蛋白—纳米金杂化微结构在药物载体和生物支架材料中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白基材料具有良好的生物相容性、生物降解性并易于功能化修饰,在药物载体及功能化生物材料构建方面已经引起广泛关注。纳米金具有独特的理化性质及良好的生物相容性,广泛用于光热疗、成像、传感器、药物和基因载体等研究领域。随着多功能材料越来越受到重视,杂化材料因其特有的功能在药物传递及其它医学领域显示出重要的应用前景,因此,亟需开展新型有机-无机杂化材料的合成研究。
     本论文选用丝素蛋白和牛血清白蛋白(BSA)作为有机材料,制备成微囊及花状微结构,并用金纳米球、纳米棒进行修饰,从而获得多功能杂化材料。主要获得了以下研究结果或结论:
     1.以丝素蛋白为壳层材料,不引入带正电的聚电解质,以PLGA微球为模板,用LBL法制备出了一系列不同层数的丝素蛋白单组分微囊。然后进一步制备出两种杂化微囊:1)壳层夹载金纳米棒的杂化微囊;2)表面结合DNA功能化纳米金的杂化微囊。杂化微囊具有控制释放、联合治疗、诊疗一体等多种应用潜能。
     2.以丝素蛋白为壳层材料,PLGA微球为模板,用去溶剂法制备出了丝素蛋白单组分微囊,并通过金纳米球、金纳米棒或两者同时修饰调节微囊的通透性。杂化微囊具有很强的拉曼增强性质,在诊疗一体化或光热疗-化疗联合治疗方面具有应用潜力。
     3.用去溶剂法成功制备了具有特殊拓扑结构的BSA花状微结构,每个结构单元由平行的BSA管状结构组成;其过程是蛋白沉积于花状的无机盐结晶上形成的;制备了负载模型药罗丹明B的BSA花状微结构,作为局部给药的载体。
     4.通过引入金纳米粒子以及RGD对上述BSA花状微结构的理化性质以及生物活性进行调控。得到的新型杂化材料具有独特的力学性质、几何结构、表面拓扑结构以及表面化学性质等,可用于细胞-材料界面相互作用、局部药物及细胞传递等的研究。
     综上所述,本研究用LBL、去溶剂法合成了丝素蛋白单组分微囊,再用功能化金纳米球和/或金纳米棒进行修饰,引入的DNA、金纳米粒子以及丝素赋予杂化微囊特有的性质使其可用于联合治疗、诊疗一体化及示踪等;用去溶剂法制备了BSA花状微结构,并沉积金纳米粒子、修饰RGD等。本研究制备的杂化微囊以及杂化花状微结构为药物、细胞传递奠定基础。
Natural proteins have attracted great attention for construction of drug delivery vehicles and functionalized biomedical devices due to their good biocompatibility, biodegradability, and amenability to surface functionality. In addition, gold nanoparticles also gained interest for promising applications including photothermal therapy, biological imaging, sensors, drug and gene delivery systems because of their unique optical response and superior biocompatibility. With the increasing interest for multifunctional nanomaterials or devices in the biomedical field, it is necessary to synthesize novel organic-inorganic hybrid materials which offer additional special functions for drug delivery or other potential medical applications.
     In this dissertation, silk fibroin and bovine serum albumin (BSA) were chosen as the ideal proteins as organic materials. Subsequently, gold nanospheres and nanorods were synthesized to modify the organic microstructures including capsules and flower-like particles so as to obtain the hybrid multifunctional materials. The mains results are as follows:
     1. Single component silk capsules with different layers were synthesized from spherical PLGA templates using the layer-by-layer (LBL) technique, which can avoid the introduction of toxic cationic polyelectrolytes. More importantly, we further synthesized two kinds of hybrid capsules:1) gold nanoparticles inside both silk layers;2) DNA-modified gold nanoparticles on the surface. These hybrid capsules have promising applications for controlled release, combination therapy and theranostic medicine.
     2. Single component silk capsules were synthesized by desolvation method with the PLGA templates removal. The permeability of the capsules was investigated using fluorescence biomacromolecules as the tracer. Moreover, the shell permeability can be finely tuned using gold nanospheres or nanorods, even both of them together. Finally, these hybrid capsules offered distinct surface-enhanced Raman effect. These hybrid capsules can be used as the candidates for theranostic application or integrated therapy of photothermal and chemical therapy.
     3. BSA flower-like microstructures with special topography were prepared by desolvation method. We confirmed that the architecture of flower was composed of BSA tubes, which were formed via deposition on the flower-like inorganic salts crystal templates by following dissolution of them. Rhodamine B, a model drug, was loaded into flower-like microstructures, which demonstrated that these flower-like particles can be used in drug delivery systems, especially for local drug delivery to the inner ear.
     4. The physicochemical and bioactive properties of the above mentioned BSA flower-like microstructures were manipulated by means of introduction of gold nanoparticles or RGD peptides. These novel hybrid microstructures with unique geometry, topology, mechanical and surface chemical properties can be used in future research on cell-material interactions or local drug or cell delivery.
     In summary, we synthesized single component silk capsules using LBL and desolvation technique, respectively. Subsequently, these silk capsules were modified with gold nanospheres or/and nanorods, which offer these hybrid capsules distinct functions and potential applications including combination therapy, theranostic medicine and trace imaging agen by introduction of DNA, gold and silk capsules. In addition, we prepared BSA flower-like microstructures by desolvation and modified them with deposition of gold nanoparticles and RGD. In one word, these hybrid materials including microcapsules and flower-like microstructures can serve as a basis of research on the potential drug or cell delivery.
引文
1. Zhang, Y.; Chan, H. F.; Leong, K. W., Advanced materials and processing for drug delivery:The past and the future[J]. Adv. Drug. Deliv. Rev.2013,65 (1),104-120.
    2. Chen, M.; Liu, Y.; Yang, W.; Li, X.; Liu, L.; Zhou, Z.;Wang, Y.; Li, R.; Zhang, Q., Preparation and characterization of self-assembled nanoparticles of 6-O-cholesterol-modified chitosan for drug delivery[J]. Carbohydr. Polym.2011,84 (4),1244-1251.
    3. Wang, Y. S.; Jiang, Q.; Li, R. S.; Liu, L. L.; Zhang, Q. Q.; Wang, Y. M.; Zhao, J., Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel[J]. Nanotechnology 2008,19 (14),145101-145108.
    4. Zhou, Z.; Xu, J.; Liu, X.; Li, X.; Li, S.; Yang, K.; Wang, X.; Liu, M.; Zhang, Q., Non-spherical racemic polylactide microarchitectures formation via solvent evaporation method[J]. Polymer 2009,50 (15),3841-3850.
    5. Liu,M.;Zhou,Z.; Wang,X.;Xu, J.; Yang,K.; Cui,Q.;Chen,X.; Cao,M.; Weng, J.; Zhang, Q., Formation of poly(l,d-lactide) spheres with controlled size by direct dialysis[J]. Polymer 2007,48 (19),5767-5779.
    6. Johnston, A. P. R.; Mitomo, H.; Read, E. S.; Caruso, F., Compositional and Structural Engineering of DNA Multilayer Films[J]. Langmuir 2006,22 (7), 3251-3258.
    7. Johnston, A. P. R.; Lee, L.; Wang, Y.; Caruso, F., Controlled Degradation of DNA Capsules with Engineered Restriction-Enzyme Cut Sites[J]. Small 2009,5 (12), 1418-1421.
    8. Tong, W.; Gao, C.; M6hwald, H., pH-responsive protein microcapsules fabricated via glutaraldehyde mediated covalent layer-by-layer assembly [J]. Colloid. Polym. Sci. 2008,286(10),1103-1109.
    9. Pissuwan, D.; Niidome, T.; Cortie, M. B., The forthcoming applications of gold nanoparticles in drug and gene delivery systems[J]. J. Controlled Release 2011,149 (1),65-71.
    10. Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A., Protein-based nanocarriers as promising drug and gene delivery systems[J]. J. Controlled Release 2012,161 (1), 38-49.
    11. Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A., Albumin-based nanoparticles as potential controlled release drug delivery systems [J]. J. Controlled Release 2012, 157(2),168-182.
    12. Leo, E.; Angela Vandelli, M.; Cameroni, R.; Forni, F., Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde:Involvement of the drug in the cross-linking process[J]. Int. J. Pharm.1997,155 (1),75-82.
    13. Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L., Silk-based biomaterials[J]. Biomaterials 2003,24 (3), 401-416.
    14. Wang, X.; Wenk, E.; Matsumoto, A.; Meinel, L.; Li, C.; Kaplan, D. L., Silk microspheres for encapsulation and controlled release[J]. J. Controlled Release 2007,117 (3),360-370.
    15. Wenk, E.; Wandrey, A. J.; Merkle, H. P.; Meinel, L., Silk fibroin spheres as a platform for controlled drug delivery[J]. J. Controlled Release 2008,132 (1),26-34.
    16. Hino, T.; Shimabayashi, S.; Nakai, A., Silk Microspheres Prepared by Spray-drying of an Aqueous System[J]. Pharm. Pharmacol. Commun.2000,6 (8),335-339.
    17. Shi, P.; Goh, J. C. H., Release and cellular acceptance of multiple drugs loaded silk fibroin particles[J]. Int. J. Pharm.2011,420 (2),282-289.
    18. Mitragotri, S.; Lahann, J., Physical approaches to biomaterial design[J]. Nat. Mater. 2009,5(1),15-23.
    19. Lee, K. J.; Yoon, J.; Lahann, J., Recent advances with anisotropic particles[J]. Curr. Opin. Colloid In.2011,16(3),195-202.
    20. Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E., Shape effects of filaments versus spherical particles in flow and drug delivery [J]. Nat. Nanotechnol 2007,2 (4),249-255.
    21. Best, J. P.; Yan, Y.; Caruso, F., The Role of Particle Geometry and Mechanics in the Biological Domain[J]. Adv. Healthc. Mater.2012,1 (1),35-47.
    22. Champion, J. A.; Mitragotri, S., Role of target geometry in phagocytosis [J]. Proc. Natl. Acad. Sci. U. S. A.2006,103 (13),4930-4934.
    23. Huang, X.; Neretina, S.; El-Sayed, M. A., Gold Nanorods:From Synthesis and Properties to Biological and Biomedical Applications [J]. Advanced Materials 2009, 21 (48),4880-4910.
    24. Wang, X.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D. L., Silk nanospheres and microspheres from silk/pva blend films for drug delivery[J]. Biomaterials 2010,31 (6),1025-1035.
    25. Seib, F. P.; Pritchard, E. M.; Kaplan, D. L., Self-Assembling Doxorubicin Silk Hydrogels for the Focal Treatment of Primary Breast Cancer[J]. Adv. Funct. Mater. 2013,23 (1),58-65.
    26. Wang, X.; Wenk, F.; Hu, X.; Castro, G R.; Meinel, L.; Wang, X.; Li, G.; Merkle, H.; Kaplan, D. L., Silk coatings on PLGA and alginate microspheres for protein delivery[J]. Biomaterials 2007,28 (28),4161-4169.
    27. Shchepelina, O.; Drachuk, I.; Gupta, M. K.; Lin, J.; Tsukruk, V. V., Silk-on-Silk Layer-by-Layer Microcapsules[J]. Adv. Mater.2011,23 (40),4655-4660.
    28. Pritchard, E. M.; Valentin, T.; Panilaitis, B.; Omenetto, F.; Kaplan, D. L., Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment[J]. Adv. Funct. Mater.2013,23 (7),854-861.
    29. Zhang, J.; Pritchard, E.; Hu, X.; Valentin, T.; Panilaitis, B.; Omenetto, F. G.; Kaplan, D. L., Stabilization of vaccines and antibiotics in silk and eliminating the cold chain[J]. Proc. Natl. Acad. Sci. U. S. A.2012,109 (30),11981-11986.
    30. Elsadek, B.; Kratz, F., Impact of albumin on drug delivery - New applications on the horizon[J]. J. Controlled Release 2012,157 (1),4-28.
    31. Damascelli, B.; Cantu, G.; Mattavelli, F.; Tamplenizza, P.; Bidoli, P.; Leo, E.; Dosio, F.; Cerrotta, A. M.; Di Tolla, G.; Frigerio, L. F.; Garbagnati, F.; Lanocita, R.; Marchiano, A.; Patelli, G; Spreafico, C.; Ticha, V.; Vespro, V.; Zunino, F., Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007)[J]. Cancer 2001,92 (10), 2592-2602.
    32. Ibrahim, N. K.; Desai, N.; Legha, S.; Soon-Shiong, P.; Theriault, R. L.; Rivera, E.; Esmaeli, B.; Ring, S. E.; Bedikian, A.; Hortobagyi, G N.; Ellerhorst, J. A., Phase I and Pharmacokinetic Study of ABI-007, a Cremophor-free, Protein-stabilized, Nanoparticle Formulation of Paclitaxel[J]. Clin. Cancer Res.2002,8 (5), 1038-1044.
    33. Dadparvar, M.; Wagner, S.; Wien, S.; Kufleitner, J.; Worek, F.; von Briesen, H.; Kreuter, J., HI 6 human serum albumin nanoparticles-Development and transport over an in vitro blood-brain barrier model[J]. Toxicol. Lett.2011,206 (1),60-66.
    34. Park, K., Albumin:A versatile carrier for drug delivery[J]. J. Controlled Release 2012,157(1),3.
    35. Zhu, Y.; Tong, W.; Gao, C.; Mohwald, H., Fabrication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking[J]. J. Mater. Chem. 2008,18(10),1153-1158.
    36. Xu, J.; Wang, J.; Luft, J. C.; Tian, S.; Owens, G.; Pandya, A. A.; Berglund, P.; Pohlhaus, P.; Maynor, B. W.; Smith, J.; Hubby, B.; Napier, M. E.; DeSimone, J. M., Rendering Protein-Based Particles Transiently Insoluble for Therapeutic Applications[J]. J. Am. Chem. Soc.2012,134 (21),8774-8777.
    37. Zhou, Z.; Anselmo, A. C.; Mitragotri, S., Synthesis of Protein-Based, Rod-Shaped Particles from Spherical Templates using Layer-by-Layer Assembly [J]. Adv. Mater. 2013,25 (19),2723-2727.
    38. Marty, J. J.; Oppenheim, R. C.; Speiser, P., Nanoparticles-a new colloidal drug delivery system[J]. Pharm. Acta Helv.1978,53 (1),17-23.
    39. El-Samaligy, M. S.; Rohdewald, P., Reconstituted collagen nanoparticles, a novel drug carrier delivery system[J]. J. Pharm. Pharmacol.1983,35 (8),537-539.
    40. Lee, C. H.; Singla, A.; Lee, Y., Biomedical applications of collagen[J]. Int. J. Pharm. 2001,221(1-2),1-22.
    41. Bender, A. R.; von Briesen, H.; Kreuter, J.; Duncan, I. B.; Rubsamen-Waigmann, H., Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro [J]. Antimicrob. Agents Chemother.1996,40 (6),1467-71.
    42. Elzoghby, A. O.; Abo El-Fotoh, W. S.; Elgindy, N. A., Casein-based formulations as promising controlled release drug delivery systems[J]. J. Controlled Release 2011, 153 (3),206-216.
    43. Zimet, P.; Rosenberg, D.; Livney, Y. D., Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids[J]. Food Hydrocolloids 2011,25 (5),1270-1276.
    44. Shapira, A.; Davidson, I.; Avni, N.; Assaraf, Y. G.; Livney, Y. D., β-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma:Stability, target-activated release and cytotoxicity[J]. European Journal of Pharmaceutics and Biopharmaceutics 2012,80 (2),298-305.
    45. Bachar, M.; Mandelbaum, A.; Portnaya, I.; Perlstein, H.; Even-Chen, S.; Barenholz, Y.; Danino, D., Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled P-casein micelles[J]. J. Controlled Release 2012,160(2),164-171.
    46. Preparation of sub-100-nm P-lactoglobulin (BLG) nanoparticles[J]. J. Microencapsulation 2006,23 (8),887-898.
    47. Gunasekaran, S.; Xiao, L.; Ould Eleya, M. M., Whey protein concentrate hydrogels as bioactive carriers[J]. J. Appl. Polym. Sci.2006,99 (5),2470-2476.
    48. Xie, J.; Cao, Y.; Xia, M.; Gao, X.; Qin, M.; Wei, J.; Wang, W., One-Step Photo Synthesis of Protein-Drug Nanoassemblies for Drug Delivery[J]. Adv. Healthc. Mater.2013,2 (6),795-799.
    49. Caillard, R.; Subirade, M., Protein based tablets as reversible gelling systems for delayed release applications[J]. Int. J. Pharm.2012,437 (1-2),130-136.
    50. Ezpeleta, I.; Irache, J. M.; Stainmesse, S.; Chabenat, C.; Gueguen, J.; Popineau, Y.; Orecchioni, A.-M., Gliadin nanoparticles for the controlled release of all-trans-retinoic acid[J]. Int. J. Pharm.1996,131 (2),191-200.
    51. Lai, L. F.; Guo, H. X., Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting[J]. Int. J. Pharm.2011,404 (1-2),317-323.
    52. Vega-Lugo, A.-C.; Lim, L.-T., Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers [J]. Food Research International 2009,42 (8),933-940.
    53. Bies, C.; Lehr, C.-M.; Woodley, J. F., Lectin-mediated drug targeting:history and applications[J]. Adv. Drug. Deliv. Rev.2004,56(4),425-435.
    54. Ma, Y.; Nolte, R. J. M.; Cornelissen, J. J. L. M., Virus-based nanocarriers for drug delivery[J]. Adv. Drug. Deliv. Rev.2012,64 (9),811-825.
    55. Comellas-Aragones, M.; Engelkamp, H.; Claessen, V. I.; Sommerdijk, N. A. J. M.; Rowan, A. E.; Christianen, P. C. M.; Maan, J. C.; Verduin, B. J. M.; Cornelissen, J. J. L. M.; Nolte, R. J. M., A virus-based single-enzyme nanoreactor[J]. Nat. Nano 2007, 2 (10),635-639.
    56. Singh, P.; Gonzalez, M. J.; Manchester, M., Viruses and their uses in nanotechnology[J]. Drug Dev. Res.2006,67 (1),23-41.
    57. Frandsen, J. L.; Ghandehari, H., Recombinant protein-based polymers for advanced drug delivery [J]. Chem. Soc. Rev.2012,41 (7),2696-2706.
    58. Hermanson, K. D.; Huemmerich, D.; Scheibel, T.; Bausch, A. R., Engineered Microcapsules Fabricated from Reconstituted Spider Silk[J]. Adv. Mater.2007,19 (14),1810-1815.
    59. Numata, K.; Mieszawska-Czajkowska, A. J.; Kvenvold, L. A.; Kaplan, D. L., Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery[J]. Macromol. Biosci.2012,12 (1),75-82.
    60. Gomes, S. C.; Leonor, I. B.; Mano, J. F.; Reis, R. L.; Kaplan, D. L., Antimicrobial functionalized genetically engineered spider silk[J]. Biomaterials 2011,32 (18), 4255-4266.
    61. Numata, K.; Kaplan, D. L., Silk-Based Gene Carriers with Cell Membrane Destabilizing Peptides[J]. Biomacromolecules 2010,11 (11),3189-3195.
    62. Salaita, K.; Wang, Y.; Mirkin, C. A., Applications of dip-pen nanolithography[J]. Nat. Nano 2007,2 (3),145-155.
    63. Zhang, J.; Yang, B., Patterning Colloidal Crystals and Nanostructure Arrays by Soft Lithography[J]. Adv. Funct. Mater.2010,20 (20),3411-3424.
    64. Wu, C.-C.; Reinhoudt, D. N.; Otto, C.; Subramaniam, V.; Velders, A. H., Strategies for Patterning Biomolecules with Dip-Pen Nanolithography[J]. Small 2011,7 (8), 989-1002.
    65. Nie, Z.; Kumacheva, E., Patterning surfaces with functional polymers[J]. Nat. Mater 2008,7 (4),277-290.
    66. Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G M., New Approaches to Nanofabrication:Molding, Printing, and Other Techniques[J]. Chem. Rev.2005,105 (4),1171-1196.
    67. Koegler, P.; Clayton, A.; Thissen, H.; Santos, G N. C.; Kingshott, P., The influence of nanostructured materials on biointerfacial interactions[J]. Adv. Drug. Deliv. Rev. 2012,64(15),1820-1839.
    68. Cohen-Karni, T.; Jeong, K. J.; Tsui, J. H.; Reznor, G.; Mustata, M.; Wanunu, M.; Graham, A.; Marks, C.; Bell, D. C.; Langer, R.; Kohane, D. S., Nanocomposite Gold-Silk Nanofibers[J]. Nano Lett.2012,12 (10),5403-5406.
    69. Kim, H. N.; Jiao, A.; Hwang, N. S.; Kim, M. S.; Kang do, H.; Kim, D. H.; Suh, K. Y, Nanotopography-guided tissue engineering and regenerative medicine[J]. Adv. Drug. Deliv. Rev.2013,65 (4),536-558.
    70. Jiang, J.; Papoutsakis, E. T., Stem-Cell Niche Based Comparative Analysis of Chemical and Nano-mechanical Material Properties Impacting Ex Vivo Expansion and Differentiation of Hematopoietic and Mesenchymal Stem Cells[J]. Adv. Healthc. Mater.2013,2(1),25-42.
    71. Venugopal, J. R.; Zhang, Y.; Ramakrishna, S., In Vitro Culture of Human Dermal Fibroblasts on Electrospun Polycaprolactone Collagen Nanofibrous Membrane[J]. Artificial Organs 2006,30 (6),440-446.
    72. Venugopal, J.; Ramakrishna, S., Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration[J]. Tissue Eng.2005,11 (5-6),847-854.
    73. Smith, A. G.; Din, A.; Denyer, M.; Crowther, N. J.; Eagland, D.; Vowden, K.; Vowden, P.; Britland, S. T., Microengineered Surface Topography Facilitates Cell Grafting from a Prototype Hydrogel Wound Dressing with Antibacterial Capability[J]. Biotechnol. Progr.2006,22 (5),1407-1415.
    74. Pins, G. D.; Toner, M.; Morgan, J. R., Microfabrication of an analog of the basal lamina:biocompatible membranes with complex topographies[J]. FASEB J.2000, 14 (3),593-602.
    75. Brammer, K. S.; Choi, C.; Frandsen, C. J.; Oh, S.; Jin, S., Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation[J]. Acta Biomaterialia 2011,7 (2),683-690.
    76. You, M.-H.; Kwak, M. K.; Kim, D.-H.; Kim, K.; Levchenko, A.; Kim, D.-Y.; Suh, K.-Y, Synergistically Enhanced Osteogenic Differentiation of Human Mesenchymal Stem Cells by Culture on Nanostructured Surfaces with Induction Media[J]. Biomacromolecules 2010,11 (7),1856-1862.
    77. Dalby, M. J.; Gadegaard, N.; Curtis, A. S.; Oreffo, R. O., Nanotopographical control of human osteoprogenitor differentiation[J]. Curr. Stem Cell Res. Then 2007,2 (2), 129-138.
    78. McMurray, R. J.; Gadegaard, N.; Tsimbouri, P. M.; Burgess, K. V.; McNamara, L. E.; Tare, R.; Murawski, K.; Kingham, E.; Oreffo, R. O. C.; Dalby, M. J., Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency[J]. Nat. Mater.2011,10 (8),637-644.
    79. Dalby, M. J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M. O.; Herzyk, P.; Wilkinson, C. D.; Oreffo, R. O., The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder[J]. Nat. Mater.2007,6(12), 997-1003.
    80. Wilkinson, A.; Hewitt, R. N.; McNamara, L. E.; McCloy, D.; Dominic Meek, R. M.; Dalby, M. J., Biomimetic microtopography to enhance osteogenesis in vitro[J]. Acta Biomaterialia 2011,7 (7),2919-2925.
    81. Zhu, X.; Chen, J.; Scheideler, L.; Reich1, R.; Geis-Gerstorfer, J., Effects of topography and composition of titanium surface oxides on osteoblast responses [J]. Biomaterials 2004,25 (18),4087-4103.
    82. Li, W. J.; Jiang, Y. J.; Tuan, R. S., Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size[J]. Tissue Eng.2006,12 (7),1775-1785.
    83. Sahoo, S.; Lok Toh, S.; Hong Goh, J. C., PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering[J]. J. Biomed. Mater. Res. B Appl. Biomater.2010,95B (1),19-28.
    84. Yim, E. K. F.; Pang, S. W.; Leong, K. W., Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage[J]. Experimental Cell Research 2007,313 (9),1820-1829.
    85. Yim, E. K.; Darling, E. M.; Kulangara, K.; Guilak, F.; Leong, K. W., Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells[J]. Biomaterials 2010,31 (6),1299-1306.
    86. Kulangara, K.; Yang, Y.; Yang, J.; Leong, K. W., Nanotopography as modulator of human mesenchymal stem cell function[J]. Biomaterials 2012,33 (20),4998-5003.
    87. Park, K. I.; Teng, Y. D.; Snyder, E. Y., The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue[J]. Nat. Biotechnol.2002,20 (11),1111-1117.
    88. Brunetti, V.; Maiorano, G.; Rizzello, L.; Sorce, B.; Sabella, S.; Cingolani, R.; Pompa, P. P., Neurons sense nanoscale roughness with nanometer sensitivity [J]. Proceedings of the National Academy of Sciences 2010,107 (14),6264-6269.
    89. Parker, K. K.; Brock, A. L.; Brangwynne, C.; Mannix, R. J.; Wang, N.; Ostuni, E.; Geisse, N. A.; Adams, J. C.; Whitesides, G M.; Ingber, D. E., Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces[J]. FASEB J.2002,16 (10),1195-204.
    90. Evans, D. J. R.; Britland, S.; Wigmore, P. M., Differential response of fetal and neonatal myoblasts to topographical guidance cues in vitro[J]. Dev. Genes Evol. 1999,209 (7),438-442.
    91. Shimizu, K.; Fujita, H.; Nagamori, E., Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives[J]. Biotechnol. Bioeng.2009,103 (3),631-638.
    92. Chua, K.-N.; Chai, C.; Lee, P.-C.; Tang, Y.-N.; Ramakrishna, S.; Leong, K. W.; Mao, H.-Q., Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells [J]. Biomaterials 2006,27 (36),6043-6051.
    93. Lamers, E.; Walboomers, X. F.; Domanski, M.; Prodanov, L.; Melis, J.; Luttge, R.; Winnubst, L.; Anderson, J. M.; Gardeniers, H. J. G E.; Jansen, J. A., In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates[J]. Nanomedicine:Nanotechnology, Biology and Medicine 2012,8 (3),308-317.
    94. Lange, J.; Sapozhnikova, A.; Lu, C.; Hu, D.; Li, X.; Miclau, T.,3rd; Marcucio, R. S., Action of IL-lbeta during fracture healing[J]. J. Orthop. Res.2010,28 (6),778-784.
    95. Euliss, L. E.; DuPont, J. A.; Gratton, S.; DeSimone, J., Imparting size, shape, and composition control of materials for nanomedicine[J]. Chem. Soc. Rev.2006,35 (11),1095-1104.
    96. Lin, M.; Pei, H.; Yang, F.; Fan, C.; Zuo, X., Applications of Gold Nanoparticles in the Detection and Identification of Infectious Diseases and Biothreats[J]. Adv. Mater. 2013,25 (25),3490-3496.
    97. Lim, B.; Xiong, Y.; Xia, Y, A Water-Based Synthesis of Octahedral, Decahedral, and Icosahedral Pd Nanocrystals[J]. Angew. Chem. Int. Ed.2007,119 (48), 9439-9442.
    98. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics?[J]. Angew. Chem. Int. Ed. 2009,48(1),60-103.
    99. Zhang, Z.; Wang, J.; Chen, C., Near-Infrared Light-Mediated Nanoplatforms for Cancer Thermo-Chemotherapy and Optical Imaging[J]. Adv. Mater.2013,25 (28), 3869-3880.
    100. Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M., Gold nanoparticles: a new X-ray contrast agent[J]. Br. J. Radiol.2006,79 (939),248-253.
    101. Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A., Gold nanoparticles for biology and medicine[J]. Angew. Chem. Int. Ed.2010, 49 (19),3280-3294.
    102. Chen, C.-K.; Huang, C.-C.; Chang, H.-T., Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay [J]. Biosens. Bioelectron.2010,25(8),1922-1927.
    103. Zhang, J.; Wang, L.; Zhang, H.; Boey, F.; Song, S.; Fan, C., Aptamer-Based Multicolor Fluorescent Gold Nanoprobes for Multiplex Detection in Homogeneous Solution[J]. Small 2010,6 (2),201-204.
    104. Qian, X.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nat. Biotechnol.2008, 26(1),83-90.
    105. Cao, Y C.; Jin, R.; Mirkin, C. A., Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science 2002,297 (5586),1536-1540.
    106. Zhong, L.; Zhou, X.; Bao, S.; Shi, Y; Wang, Y.; Hong, S.; Huang, Y.; Wang, X.; Xie, Z.; Zhang, Q., Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods[J]. J. Mater. Chem.2011,21 (38), 14448-14455.
    107. Zhou, X.; Wang, Y.; Zhong, L.; Bao, S.; Han, Y.; Ren, L.; Zhang, Q., Rational design of oriented assembly of gold nanospheres with nanorods by biotin-streptavidin connectors[J]. Nanoscale 2012,4 (20),6256-6259.
    108. Weng, J.; Xue, J.; Wang, J.; Ye, J.; Cui, H.; Sheu, F.; Zhang, Q., Gold-Cluster Sensors Formed Electrochemically at Boron-Doped-Diamond Electrodes:Detection of Dopamine in the Presence of Ascorbic Acid and Thiols[J]. Adv. Funct. Mater. 2005,15 (4),639-647.
    109. Lee, N.; Choi, S. H.; Hyeon, T., Nano-Sized CT Contrast Agents[J]. Adv. Mater. 2013,25 (19),2641-2660.
    110. Li, P.-C.; Wang, C.-R. C.; Shieh, D.-B.; Wei, C.-W.; Liao, C.-K.; Poe, C.; Jhan, S.; Ding, A.-A.; Wu, Y.-N., In vivo photoacoustic molecular imaging withsimultaneous multiple selective targeting usingantibody-conjugated gold nanorods[J]. Opt. Express 2008,16 (23),18605-18615.
    111. Chen, Y. S.; Frey, W.; Kim, S.; Homan, K.; Kruizinga, P.; Sokolov, K.; Emelianov, S., Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy[J]. Opt. express 2010,18 (9),8867-8878.
    112.Pai-Chi, L.; Wei, C. W.; Liao, C. K.; Chen, C. D.; Pao, K. C.; Wang, C. R. C.; Wu, Y. N.; Shieh, D. B., Photoacoustic Imaging of Multiple Targets Using Gold Nanorods[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 2007,54 (8),1642-1647.
    113. Yang, H.-W.; Liu, H.-L.; Li, M.-L.; Hsi, I. W.; Fan, C.-T.; Huang, C.-Y.; Lu, Y.-J.; Hua, M.-Y.; Chou, H.-Y.; Liaw, J.-W.; Ma, C.-C. M.; Wei, K.-C., Magnetic gold-nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy [J]. Biomaterials 2013,34 (22),5651-5660.
    114. Vigderman, L.; Zubarev, E. R., Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules[J]. Adv. Drug. Deliv. Rev.2013, 65 (5),663-676.
    115. Gu, H.; Ho, P. L.; Tong, E.; Wang, L.; Xu, B., Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities[J]. Nano Lett.2003,3 (9), 1261-1263.
    116. Li, N.; Yu, Z.; Pan, W.; Han, Y.; Zhang, T.; Tang, B., A Near-Infrared Light-Triggered Nanocarrier with Reversible DNA Valves for Intracellular Controlled Release[J]. Adv. Funct. Mater.2013,23 (18),2255-2262.
    117. Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M., Gold nanoparticles in delivery applications[J]. Adv. Drug. Deliv. Rev.2008,60 (11),1307-1315.
    118. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K.; Han, M. S.; Mirkin, C. A., Oligonucleotide-modified gold nanoparticles for intracellular gene regulation[J]. Science 2006,312 (5776),1027-1030.
    119. Kawano, T.; Yamagata, M.; Takahashi, H.; Niidome, Y.; Yamada, S.; Katayama, Y.; Niidome, T., Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses[J]. J. Controlled Release 2006,111 (3),382-389.
    120. Rhim, W. K.; Kim, J. S.; Nam, J. M., Lipid-gold-nanoparticle hybrid-based gene delivery[J]. Small 2008,4 (10),1651-1655.
    121. Chakravarthy, K. V.; Bonoiu, A. C.; Davis, W. G.; Ranjan, P.; Ding, H.; Hu, R.; Bowzard, J. B.; Bergey, E. J.; Katz, J. M.; Knight, P. R.; Sambhara, S.; Prasad, P. N., Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication[J]. Proc. Natl. Acad. Sci.2010,107 (22),10172-10177.
    122. Wei, M.; Chen, N.; Li, J.; Yin, M.; Liang, L.; He, Y.; Song, H.; Fan, C.; Huang, Q., Polyvalent immunostimulatory nanoagents with self-assembled CpG oligonucleotide-conjugated gold nanoparticles[J]. Angew. Chem. Int. Ed.2012,51 (5),1202-1206.
    123. Huang, Y.-F.; Sefah, K.; Bamrungsap, S.; Chang, H.-T.; Tan, W., Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated Nanorods[J]. Langmuir 2008,24 (20),11860-11865.
    124. Raji, V.; Kumar, J.; Rejiya, C. S.; Vibin, M.; Shenoi, V. N.; Abraham, A., Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells[J]. Exp. Cell Res.2011,317 (14),2052-2058.
    125. Schnarr, K.; Mooney, R.; Weng, Y; Zhao, D.; Garcia, E.; Armstrong, B.; Annala, A. J.; Kim, S. U.; Aboody, K. S.; Berlin, J. M., Gold Nanoparticle-Loaded Neural Stem Cells for Photothermal Ablation of Cancer[J]. Adv. Healthc. Mater.2013,2 (7), 976-982.
    126. Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K., Selective release of multiple DNA oligonucleotides from gold nanorods[J]. ACS Nano 2009,3(1), 80-86.
    127. Shen, S.; Tang, H.; Zhang, X.; Ren, J.; Pang, Z.; Wang, D.; Gao, H.; Qian, Y.; Jiang, X.; Yang, W., Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation[J]. Biomaterials 2013,34 (12),3150-3158.
    128. Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F., Theranostic Nanomedicine[J]. Acc. Chem. Res.2011,44(10),1029-1038.
    129. Kim, D.; Jeong, Y. Y.; Jon, S., A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer[J]. ACS Nano 2010,4 (7),3689-3696.
    130. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods[J]. J. Am. Chem. Soc.2006,128 (6),2115-2120.
    131. Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y, Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo[J]. ACS Nano 2011,5 (2),1086-94.
    1. Shchpelina,O.;Drachuk,I.;Gupta,M.K.;Lin,J.;Tsukruk,V V,Silk-on-Silk Layer-by-Layer Microcapsules[J].Adv.Mater.2011,23(40),4655-4660.
    2. Zhu, Y.; Tong, W.; Gao, C.; Mohwald, H., Fabrication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking[J]. J. Mater. Chem. 2008,18(10),1153-1158.
    3. van Rijn, P.; Mougin, N. C.; Franke, D.; Park, H.; Boker, A., Pickering emulsion templated soft capsules by self-assembling cross-linkable ferritin-polymer conjugates[J]. Chem. Commun.2011,47(29),8376-8378.
    4. Caruso, F.; Caruso, R. A.; Mohwald, H., Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J].Science 1998,282 (5391),1111-1114.
    5. Luo, R.; Venkatraman, S. S.; Neu, B., Layer-by-Layer Polyelectrolyte-Polyester Hybrid Microcapsules for Encapsulation and Delivery of Hydrophobic Drugs[J]. Biomacromolecules 2013,14 (7),2262-2271.
    6. Kozlovskaya, V.; Kharlampieva, E.; Drachuk, I.; Cheng, D.; Tsukruk, V. V., Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies [J]. Soft Matter 2010, 6(15),3596-3608.
    7. Wang, Z.; Feng, Z.; Gao, C., Stepwise Assembly of the Same Polyelectrolytes Using Host-Guest Interaction To Obtain Microcapsules with Multiresponsive Properties[J]. Chem. Mater.2008,20 (13),4194-4199.
    8. Sau, T. K.; Murphy, C. J., Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution[J]. Langmuir 2004,20 (15),6414-6420.
    9. Wang, L.; Liu, X.; Hu, X.; Song, S.; Fan, C., Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers[J]. Chem. Commun.2006, (36), 3780-3782.
    10. Hurst, S. J.; Lytton-Jean, A. K. R.; Mirkin, C. A., Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes[J]. Anal. Chem.2006,78 (24),8313-8318.
    11. Taton, T. A., Preparation of Gold Nanoparticle-DNA Conjugates. Current Protocols in Nucleic Acid Chemistry,2002:12.2.1-12.2.12.
    12. Lee, H.; Jeong, Y.; Park, T. G., Shell Cross-Linked Hyaluronic Acid/Polylysine Layer-by-Layer Polyelectrolyte Microcapsules Prepared by Removal of Reducible Hyaluronic Acid Microgel Cores[J]. Biomacromolecules 2007,8(12),3705-3711.
    13. Tong, W.; Gao, C.; Mohwald, H., pH-responsive protein microcapsules fabricated via glutaraldehyde mediated covalent layer-by-layer assembly [J]. Colloid Polym. Sci.2008,286(10),1103-1109.
    14. Johnston, A. P. R.; Mitomo, H.; Read, E. S.; Caruso, F., Compositional and Structural Engineering of DNA Multilayer Films [J]. Langmuir 2006,22 (7), 3251-3258.
    15. Johnston, A. P. R.; Lee, L.; Wang, Y.; Caruso, F., Controlled Degradation of DNA Capsules with Engineered Restriction-Enzyme Cut Sites[J]. Small 2009,5(12), 1418-1421.
    16. Go, D. P.; Gras, S. L.; Mitra, D.; Nguyen, T. H.; Stevens, G. W.; Cooper-White, J. J.; O'Connor, A. J., Multilayered Microspheres for the Controlled Release of Growth Factors in Tissue Engineering[J]. Biomacromolecules 2011,12 (5),1494-1503.
    17. Wang, X.; Wenk, E.; Hu, X.; Castro, G. R.; Meinel, L.; Wang, X.; Li, C.; Merkle, H.; Kaplan, D. L., Silk coatings on PLGA and alginate microspheres for protein delivery[J]. Biomaterials 2007,28 (28),4161-4169.
    18. Zhou, Z.; Anselmo, A. C.; Mitragotri, S., Synthesis of Protein-Based, Rod-Shaped Particles from Spherical Templates using Layer-by-Layer Assembly [J]. Adv. Mater. 2013,25 (19),2723-2727.
    19. Kolhar, P.; Mitragotri, S., Polymer Microparticles Exhibit Size and Shape Dependent Accumulation around the Nucleus after Endocytosis[J]. Adv. Funct. Mater.2012,22 (18),3759-3764.
    20. Zhou, Z.; Xu, J.; Liu, X.; Li, X.; Li, S.; Yang, K.; Wang, X.; Liu, M.; Zhang, Q., Non-spherical racemic polylactide microarchitectures formation via solvent evaporation method[J]. Polymer 2009,50 (15),3841-3850.
    21. Li, R.; Li, X.; Liu, L.; Zhou, Z.; Tang, H.; Zhang, Q., High-Yield Fabrication of PLGA Non-Spherical Microarchitectures by Emulsion-Solvent Evaporation Method[J]. Macromol. Rapid Commun.2010,31(22),1981-1986.
    22. Wang, X.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D. L., Silk nanospheres and microspheres from silk/pva blend films for drug delivery[J]. Biomaterials 2010,31 (6),1025-1035.
    23. Orendorff, C. J.; Murphy, C. J., Quantitation of Metal Content in the Silver-Assisted Growth of Gold Nanorods[J]. J. Phys. Chem. B 2006,110 (9),3990-3994.
    24. Shchukin, D. G.; Gorin, D. A.; Mohwald, H., Ultrasonically Induced Opening of Polyelectrolyte Microcontainers[J]. Langmuir 2006,22 (17),7400-7404.
    25. Cohen-Karni, T.; Jeong, K. J.; Tsui, J. H.; Reznor, G.; Mustata, M.; Wanunu, M.; Graham, A.; Marks, C.; Bell, D. C.; Langer, R.; Kohane, D. S., Nanocomposite Gold-Silk Nanofibers[J]. Nano Lett.2012,12 (10),5403-5406.
    26. Gormley, A. J.; Larson, N.; Sadekar, S.; Robinson, R.; Ray, A.; Ghandehari, H., Guided Delivery of Polymer Therapeutics Using Plasmonic Photothermal Therapy[J]. Nano Today 2012,7(3),158-167.
    27. Paasonen, L.; Laaksonen, T.; Johans, C.; Yliperttula, M.; Kontturi, K.; Urtti, A., Gold nanoparticles enable selective light-induced contents release from liposomes[J]. J. Controlled Release 2007,122 (1),86-93.
    28. Massich, M. D.; Giljohann, D. A.; Schmucker, A. L.; Patel, P. C.; Mirkin, C. A., Cellular Response of Polyvalent Oligonucleotide-Gold Nanoparticle Conjugates[J]. ACS Nano 2010,4 (10),5641-5646.
    29. Sharma, J.; Chhabra, R.; Liu, Y.; Ke, Y.; Yan, H., DNA-Templated Self-Assembly of Two-Dimensional and Periodical Gold Nanoparticle Arrays [J]. Angew. Chem. Int. Ed.2006,45 (5),730-735.
    30. Shieh, Y.-A.; Yang, S.-J.; Wei, M.-F.; Shieh, M.-J., Aptamer-Based Tumor-Targeted Drug Delivery for Photodynamic Therapy[J]. ACS Nano 2010,4 (3),1433-1442.
    31. Liu, X.; Yan, H.; Liu, Y.; Chang, Y., Targeted Cell-Cell Interactions by DNA Nanoscaffold-Templated Multivalent Bispecific Aptamers[J]. Small 2011,7 (12), 1673-1682.
    32. Xing, H.; Wang, Z.; Xu, Z.; Wong, N. Y.; Xiang, Y.; Liu, G. L.; Lu, Y., DNA-Directed Assembly of Asymmetric Nanoclusters Using Janus Nanoparticles[J]. ACSNano 2011,6(1),802-809.
    33. Keefe, A. D.; Pai, S.; Ellington, A., Aptamers as therapeutics[J]. Nat. Rev. Drug Discov.2010,9 (7),537-550.
    34. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K.; Han, M. S.; Mirkin, C. A., Oligonucleotide-modified gold nanoparticles for intracellular gene regulation[J]. Science 2006,312 (5776),1027-1030.
    35. Kim, J.-H.; Jang, H. H.; Ryou, S.-M.; Kim, S.; Bae, J.; Lee, K.; Han, M. S., A functionalized gold nanoparticles-assisted universal carrier for antisense DNA[J]. Chem. Commun.2010,46(23),4151-4153.
    36. Wei, M.; Chen, N.; Li, J.; Yin, M.; Liang, L.; He, Y.; Song, H.; Fan, C.; Huang, Q., Polyvalent immunostimulatory nanoagents with self-assembled CpG oligonucleotide-conjugated gold nanoparticles[J]. Angew. Chem. Int. Ed.2012,51 (5),1202-1206.
    37. Schiiller, V. J.; Heidegger, S.; Sandholzer, N.; Nickels, P. C.; Suhartha, N. A.; Endres, S.; Bourquin, C.; Liedl, T., Cellular Immunostimulation by CpG-Sequence-Coated DNA Origami Structures [J]. ACS Nano 2011,5 (12),9696-9702.
    38. Li, Z.; Liu, Z.; Yin, M.; Yang, X.; Ren, J.; Qu, X., Combination Delivery of Antigens and CpG by Lanthanides-Based Core-Shell Nanoparticles for Enhanced Immune Response and Dual-Mode Imaging[J]. Adv. Healthc. Mater.2013, DOI:10.1002/adhm.201200364.
    39. Wang, Y.; Li, Y. F.; Wang, J.; Sang, Y.; Huang, C. Z., End-to-end assembly of gold nanorods by means of oligonucleotide-mercury(ii) molecular recognition[J]. Chem. Commun.2010,46 (8),1332-1334.
    40. Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K., Selective release of multiple DNA oligonucleotides from gold nanorods[J]. ACS Nano 2009,3(1), 80-86.
    1. Kundu, J.; Chung, Y.-I.; Kim, Y. H.; Tae, G.; Kundu, S. C., Silk fibroin nanoparticles for cellular uptake and control release[J]. Int. J. Pharm.2010,388 (1-2),242-250.
    2. Weber, C.; Coester, C.; Kreuter, J.; Langer, K., Desolvation process and surface characterisation of protein nanoparticles[J]. Int. J.Pharm.2000,194 (1),91-102.
    3. Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; von Briesen, H.; Schubert, D., Optimization of the preparation process for human serum albumin (HSA) nanoparticles[J]. Int. J. Pharm.2003,257 (1-2),169-180.
    4. Zhu, Y.; Tong, W.; Gao, C.; Mohwald, H., Fabrication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking[J]. J. Mater. Chem.2008, 18(10),1153-1158.
    5. Zhu, C.-L.; Lu, C.-H.; Song, X.-Y.; Yang, H.-H.; Wang, X.-R., Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate[J]. J. Am. Chem. Soc.2011,133 (5),1278-1281.
    6. Yang, X.; Liu, X.; Liu, Z.; Pu, F.; Ren, J.; Qu, X., Near-Infrared Light-Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles[J]. Adv. Mater.2012,24 (21),2890-2895.
    7. Li, N.; Yu, Z.; Pan, W.; Han, Y.; Zhang, T.; Tang, B., A Near-Infrared Light-Triggered Nanocarrier with Reversible DNA Valves for Intracellular Controlled Release[J]. Adv. Funct. Mater.2013,23 (18),2255-2262.
    8. Chen, X.; Chen, H.; Tripisciano, C.; Jedrzejewska, A.; Rummeli, M. H.; Klingeler, R.; Kalenczuk, R. J.; Chu, P. K.; Borowiak-Palen, E., Carbon-Nanotube-Based Stimuli-Responsive Controlled-Release System[J]. Chem. Eur. J.2011,17 (16), 4454.4459.
    9. Shchepelina, O.; Drachuk, I.; Gupta, M. K.; Lin, J.; Tsukruk, V. V., Silk-on-Silk Layer-by-Layer Microcapsules[J]. Adv. Mater.2011,23 (40),4655-4660.
    10. Wang, X.; Wenk, E.; Hu, X.; Castro, G. R.; Meinel, L.; Wang, X.; Li, C.; Merkle, H.; Kaplan, D. L., Silk coatings on PLGA and alginate microspheres for protein delivery[J]. Biomaterials 2007,28 (28),4161-4169.
    11. Shi, P.; Goh, J. C. H., Release and cellular acceptance of multiple drugs loaded silk fibroin particles[J]. Int. J. Pharm.2011,420 (2),282-289.
    12. Qian, X.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nat. Biotechnol.2008, 26(1),83-90.
    13. Tong, W.; Gao, C.; Mohwald, H., pH-responsive protein microcapsules fabricated via glutaraldehyde mediated covalent layer-by-layer assembly [J]. Colloid Polym. Sei. 2008,286(10),1103-1109.
    14. Guo, C.; Wang, J.; Dai, Z., Selective content release from light-responsive microcapsules by tuning the surface plasmon resonance of gold nanorods[J]. Microchim. Acta 2011,173 (3-4),375-382.
    15. He, J.; Wei, Z.; Wang, L.; Tomova, Z.; Babu, T.; Wang, C.; Han, X.; Fourkas, J. T.; Nie, Z., Hydrodynamically Driven Self-Assembly of Giant Vesicles of Metal Nanoparticles for Remote-Controlled Release[J]. Angew. Chem.2013,125 (9), 2523-2528.
    1. Kim, H. N.; Jiao, A.; Hwang, N. S.; Kim, M. S.; Kang do, H.; Kim, D. H.; Suh, K. Y, Nanotopography-guided tissue engineering and regenerative medicine[J]. Adv. Drug Deliv. Rev.2013,65 (4),536-558.
    2. Wilkinson, A.; Hewitt, R. N.; McNamara, L. E.; McCloy, D.; Dominic Meek, R. M.; Dalby, M. J., Biomimetic microtopography to enhance osteogenesis in vitro[J]. Acta Biomaterialia 2011,7 (7),2919-2925.
    3. Yim, E. K.; Darling, E. M.; Kulangara, K.; Guilak, F.; Leong, K. W., Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells[J]. Biomaterials 2010,31 (6),1299-1306.
    4. Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; von Briesen, H.; Schubert, D., Optimization of the preparation process for human serum albumin (HSA) nanoparticles[J]. Int. J. Pharm.2003,257(1-2),169-180.
    5. Zhu, Y.; Tong, W.; Gao, C.; Mohwald, H., Fabrication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking[J]. J. Mater. Chem. 2008,18(10),1153-1158.
    6. Lamers, E.; Walboomers, X. F.; Domanski, M.; Prodanov, L.; Melis, J.; Luttge, R.; Winnubst, L.; Anderson, J. M.; Gardeniers, H. J. G E.; Jansen, J. A., In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates[J]. Nanomedicine:Nanotechnology, Biology and Medicine 2012,8 (3),308-317.
    7. Lange, J.; Sapozhnikova, A.; Lu, C.; Hu, D.; Li, X.; Miclau, T.,3rd; Marcucio, R. S., Action of IL-1beta during fracture healing[J]. J. Orthop. Res.2010,28 (6),778-784.
    8. Shi, P.; Goh, J. C. H., Release and cellular acceptance of multiple drugs loaded silk fibroin particles[J]. Int. J. Pharm.2011,420 (2),282-289.
    9. Li, W. J.; Jiang, Y. J.; Tuan, R. S., Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size[J]. Tissue Eng.2006,12 (7),1775-1785.
    10. Sahoo, S.; Lok Toh, S.; Hong Goh, J. C., PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering[J]. J. Biomed. Mater. Res. B Appl. Biomater.2010,95B (1),19-28.
    11. Yim, E. K. F.; Pang, S. W.; Leong, K. W., Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage[J]. Exp. Cell Res.2007,313 (9),1820-1829.
    12. Kulangara, K.; Yang, Y.; Yang, J.; Leong, K. W., Nanotopography as modulator of human mesenchymal stem cell function[J]. Biomaterials 2012,33 (20),4998-5003.
    1. Jiang, J.; Papoutsakis, E. T., Stem-Cell Niche Based Comparative Analysis of Chemical and Nano-mechanical Material Properties Impacting Ex Vivo Expansion and Differentiation of Hematopoietic and Mesenchymal Stem Cells[J]. Adv. Healthc. Mater.2013,2 (1),25-42.
    2. Discher, D. E.; Janmey, P.; Wang, Y. L., Tissue cells feel and respond to the stiffness of their substrate[J]. Science 2005,310 (5751),1139-1143.
    3. Koegler, P.; Clayton, A.; Thissen, H.; Santos, G N. C.; Kingshott, P., The influence of nanostructured materials on biointerfacial interactions[J]. Adv. Drug. Deliv. Rev. 2012,64(15),1820-1839.
    4. Cohen-Karni, T.; Jeong, K. J.; Tsui, J. H.; Reznor, G.; Mustata, M.; Wanunu, M.; Graham, A.; Marks, C.; Bell, D. C.; Langer, R.; Kohane, D. S., Nanocomposite Gold-Silk Nanofibers[J]. Nano Lett.2012,12 (10),5403-5406.
    5. Liu, X.; Yan, H.; Liu, Y.; Chang, Y, Targeted Cell-Cell Interactions by DNA Nanoscaffold-Templated Multivalent Bispecific Aptamers[J]. Small 2011,7 (12), 1673-1682.
    6. Orendorff, C. J.; Murphy, C. J., Quantitation of Metal Content in the Silver-Assisted Growth of Gold Nanorods[J]. J.Phys. Chem. B 2006,110 (9),3990-3994.
    7. Nuttelman, C. R.; Tripodi, M. C.; Anseth, K. S., Synthetic hydrogel niches that promote hMSC viability[J]. Matrix Biology 2005,24 (3),208-218.
    8. Groll, J.; Fiedler, J.; Engelhard, E.; Ameringer, T.; Tugulu, S.; Klok, H.-A.; Brenner, R. E.; Moeller, M., A novel star PEG-derived surface coating for specific cell adhesion[J]. JBiomed. Mater. Res. A 2005,74A (4),607-617.
    9. Re'em, T.; Kaminer-Israeli, Y.; Ruvinov, E.; Cohen, S., Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds[J]. Biomaterials 2012,33 (3),751-761.
    10. Chun, C.; Lim, H. J.; Hong, K.-Y.; Park, K.-H.; Song, S.-C., The use of injectable, thermosensitive poly(organophosphazene)-RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation[J]. Biomaterials 2009,30 (31), 6295-6308.
    11. Khlebtsov, N.; Dykman, L., Biodistribution and toxicity of engineered gold nanoparticles:a review of in vitro and in vivo studies[J]. Chem. Soc. Rev.2011,40 (3),1647-1671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700