation system, simple cell structure, fast growth, strong adaptability, and obtaining the useful organic products with little expenditure of energy and resources. Also, the products that exogenous genes expressed in cyanobacteria are not easy to generate the inclusion bodies, and most of cyanobacteria and their extract are non-toxic to the humans and animals. On the basis of these charactericts, cyanobacteria are found to be the perfect model algae for studing the genetic engineering. Although many expression plasmids of cyanobacterial cells have been extensively reported, the expression levels of foreign genes have not been optimized. Therefore, how to enhance exogenous gene expression levels in cyanobacterial cells remains unclear.
     The aims of this study were to enhance the expression levels of exogenous gene, enhanced green fluorescent protein (eGFP) gene, in Synechcosystis 6803 by changing different regulatory elements. These intresting findings are listed as follows:
     First of all, two homologous recombination vectors, P-groESL and P-groESL-SD, were constructed by inserting the groESL promoter gene, indued by temperature, originated from Synechococcus 7942, and the groESL promoter gene and SD sequence (i.e., GGAGAG) in the upstream of egfp, respectively. Subsequently, these 2 vectors were transferred to Synchocystis 6803 to correspondingly generate 2 transgenic algae, Pg and Pg-s. Further, the expression levels of exogenous gene, egfp, in Pg and Pg-s were investigated under different growth phases, temperatures, and time points by using immuoblotting. The results indicated that the optimal conditions for the expression of egfg in Synechocystis 6803 were at 42℃for 30 min. Under the optimal conditions, comparisons of the expression levels of egfp in Pg, Pg-s strains indicated that in addition to SD sequence in Pg-s enhanced 1.6 times than that Pg and the application of groESL promoter gene and the SD sequence in Pg-s enhanced 2.0 times than P0 strain. Taken together, these results indicated that the groESL-SD tandem was more efficient for the expression of egfp in Synechocystis 6803.
     Secondly, a homologous recombination vector, P0-cpcβ, was constructed by inserting the cpcβpromoter gene in the upstream of eGFP gene. Subsequently, the vector was transferred to Synechcysits 6803, by using nature transformation system, to generate the transgenic alga, Pc. Further, the expression levels of exogenous gene, egfp, in Pc were investigated under different light intensities, time points and CO2 concentrations by using immuoblotting. The results indicated that the optimal conditions for expressing the exogenous gene, egfp, were on exposure of Pc cells to the light of 10μEm-2·s-1 for 4 h with low CO2 concentration.
     Thirdly, on the basis of the gene chip data and bioinformatics analyses, the promoter region (330-bp) in the ndhC-K-J operon was determined preliminarily. Next, a homologous recombination vector, P0-330, was constructed by inserting the 330-bp predicted promoter in the upstream of eGFP gene, and then this vector was transferred into Synchocystis 6803 cells to generate transgenic alga, P330. Further, the expression levels of exogenous gene, egfp, in P330 were investigated under different growth phases, time points under high light, and CO2 concentrations by using immuoblotting. The results indicated that the maximum levels for the egfp expression were obtained under the exposure of P330 cells to high light and low CO2 for 4 h. Comparison of the expression levels of egfp in P330 and Pg-s (control), it was found that the expression amounts in P330 was approximately 4.2 times than that in Pg-s, and 8.2 times than that in P0; and attained 1.8% in total protein, indicting that a novel potential promoter, P330, is more efficient for expressing exogenous genes in cyanobacteria than other, identified promoters such as groESL, cpcβ.
     In this study, on the basis of the construction of the homologous recombination platform, the effects of many regulatory elements, including groESL promoter originated from Synechococcus 7942, cpcβpromoter originated from Synechococcus 7002, SD sequence, and novel potential promoter, P330, contained in the ndhC-K-J operon, on the expression levels of exogenous gene, egfp, were analyzed. Based on the results of immunoblotting, we found that all these regulatory elements can enhance the expression levels of exogenous gene in Synechocystis 6803 with different degrees. Of these regulatory elements, the predicted novel promoter in the ndhC-K-J operon is the most efficient for expressing the exogenous gene in cyanobacteria. These results will futhrer help in solving the low expression levels of exogenous gene in cyanobacterial host, and establishing the exprimental basis for obtaining efficiently the drugs by applying cyanobacterial genetic engineering.
引文
Akhilesh, S.2009. Overexpression of the groESL operon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120. Appl Environ Microbiol,75(18):6008-6012.
    Angsuthanasombat C, Panyim S.1989. Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol,55(9): 2428-2430.
    Anandan S, Golden S S.1997. Cis-acting sequences required for light-responsive expression of the psbDⅡ gene in Synechococcus sp.strain PCC7942. J Baeteriol,179(21):6865-6870.
    Antoni R S, Suzuki L, Murata N, et al.2006. Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermal tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics,6:845-864.
    Archer D B, Jeenes D J, Mackenzie D A.1994. Strategies for improving heterologous protein production from filamentous fungi. Antonie van Leeuwenhoek,65:245-250.
    Aoyama K, Miyake M, Yamada J, et al.1996. Application of vector pKE4-9 carrying a strong promoter to the expression of foreign proteins in Synechococcus PCC7942. J Mar Biotechnol, 4(1):64-67.
    Barne K A, Bown J A, Busby S J W, et al.1997. Region 2.5 of the Escherichia coli RNA polymerase-70 subunit is responsible for the recognition of the "extended-10" motif at promoters. EMBO J.,13:4034-4040.
    Barton J W, Kuritz T, Connor L E, et al.2004. Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol,65:330-335.
    Barten R, Lill H.1995. DNA-uptake in the naturally competent cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett,129(1):83-87.
    Bergh O, Borsheim K Y, Bratbak G, et al.1989. High abundance of viruses found in aquatic environments. Nature,340(6233):467-468.
    Bhat V B, Madyastha K M. C-phycocyanin:a potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun,275(1):20-25.
    Bill D, Friedmann E I, Helm R F, et al.2001. Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bacteriol,183:2298-2305.
    Bissati K El, Kirilovsky D.2001. Regulation of psbA and psaE expression by light quality in Synechocystis sp. PCC 6803. A Redox Control Mechanism. Plant Physiol,125:1988-2000.
    Brodel S E J, Wolf R E J.1991. Growth-phase-dependent induction of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase in the cyanobacterium Synechococcus sp. PCC 7942. Gene,109(1):71-79.
    Bustos S A, Golden S S.1991. Expression of the psbDⅡ gene in Synechococcus sp. strain PCC 7942 requires sequences downstream of the transcription start site. J Bacteriol,173(23):7525-7533.
    Bustos S A, Golden S S.1992. Light-regulated expression of the psbD gene family in Synechococcus sp. strain PCC7942:evidence for the role of duplieated psbD gene in cyanobaeteria. Mol Gen Genet,232(2):221-230.
    Buzby J.1985. Expression of the Escherichia coli.lacZ gene on a plasmid vector in a cyanobacterium. Science,230:805-807.
    Buckholz R G. 1993. Yeast system for the expression of heterologous gene products. Curr Opin Biotechnol,4:538-542.
    Callison J A, Battisti J M, Sappington K N, et al.2005. Characterization and expression analysis of the groESL operon of Bartonella bacilliformis. Gene,359:53-62.
    Campbell WH, Gowri G.1990. Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol,92:1-11.
    Creighton T E.1991. Unfolding protein folding. Nature,352:17-18.
    Chang T S, Wu W J, Wan H M, et al.2003. High level expression of a lacZ gene from a bacterial artificial chromosome in Escherichia coli. Appl Microbiol Biotechnol,61:234-239.
    Chalfie M, Tu Y, Euskirchen G, et al.1994. Green fluorescent protein as a marker for gene expression. Science,263:802-805.
    Chemeresiuk N N, Elanskaia I V.1994. Cloning and expression of the Bl hordein gene of barley (Hordeum vulgare L.) in cells of the cyanobacterium Synechocystis sp. PCC6803 and Escherichia coli. Genetika,30(9):1141-1145.
    Cheryl M. Schmidt-goff, Nancy A F.1993. In vivo and in vitro footprinting of a light-regulated promoter in the cyanobacterium fremyella diplosiphont. J Bacteriol,175(6):1806-1813.
    Chauvat F, Vries L, Ende A, et al.1986. A host-vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803. Mol Gen Genet,204(1):185-191.
    Cohen MF, Wallis JG, Campbell EL, et al.1994. Transposon mutagensis of Nostoc sp. strain ATCC 29133, a cyanobacterium with multiple cellular differentiation alternatives. Microbiol,140(12): 7324-7329.
    Daniela Billi, E Imre Friedmann, Richard F Helm, et al.2001. Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bacteriol,183(7):2298-2305.
    David I. Friedman E R, Costa G, et al.1984. Interactions of bacteriophage and host macromolecules in the growth of bacteriophage X. Microbiol Rev,48(4):299-325.
    Devilly C I, Houghton J A.1977. A study of genetic transformation in Gloeocapsa alpicola. J Gen Microbiol,98(1):277-280.
    Dehaseth P L, Zupancic M L, Record J M,1998. RNA polymerase promoter interactions:the comings and goings of RNA polymerase. J Bacteriol,180:3019-3025.
    Duran R V, Hervas M, De La Rosa M A, et al.2004. The efficient functioning of photosynthesis and respiration in Synechocystis sp. PCC 6803 strictly requires the presence of either cytochrome c6 or plastocyanin. J Biol Chem,279:7229-7233.
    Elhai J, Wolk C P.1988. Conjugal transfer of DNA to cyanobacteria. Meth Enzymol,67:747-754.
    Elhai J.1993. Strong and regulated promoters in the cyanobacterium Anabaena PCC 7120. FEMS Microbiol Lett,114:179-184.
    Elhai J.1994. Genetic techniques appropriate for the biotechnological exploitation of cyanobacteria. J Appl Phycol,6:177-186.
    Elhai J, Vepritskiy A, Muro-Pastor A M, et al.1997. Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. Strain PCC 7120. J Bacteriol,179:1998-2005.
    Elortza F, Asturias J A, Arizmendi J M.1999. Chloroplast NADH dehydrogenase from Pisum sativum:Characterization of its activity and cloning of ndhK gene. Plant Cell Physiol.,40(2): 149-154.
    Farooq S M, Asokan D, Kalaiselvi P, et al.2004. Prophylactic role of phycocyanin:a study of oxalate mediated cell injury. Chem Biol Interact,149(1):1-7.
    Ferino F, Chanrat F.1989. A promoter-probe vector-host system for the cyanobacterium, Synechocystis PCC 6803. Gene,87:257-266.
    Feiedman DI, et al.1984. Interactions of bacteriophage and host macromolecules in the growth of bacteriophage X. Microbiol Rev,48(4):299-325.
    Flores E, Wolk C P. 1985. Identification of facultatively heterotrophic, N2-fixing cyanobacteria able to receive plasmid vectors from Escherichia coli by conjugation. J Bacteriol,62:1399-1341.
    Gamier F, Dubacq J P, Thomas J C, et al.1994. Evidence for a transient association of new proteins with the Spirulina maxima phycobilisome in relation to light intensity. Plant Physiol,106(2): 747-754.
    Golden S S, Sherman L A.1984. Optimal condition for genetic transformation of cyanobacterium Anacystis nidulans R2. J Bacteriol,158:36-42.
    Golden SS.1988. Mutagenesis of cyanobacteria by classical and gene-transfer-based methods. Meth Enzymol,167:717-727.
    Gold L, Stormo G D.1990. High-level translation initiation. Meth Enzymol,185:89-93.
    Goloubinoff P, Gatenby A A, Lorimer G H.1989. GroE heat-schock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escharichia coli. Nature, 337:44-47.
    Grigorieva G, Shestakov S.1982. Transformation in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett.,13(4):367-370.
    Gross C A.1996. Function and regulation of the heat shock proteins. In:Neidhardt FC (eds) Escherichia coli and Salmonella.2nd ed. American Society for Microbiology,1382-1399.
    Guo H Z, Gurtu V, Kain S R.1996. An enhanced green fluorescent protein allows sensitive detection of gene transfer in Mammalian cells. Biochem Biophys Res Commun,227:707-711.
    Guo H, Xu X.2004. Broad host range plasmid-based gene transfer system in the cyanobacterium Gloeobacter violaceus which lacks thylakoids. Prog Nat Sci,14:31-35.
    Guo XX, Shi DJ, Xu XD, et al.1999. Metal-induced expressing of metallothionein-Ⅰ gene in cyanobacteria to promoto cadmium-binding preferences. Appl Microbiol Biotechnol,52: 806-810.
    Hackenberg C, Engelhardt A, Matthijs H C, et al.2009. Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803. Planta,230(4):625-637.
    Hambly E, Tetart F, Desplats C, et al.2001. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc Natl Acad Sci USA,98(20):11411-11416.
    Harker M, Hirschberg J.1997. Biosynthesis of ketocarotenoids in transgenic cyanobacteria expressing the algal gene for (3-C-4-oxygenase, crtO. FEBS Lett,404(2):129-134.
    Haseloff J, Siemering K R, Prasher D C, et al.1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required tomark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA,94:2122-2127.
    Heim R, Tsien R Y.1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol,6(2):178-182.
    Hihara Y, Kamei A, Kanehisa M, et al.2001. DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell,13:793-806.
    Hihara Y, Sonoike K, Kanehisa M, et al.2003. DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol,185: 1719-1725.
    Hirschberg J, Cohen M, Hark M, et al.1997. Molecular genetics of the carotenoid biosynthesis pathway in plant and algas. Pure Appl Chem,69:2151-2158.
    Hockney R C.1994. Recent developments in heterologous protein production in Escherichia coli. Trends biotechnol,12:456-463.
    Huang F, Fulda S, Hagemann M, et al.2006. Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics,6:910-920.
    Huang F, Hedman E, Funk C, et al.2004. Isolation of outer membrane of Synechocystis sp. strain PCC 6803 and its proteomic characterization. Mol Cell Proteomics,3:586-595.
    Huang L, Mccluskey M P, Larossa R A.2002. Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol,184:6845-6858.
    Hu X, Shi Q, Yang T, et al.,1996. Specific replacement of consecutive AGG codons results in high-level expression of human cardiac troponin T in Escherichia coli. Protein Exp Purif,7(3): 289-293.
    Ikemura T.1982. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in protein genes. J Mol Biol,158:573-597.
    Kanesaki Y, Suzuki I, Allakhverdiev S I, et al.2002. Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun,290:339-348.
    Kaneko T, Sato S, Kotani H, et al.1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803.Ⅱ. Sequence determination of the entire genome and assignment of potential protein-coding regions, DNA Res,3(3):109-136.
    Kaneko T, Nakamura Y, Wolk CP, et al.2001. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res,8(5):205-213; 227-253.
    Karpov L M, Brownl I, Poltavtseva N V, et al.2000. The postradiation use of vitamin-containing complexes and a phycocyanin extract in a radiation lesion in rats. Radiats Biol Radioecol, 40(3):310-314.
    Katoh T, Gantt E.1979. Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis. Biochim Biophys Acta,546:383-393.
    Kofer W, Koop H U, Wanner G, et al.1998. Mutagenesis of the genes encoding subunits A, C, H,1, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet,258:166-173.
    Kotani H, Kaneko T, Matsubayashi T, et al.1994. A Physical map of the genome of a unicellular cyanobacterium Synechocystis sp. strain PCC 6803. DNA Res,303-307.
    Koksharova O, Wolk C P.2002. Genetic tools for cyanobacteria. Appl Microbiol Biotechnol,58: 123-137.
    Kolchanov N A, Kolchanov E V, Kolchanov E A, et al.2002. Transcription regulatory regions database (TRRD) status in 2002. Nucl Acids Res,30(1):312-317.
    Kufryk GI, Sachet M, Schmetterer G, et al.2002. Transformation of the cyanobacterium Synechocystis sp. PCC 6803 as a tool for genetic mapping:optimization of efficiency. FEMS Microbiol Lett,206(2):215-219.
    Kuhlemeier C J, Borriasl W E, Van den Hondell CAMJJ, et al.1981. Vectors for cloning in cyanobacteria:Construction and characterization of two recombinant plasmids capable of transformation to Escherichia coli K12 and Anacystis nidulans R2. MGQ 184 (2):249-254.
    Labarre J, Chauvat F, Thuriaux P.1989. Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J Bacteriol,171(6):3449-3457.
    Laemmli U K.1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,227(5259):680-685.
    Lang J D.1991. A vector for analysis of promoters in the cyanobacterium Anabaena sp. strain PCC7120. J Bacteriol,173:2729-2731.
    Lehel C, Los D, Wada H, et al.1993. A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem,268(3):1799-1804.
    Levinson A D.1990. Expression of heterogous gene in mammalian cells. Meth Enzymol,185: 485-487.
    Lehel C, Los D, Wada H, et al.1993. A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem,268:1799-1804.
    Luckow V A.1993. Baculovirus systems for the expression of human gene products. Curr Opin Biotechnol,4:564-572.
    Ma W, Ogawa T, Shen Y, et al.2007. Changes in cyclic and respiratory electron transport by the movement of phycobilisomes in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochim Biophys Acta,1767:742-749.
    Ma W, Shi D, Wang Q, et al.2005. Exogenous expression of the wheat chloroplastic fructose-1, 6-bisphosphatase gene enhances photosynthesis in the transgenic cyanobacterium, Anabaena PCC7120. J Appl Phycol 17(3):273-280
    Ma W, Wei L, Wang Q, et al.2007. Increased activity of the non-regulated enzymes fructose-1,6-bisphosphate aldolase and triosephosphate isomerase in Anabaena sp. strain PCC 7120 increases photosynthetic yield. J Appl Phycol,19:207-213.
    Ma W, Wei L, Long Z, et al.2008. Increased activity of only an individual non-regulated enzyme fructose-1,6-bisphosphate aldolase in Anabaena sp. strain PCC 7120 stimulates photosynthetic yield. Acta Physiol Plant,30:897-904.
    Ma W, Wei L, Wang Q, et al.2008. Increased activity of the tandem fructose-1,6-bisphosphate aldolase, triosephosphate isomerase and fructose-1,6-bisphosphatase enzymes in Anabaena sp. strain PCC 7120 stimulates photosynthetic yield. J Appl Phycol,56:189-193.
    Mackinney G.1941. Absorption of light by chlorophyll solutions. J Biol Chem,140:315-322.
    Makrides S C.1996 Strategies for Achieving High-Level Expression of Genes in Escherichia coli. Microbiol Rev,60:512-53.
    Marraccini P, Caddier-Chauvat C, Bulteau S, et al.1994. Light-regulated promoters from Synechocystis PCC6803 share a consensus motif involved in photoregulation. Mol Microbiol, 12:1005-1012.
    Marsac N T, Torre F, Szulmaister J.1987. Expression of the larvicidal gene of Bacillus sphoericus 1593M in the cyanobacterium Anacystis nidulans R2. Mol Gen Genet,209:296-298.
    Marin K, Suzuki I, Yamaguchi K. et al.2003. Identification of histidine kinases that act as sensors the perception of salt stress in Synechocystis sp. strain PCC 6803. Proc Natl Acad Sci USA, 100:9061-9066.
    Marin K, Stirnberg M, Eisenhut M, et al.2006. Osmotic stress in Synechocystis sp. strain PCC 6803: low tolerance towards nonionic osmotic stress results from lacking activation of glucosylglycerol accumulation. Microbiol,152:2023-2030.
    McClure W R.1985. Mechanism and control of transcription initiation in Prokaryotes. Ann Rev Biochem,54:171-204.
    Melnikov O, Zaritsky A, Zarka A, et al.2009. Site-specific recombination in the cyanobacterium Anabaena sp. strain PCC7120 catalyzed by the integrase of coliphage HK022. J Bacteriol, 191(13):4458-4464.
    Mermet-Bouvier P, Cassier-Chauvat C, Marraccini P, et al.1993. Transfer and replication of RSF1010-derived plasmids in several cyanobacterial of the genera Synechocystis and Synechococcus. Curr Microbiol,27:323-327.
    Meeks JC.1998. Symbiosis between nitrogen-fixing cyanobacteria and plants. BioScience,48: 266-276.
    Mikami K, Kanesaki Y, Suxuki I,2002. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. strain PCC 6803. Mol Microbiol,46:905-915.
    Miller R L, Smith M, Beaulieu V, et al.2005. V-ATPase Bl-subunit promoter drives expression of EGFP in intercalated cells of kidney, clear cells of epididymis and airway cells of lung in transgenic mice. Am J Physiol Physiol,288:1134-1144.
    Mitsuteru N, Shinobu 0, Mitsuyo K, et al.2010. CyanoBase:the cyanobacteria genome database update 2010. Nucl Acids Res,38:379-381.
    Morie J G 1974. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry,13(12):2656-2562.
    Murphy R C, Stevens S E J.1992. Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl Environ Microbiol,58(5):1650-1655.
    Muhlenhoff U, Chauvat F.1996. Gene transfer and manopulation in the thermophilic cyanobacterium Synechococcus elongates. Mol Gen Genet,252:93-100.
    Muhlenhoff U, Chauvat F.1996. Gene transfer and manipulation in the thermophilic cyanobacterium Synechococcus elongates. Mol Gen Genet,252:93-100.
    Nagaya S, Kawamura K, Shinmyo A, et al.,2010. The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol,51(2):328-332.
    Nakamura Y, Kaneko T, Hirosawa M, et al.1998. CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucl Acids Res,26:63-67.
    Ogawa T.1992. Identification and characterization of the ictA/ndhL gene product essensial to inorganic carbon transport of Synechocystis PCC6803. Plant Physiol,99:1604-1608.
    Ohkawa H, Price G D, Badger M R, et al.2000. Mutation of ndh genes leads to inhibition of CO2 uptake rather than HCO3 uptake in Synechocystis sp. strain PCC6803. J Bacteriol,182: 2591-2596.
    Padan E, Shilo M.1973. Cyanophages-viruses attacking blue-green algar. Bacteriol Rev,37(3): 343-370.
    Prakash J S, Krishna P S, Sirisha K, et al.2010. An RNA helicase, CrhR, regulates the low-temperature-inducible expression of heat-shock genes groES, groEL1 and groEL2 in Synechocystis sp. PCC 6803. Microbiol,156(2):442-519.
    Pilot T J, Fox J L.1984. Cloning and sequencing of the genes encoding the alpha and beta subunits of C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. Proc Natl Acad Sci USA,81(22):6983-6987.
    Porter R D.1986. Transformation in cyanobacteria. CRC Critical Rev Microbiol,13(2):111-132.
    Prasher D C, Eckenrode V K, Wade W W, et al.1992. Primary structure of the Aequorea Victoria green fluorescent protein. Gene,111(2):229-233.
    Rajaram H, Ballal A D, Apte S K, et al.2001. Cloning and characterization of the major groESL operon from a nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Biochim Biophys Acta,1519:143-146.
    Reddy A S, Nuccio M L, Gross L M.1993. Isolation of a A6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. Plant Mol Biol,27:293-300.
    Ren L, Shi D J, Dai J X, et al.1998. Expression of the mouse metallothionein-Ⅰ gene conferring cadmium rersistance in a transgenic cyanobacterium. FEMS Microbiol Lett,158:127-132.
    Ritossa F.1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia,18:571-573.
    Rixin L, Golden S.1993. Enhancer activity of light-responsive regulatory elements in the untranslated leader regions of cyanobacterial psbA genes. Proc Natl Acad Sci USA,90: 11678-11682.
    Roy K R, Arunasree K M, Reddy NP, et al.2007. Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicin-resistant human hepatocellular-carcinoma cell line HepG2. Biotechnol Appl Biochem,47(3-4):159-167.
    Sabbas C. Makrides.1996. Strategies for achieving high-Level expression of genes in Escherichia coli. Microbiol Rev,60(3):512-538.
    Safferman R S, Morris M E.1963. Algal virus:isolation. Science,140:679-680.
    Sambrook J, Fritsch E F, Maniatis T.1998. Molecular Cloning:A Laboratory Manual.2nd ed, New York:Cold Spring Harbor Laboratory Press.
    Sankarasubramanian S, Kaushik B D.2001. Development of genetic markers in cyanobacteria and stability of genetically marked strains in soil. World J Microbiol Biotechnol,17:535-544.
    Sangthongpitag K, Penfold R J, Delaney S F, et al.1997. Cloning and expression of the Bacillus sphaericus 2362 mosquitocidal genes in a non-toxic unicellular cyanobacterium, Synechococcus PCC6301. Appl Microbiol Biotechnol,47(4):379-384.
    Sawas C. Makrides.1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev,60(3):512-538.
    Sawaki H, Sugiyama T, Omata T.1998. Promoters of the phycocyanin gene clusters of the cyanobacterium Synechococcus sp. strain PCC7942. Plant Cell Physiol,39(7):756-761.
    Scanlan D J, Bloye S A, Mann NH, et al.1990. Construction of lacZ promoter probe vectors for use in Synechococcus:application to the identification of CO2-regulated promoters. Gene,90: 43-49.
    Schneider G J, Lang J, Haselkon R.1991. Promoter recognition by the RNA polymerase from vegetative cells of the cyanobacterium Anabaena 7120. Gene,105:51-60.
    Shahmuradov I A, Gammerman, A J, Hancock H M, et al.2003. PlantProm:a database of plant promoter sequences. Nucl Acids Res,31(1):114-117.
    Schaefer M R, Golden S S.1989. Differential expression of members of a cyanobacterial psbA gene family in response to light. J Bacteriol,171(7):3973-3981.
    Shu X, Royant A, Lin M Z, et al.2009. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science,324(5928):804-807.
    Shulman M J, Nissen L, Collins C.1990. Homologous recombination in hybridoma cells: dependence on time and fragment length. Mol cell Biol,10:4466-4472.
    Shestakov S V, Khyen N T.1970. Evidence for genetic transformation in blue-green alga Anacystis nidulans. Mol Gen Genet,107:372-375.
    Sherman L A, Van de putte P J.1982. Construction of a hybride plasmid capable of replication into bacteria:Synechococcus sp. Synechocystis sp. and Psedonabaena sp. Appl Microbiol Biotechnol,37:369-373.
    Shapiguzov A, Lyukevich A A, Los D A.2005. Osmotic shrinkage of cells of Synechocystis sp. strain PCC 6803 by water efflux via aquaporins regulates osmostress-inducible gene expression. Microbiol,151:447-455.
    Shoumskaya, Paithoonrangsarid, Kanesaki, et al.2005. Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J Biol Chem,280:21531-21538.
    Singh A K, Li H, Sherman L A.2004. Microarray analysis and redox control of gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803. Physiol Plant,120:27-35.
    Singh A K, McIntyre L M, Sherman L A.2003. Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol,132:1825-1839.
    Sode K, Tatara M, Takeyama H, et al.1992. Conjugative gene transfer in marine cyanobacteriaa: Synechococcus sp. Synechocystis sp. and Pseudanabaena sp. Appl Microbiol Biotechnol,37: 369-373.
    Steinmiiller K, Ley A C, Steinmetz A A, et al.1989 Characterization of the ndhC-psbG-ORF157/159 operon of maize plastid DNA and of the cyanobacterium Synechocystis sp. PCC6803. Mol Gen Genet,216:60-69.
    Subhashini J, Mahipal S V, Reddy M C, et al.2004. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol, 68(3):453-462.
    Suzuki I, Kanesaki Y, Mikami K, et al.2001. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol,40:235-244.
    Suzuki I, Simon W J, Slabas A R.2006. The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot,57(7):1573-1578.
    Takeshima Y, Takatsugu N, Sugiura M, et al.1994. High-level expression of human superoxide dismutase in the cyanobacterium Anacystis nidulans 6301. Proc Natl Acad Sci USA,91: 9685-9689.
    Tandeau M N, Torre F, Szulmajster J.1987. Expression of the larvicidal gene of Bacillus sphaericus 1593M in the cyanobacterium Anacystis nidulans R2. Mol Gen Genet,209(2):396-398.
    Takeyama H, Takeda D, Yazawa K, et al.1997. Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiol,143:2725-2731.
    Thiel T, Poo H.1989. Transformation of a filamentous cyanobacterium by electroporation. J Bacteriol,171(10):5743-5746.
    Thiel T.1994. Genetic analysis of cyanobacteria. In:Bryant DA, The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 581-611.
    Thomas K R, Deng C, Capecchi M R.1992. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol,12(7):2919-2923.
    Tuominen I, Pollari M, Von Wobeser E A, et al.2008. Sigma factor SigC is required for heat acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803. FEBS Lett,582(2): 346-50.
    Usha nair, Colleen T, Golden S S.2001. Functional elements of the strong psbAI promoter Synechococcus elongates PCC 7942. J Bacterial,183(5):1740-1747.
    Vanden H C, Keegstra W, Borrias W E, et al.1979. A Homology of plasmids in strains of unicellular cyanobacteria. Plasmid,2:323-333
    Vioque A.2008. Transgenic microalgae as green cell factories:Advances in experimental medicine and biology. New York:Springer New York,12-22.
    Von Hippel P H, Bear D G, Morqan W D, et al.1984. Protein-nucleic acid nteractions in transcription:A molecular analysis. Ann Rev Biochem,53:389-446.
    Wada H, Combos Z, Murata N.1990. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature,347:200-203.
    Wang R T, Stevens C L R, Myers J.1977. Action spectra for photoreactions Ⅰ and Ⅱ for photosynthesis in the blue-green alga Anacystis nidulans. Photochem Photobiol,25:103-108.
    Webb R, Sherman L A.1994. The cyanobacterial heat-shock response and the molecular chaperones. In:Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht pp 751-767.
    Webb R, Reddy K J, Sherman LA.1990. Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin. J Bacteriol,172(9): 5079-5088.
    Wei L, Ma W, Wang Q, et al.2007. Increased activity of the non-regulated enzymes fructose-1,6-bisphosphate aldolase and triosephosphate isomerase in Anabaena sp. strain PCC 7120 increases photosynthetic yield. J Appl Phycol.,19:207-213.
    Wei L, Ma W M, Shi D J, et al.2006. Modification of the N-Terminal nucleotide sequence of mature hGM-CSF results in high expression in the foreign host Anabaena sp. Strain PCC 7120. J Appl Phycol,18(2):153-159.
    Williams JGK.1988. Construction of specific mutations in photosystem Ⅱ photosynthetic reaction center by genetic engineering method in Synechocystis 6803. Meth Enzymol,167:766-778.
    William J. Buikema, Haselkorn R.2001. Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci USA,98(5):2729-2734.
    Wilbur H, Campbell G, Gowri.1990. Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol,92:1-11.
    Wolk C P, Vonshak A, Kehoe P, et al.1984. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci USA,81:1561-1565.
    Yong D, Jiyu Y, Hualing M.2003. Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol,44:534-540.
    Zang X, Liu B, Liu S, et al.2007. Optimum conditions for transformation of Synechocystis sp. PCC 6803. J Microbiol,45:241-245.
    Zhang GF, Budker V and Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Human gene therapy,1999,10:1735-1737.
    Zhang L, Mcspadden B, Pakrasi H B, et al.1992. Copper-mediated regulation of Cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803. J Biol Chem,267(27): 19054-19059.
    Zhang J, Qin Y, Ou Y Q, et al.2001. Construction of high level expression system by heat shock induced in cyanobacterium. High Technol Lett,11(8):17-21.
    Zhang Z, Pendse N D, Phillips K N, et al.2008. Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genomics,21(9):344.
    B.福迪著,罗迪安译,1980.藻类学.上海科学技术出版社,上海.p11.
    陈翠丽,施定基.2005.转人粒细胞集落刺激因子(hG-CSF)基因的鱼腥藻的构建.北京联合大学学报,19(3):60-63.
    陈晓,谭玮,冯燕,等.2006.水稻cFBA和菠菜cpTPI串联基因在鱼腥藻7120中的表达及其对光合作用的影响.上海师范大学学报(自然科学版),35(4):75-81.
    迪芬巴赫CW,德维克斯勒GS.1998.PCR技术实验指南.科学出版社.
    陈伟伟,郭正红,康升云,等.2009.增强型绿色荧光蛋白在集胞藻6803中的表达.西北植物学报.29(1):0229-0233.
    戴溦,施定基,张卉,等.2001.人表皮生长因子基因在蓝藻中的克隆.植物学报,43(12):1260-1264.
    冯燕,陈晓,施定基,等.2006.水稻胞质FBA基因在鱼腥藻7120中的表达及其对光合作用的调控.植物研究,26(6):691-698.
    高淑彬.2007.CuZn-SOD突变基因在聚球藻中的高效表达及活性研究.厦门大学,硕士论文.
    高宏,唐蜻,徐旭东.2007.集胞藻PCC6803铜离子诱导表达平台的构建.水生生物学报,31(2):240-244.
    金鹰.1999.绿色荧光蛋白(GFP)研究进展.激光生物学报,8(3):228-233.
    孔任秋,徐旭东,冯勃.2001.集胞藻的随机插入诱变和光激活异养突变株的筛选.水生生物学报,25(6):537-543.
    孔任秋,徐旭东,王业勤.2001.蓝藻分子遗传学又十年.水生生物学报,25:620-630.
    康瑞娟,蔡昭铃,施定基.2002.蓝藻培养体系中光强衰减的研究.水生生物学报,263:309-313.
    楼士林,杨盛昌,龙敏南,等.2002.基因工程.北京:科学技术出版社,355-389.
    刘凤龙,张宏斌,施定基,等.1999.人肿瘤坏死因子-a基因穿梭表达载体的构建和在鱼腥藻7120中的表达.中国科学(C辑),29(2):217-224.
    罗娜,宁叶,施定基,等.2000.人尿激酶原基因在聚球藻7002中的克隆和表达.植物学报,42(9):931-935.
    李宏,杨体强,达赖,等.1998.大肠杆菌SD序列与基因表达水平的关系.内蒙古大学学报(自然科学版),29(2):172-176.
    罗文新,陈敏,程通,等.2003.橙色荧光蛋白—绿色荧光蛋白GFPxm的改造.生物工程学报.(19):156-62.
    闵红涛,王业勤.1995.蓝藻的一种人工转化系统研究.水生生物学报,19(3):227-233.
    倪培华,温惠萍,王丹艺.2001.绿色荧光蛋白及其应用.中国实验诊断学,5:280.
    孙军,金苹,徐旭东,等.1994.小鼠金属硫蛋白—Ⅰ cDNA在蓝藻中的克隆和表达.生物工程进展,14(6):39-42.
    施定基,张超,李世明,等.2004.蓝藻与植物叶绿体光合系统基因的生物信息学研究.遗传学报.31(6):627-633.
    施定基,冉亮,李艳,等.2004.丝状体蓝藻高效表达盒和含有该表达盒的载体.中华人民共和国发明专利,专利号:ZL00132268.0.
    秦松,白逢伟,曾呈奎.1999.微藻基因工程.见:陈峰,姜悦编.微藻生物技术.北京:中国轻工业出版社,317-348.
    秦京东,施定基,徐旭东,等.1998.在鱼腥藻7120中建立反义glnA系统.植物生理学报,24(3):225-232.
    田三德,孙鹏.2003.基因打靶技术及其应用.陕西科技大学学报,21(4):94-98.
    王业勤,徐旭东,黎尚毫.1991.蓝藻分子遗传学十年研究进展.水生生物学报,15(4):356-367.
    魏兰珍,谭玮,王全喜.2008.启动子Pcpcβ提高鱼腥藻7120中hGM-CSF基因表达效率的研究.西北植物学报,2008,28(1):37-42.
    魏兰珍,马为民,王全喜,等.2004.蓝藻基因转移系统的选择与建立.中国生物工程杂志,24(1):18-22.
    向安,刘丽,魏大巧,等.2009.噬藻体的分子生物学研究进展.生物技术通讯,5:31-34.
    张春莉.施定基,黄倢,等.2003.白斑综合症病毒(WSSV)囊膜蛋白VP28基因的克隆及在蓝藻中表达载体的构建.海洋科学,27(2):72-76.
    章军,宋新强,徐虹,等.2001.利用同源重组质粒pUTK转化蓝藻Synechococcus sp.PCC7942及胸腺素α1的表达,海洋科学,25(6):1-3.
    章军,秦燕,欧阳青,.等.2001.蓝藻热休克诱导高效表达系统的构建.高技术通讯,11(8):17-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700