饱和脂肪酸致大鼠心肌细胞损伤凋亡的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病患者血浆脂质升高的同时,心肌内亦存在脂质蓄积,并伴有心肌细胞凋亡。体外培养也发现饱和脂肪酸可诱导多种细胞出现凋亡。为探讨饱和脂肪酸损伤心肌的机制,本文第一部分使用高脂喂养结合腹腔注射小计量链脲菌素构建2型糖尿病大鼠,观察大鼠脂质代谢紊乱、心肌细胞凋亡、心功能的变化情况,并使用代谢药物左旋卡尼汀进行干预,结果发现,糖尿病大鼠在血浆脂质升高的同时伴有心肌细胞膜上FAT/CD36蛋白含量增加、心肌脂质蓄积、心肌细胞凋亡、心功能受损;L-CN具有显著保护作用。为进一步研究饱和脂肪酸对心肌的损伤作用,本文第二部分使用palmitate处理乳鼠心肌细胞,结果发现palmitate可显著升高细胞凋亡率,CPT-1抑制剂perhexiline可加重palmitate诱导的心肌细胞凋亡,CPT-1辅助因子L-CN可减轻palmitate诱导的心肌细胞凋亡。既往研究发现饱和脂肪酸可诱导胰岛β细胞发生内质网应激,因此本文第三部分初步探讨了内质网应激在palmitate诱导心肌细胞凋亡中的作用,结果发现palmitate可激活心肌细胞多条参与内质网应激的信号通路。
Recently, Lipid accumulation in the heart has been observed under conditions of elevatedplasma free fatty acids, such as Type 2 diabetes mellitus and is linked with cardiomyocyte apoptosis. It isalso found that apoptosis can be induced by saturated fatty acid in cultured cell. In order to study themechanism of myocardial injury by saturated fatty acid, in first part of this study we got type 2 diabetic ratsby HFD-fed and STZ-treated, and observed metabolic disorder, cardiomyocyte apoptosis and heart functionof diabetic rats. At the same time diabetic rats were treated by metabolic drug L-CN. We found that plasmalipid level was increased followed by augment of FAT/CD36 on cardiomyocyte membrane, cardiomyocyteapoptosis, degresion of heart function, and L-CN showed significantly protective effect. For furtherstudying saturated fatty acid induced injury, we cultured neonatal rat cardiomyocytes with palmitate ofdifferent concentration. Significant effect of palmitate induced cardiomyocyte apoptosis was found, whitchcould be aggravated by CPT-1 inhibitor perhexiline and be lessened by CPT-1 cofactor L-CN. Previousstudies show ER stress occurs in palmitate-treated pancreaticβcell, therefore the effect of ER stress inpalmitate-induced cardiomyocyte apoptosis was approached in part 3 of this study. The results indicatedthat ER stress contributed to palmitate-induced cardiomyocyte apoptosis.
引文
1. Cacicedo JM, Benjachareowong S, et al. Palmitate-induced apoptosis in cultured bovine retinal pericytes: roles of NAD(P)H oxidase, oxidant stress, and ceramide. Diabetes 2005;54(6):1838-45.
    
    2. Hajri T, Abumrad NA. Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu.Rev.Nutr. 2002;22:383-415.
    
    3. Luiken JJ, Dyck DJ, et al. Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane. Am J Physiol Endocrinol Metab 2002;282(2):E491-5.
    
    4. Luiken JJ, Arumugam Y, et al. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J.Biol.Chem. 2001;276(44):40567-40573.
    
    5. Chai W, Liu Z. p38 mitogen-activated protein kinase mediates palmitate-induced apoptosis but not inhibitor of nuclear factor-kappaB degradation in human coronary artery endothelial cells. Endocrinology 2007;148(4):1622-8.
    
    6. Staiger K, Staiger H, et al. Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-kappaB activation. Diabetes 2006;55(11):3121-6.
    
    7. Hickson-Bick DL, Buja ML, et al. Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J Mol Cell Cardiol 2000;32(3):511-9.
    
    8. Zarain-Herzberg A, Rupp H. Therapeutic potential of CPT I inhibitors: cardiac gene transcription as a target. Expert Opin Investig Drugs 2002;ll(3):345-56.
    
    9. Cook GA, Edwards TL, et al. Differential regulation of carnitine palmitoyltransferase-I gene isoforms (CPT-I alpha and CPT-I beta) in the rat heart. J Mol Cell Cardiol 2001;33(2):317-29.
    
    10. Jeffrey FM, Alvarez L, et al. Direct evidence that perhexiline modifies myocardial substrate utilization from fatty acids to lactate. J Cardiovasc Pharmacol 1995;25(3):469-72.
    
    11. Fantini E, Demaison L, et al. Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation. J Mol Cell Cardiol 1994;26(8):949-58.
    
    12. Lopaschuk G Regulation of carbohydrate metabolism in ischemia and reperfusion.Am Heart J 2000;139(2 Pt 3):S115-9.
    
    13. Stein AB, Tang XL, et al. Delayed adaptation of the heart to stress: late preconditioning. Stroke 2004;35(11 Suppl 1):2676-9.
    
    14. Szegezdi E, Duffy A, et al. ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochem Biophys Res Commun 2006;349(4):1406-11.
    15. Thuerauf DJ, Marcinko M, et al. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res 2006;99(3):275-82.
    
    16. Karaskov E, Scott C, et al. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis.Endocrinology 2006;147(7):3398-407.
    
    17. Devereux RB, Roman MJ, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 2000;101(19):2271-2276.
    
    18. Fonarow GC, Srikanthan P. Diabetic cardiomyopathy. Endocrinol.Metab Clin.North Am. 2006;35(3):575-99, ix.
    
    19. Wijsman JH, Jonker RR, et al. A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J.Histochem.Cytochem. 1993;41(1):7-12.
    
    20. Dong JW, Zhu HF, et al. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res.2003;13(5):385-391.
    
    21. Bremer J, Woldegiorgis G, et al. Carnitine palmitoyltransferase. Activation by palmitoyl-CoA and inactivation by malonyl-CoA. Biochim.Biophys.Acta 1985;833(1):9-16.
    
    22. Luo J, Quan J, et al. Nongenetic mouse models of non-insulin-dependent diabetes mellitus. Metabolism 1998;47(6):663-668.
    
    23. Ghosh S, Qi D, et al. Brief episode of STZ-induced hyperglycemia produces cardiac abnormalities in rats fed a diet rich in n-6 PUFA. Am J Physiol Heart Circ Physiol 2004;287(6):H2518-27.
    
    24. Storlien LH, James DE, et al. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol 1986;251(5 Pt 1):E576-83.
    
    25. Srinivasan K, Patole PS, et al. Reversal of glucose intolerance by by pioglitazone in high fat diet-fed rats. Methods Find Exp Clin Pharmacol 2004;26(5):327-33.
    
    26. Srinivasan K, Viswanad B, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening.Pharmacol.Res. 2005;52(4):313-320.
    
    27. Van der Lee KA, Willemsen PH, et al. Fasting-induced changes in the expression of genes controlling substrate metabolism in the rat heart. J Lipid Res 2001;42(11):1752-8.
    
    28. Brinkmann JF, Abumrad NA, et al. New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem J 2002;367(Pt 3):561-70.
    29. Bonen A, Dyck DJ, et al. Muscle contractile activity increases fatty acid metabolism and transport and FAT/CD36. Am J Physiol 1999;276(4 Pt l):E642-9.
    
    30. Luptak I, Balschi JA, et al. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 2005;112(15):2339-46.
    
    31. Barger PM, Kelly DP. Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms. Am J Med Sci 1999;318(1):36-42.
    
    32. Finck BN, Lehman JJ, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002;109(1):121-30.
    
    33.Mann DL. Stress-activated cytokines and the heart: from adaptation to maladaptation.Annu Rev Physiol 2003;65:81-101.
    
    34. Young ME, McNulty P, et al. Adaptation and maladaptation of the heart in diabetes:Part II: potential mechanisms. Circulation 2002;105(15):1861-1870.
    
    35. Visioli O, Ferrari R. [Cardiac adaptation and maladaptation]. Cardiologia 1996;41(10):919-28.
    
    36. Wagman AS, Nuss JM. Current therapies and emerging targets for the treatment of diabetes. Curr Pharm Des 2001;7(6):417-50.
    
    37. Abumrad NA, el-Maghrabi MR, et al. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 1993;268(24):17665-8.
    
    38. Sfeir Z, Ibrahimi A, et al. Regulation of FAT/CD36 gene expression: further evidence in support of a role of the protein in fatty acid binding/transport. Prostaglandins Leukot Essent Fatty Acids 1997;57(1):17-21.
    
    39. Labinskyy V, Bellomo M, et al. Chronic Activation of Peroxisome Proliferator-Activated Receptor-{alpha} with Fenofibrate Prevents Alterations in Cardiac Metabolic Phenotype without Changing the Onset of Decompensation in Pacing-Induced Heart Failure. J Pharmacol Exp Ther 2007;321(1):165-71.
    
    40. Broderick TL, Driedzic W, et al. Propionyl-L-carnitine effects on postischemic recovery of heart function and substrate oxidation in the diabetic rat. Mol Cell Biochem 2000;206(1-2):151-7.
    
    41. Rahbar AR, Shakerhosseini R, et al. Effect of L-carnitine on plasma glycemic and lipidemic profile in patients with type II diabetes mellitus. Eur J Clin Nutr 2005;59(4):592-6.
    
    42. Mingrone G Carnitine in type 2 diabetes. Ann N Y Acad Sci 2004;1033:99-107.
    43. Derosa G, Cicero AF, et al. The effect of L-carnitine on plasma lipoprotein(a) levels in hypercholesterolemic patients with type 2 diabetes mellitus. Clin Ther 2003;25(5):1429-39.
    
    44. Polyak K, Xia Y, et al. A model for p53-induced apoptosis. Nature 1997;389(6648):300-5.
    
    45. Sparagna GC, Hickson-Bick DL. Cardiac fatty acid metabolism and the induction of apoptosis. Am J Med Sci 1999;318(1):15-21.
    
    46. Listenberger LL, Schaffer JE. Mechanisms of lipoapoptosis: implications for human heart disease. Trends Cardiovasc Med 2002;12(3):134-8.
    
    47. Hale AJ, Smith CA, et al. Apoptosis: molecular regulation of cell death. Eur J Biochem 1996;237(3):884.
    
    48. Hale AJ, Smith CA, et al. Apoptosis: molecular regulation of cell death. Eur J Biochem 1996;236(1):1-26.
    
    49. Bonen A, Luiken JJ, et al. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 2000;275(19):14501-8.
    
    50. Lemieux K, Han XX, et al. The transferrin receptor defines two distinct contraction-responsive GLUT4 vesicle populations in skeletal muscle. Diabetes 2000;49(2):183-9.
    
    51. Sparagna GC, Hickson-Bick DL, et al. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 2000;279(5):H2124-32.
    
    52. Belardinelli R, Purcaro A. Effects of trimetazidine on the contractile response of chronically dysfunctional myocardium to low-dose dobutamine in ischaemic cardiomyopathy.Eur Heart J 2001;22(23):2164-70.
    
    53. Cuthbert KD, Dyck JR. Malonyl-CoA decarboxylase is a major regulator of myocardial fatty acid oxidation. Curr Hypertens Rep 2005;7(6):407-11.
    
    54. Grynberg A. Effectors of fatty acid oxidation reduction: promising new anti-ischaemic agents. Curr Pharm Des 2005;11(4):489-509.
    
    55. Schwartz GG, Greyson C, et al. Inhibition of fatty acid metabolism alters myocardial high-energy phosphates in vivo. Am J Physiol 1994;267(1 Pt 2):H224-31.
    
    56. Esfandiari F, Villanueva JA, et al. Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs. Am J Physiol Gastrointest Liver Physiol 2005;289(l):G54-63.
    
    57. Kharroubi I, Ladriere L, et al. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 2004;145(11):5087-96.
    
    58. Laybutt DR, Preston AM, et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007;50(4):752-763.
    
    59. Little JL, Wheeler FB, et al. Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res 2007;67(3):1262-9.
    
    60. Pirot P, Ortis F, et al. Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing cells. Diabetes 2007;56(4):1069-77.
    
    61. Wei Y, Wang D, et al. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 2006;291(2):E275-81.
    
    62. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol 2004;14(1):20-8.
    
    63. Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005;569(1-2):29-63.
    
    64. Zhao L, Ackerman SL. Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 2006;18(4):444-52.
    
    65. Travers KJ, Patil CK, et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000;101(3):249-58.
    
    66. Ferri KF, Kroemer G Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001;3(11):E255-63.
    
    67. Goder V, Spiess M. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. Embo J 2003;22(14):3645-53.
    
    68. Ng DT, Spear ED, et al. The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol 2000;150(1):77-88.
    
    69. Kadowaki H, Nishitoh H, et al. Survival and apoptosis signals in ER stress: the role of protein kinases. J Chem Neuroanat 2004;28(1-2):93-100.
    
    70. Xiao-Hong Y, Li L, et al. Salusins protect neonatal rat cardiomyocytes from serum deprivation-induced cell death through upregulation of GRP78. J Cardiovasc Pharmacol 2006;48(2):41-6.
    
    71. Pahl HL. Signal transduction from the endoplasmic reticulum to the cell nucleus.Physiol Rev 1999;79(3):683-701.
    
    72. Bertolotti A, Zhang Y, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000;2(6):326-32.
    
    73. Shen J, Chen X, et al. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002;3(1):99-111.
    
    74. Lee K, Tirasophon W, et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBPl in signaling the unfolded protein response. Genes Dev 2002;16(4):452-66.
    
    75. Yoshida H, Matsui T, et al. XBPl mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001;107(7):881-91.
    
    76. Yoshida H, Okada T, et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 2000;20(18):6755-67.
    
    77. Haze K, Yoshida H, et al. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999;10(11):3787-99.
    
    78. Ma Y, Hendershot LM. The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004;4(12):966-77.
    
    79. Breckenridge DG, Germain M, et al. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003;22(53):8608-18.
    
    80. Nishikawa M, Kira Y, et al. Identification and characterization of endoplasmic reticulum-associated protein, ERp43. Gene 2007;386(1-2):42-51.
    
    81. Momoi T. Conformational diseases and ER stress-mediated cell death: apoptotic cell death and autophagic cell death. Curr Mol Med 2006;6(1):111-8.
    
    82. Kaneko M, Nomura Y. ER signaling in unfolded protein response. Life Sci 2003;74(2-3):199-205.
    
    83. Nozaki S, Sledge Jr GW, et al. Repression of GADD153/CHOP by NF-kappaB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Oncogene 2001;20(17):2178-85.
    [1] Hamilton JA, Kamp F How are free fatty acids transported in membranes?Is it by proteins or by free diffusion through the lipids[j]? Diabetes, 1999, 48:2255-2269.
    [2] Abumrad NA, E1-Maghrabi MR, Amfi E-Z, et al. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation[j]. J Biol Chem, 1993, 268:17665-17668.
    [3] Ibrahimi, A., Bonen, A., Blinn, W.D., et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin[j]. J. Biol. Chem, 1999,274: 26761-26766.
    [4] Febbraio, M., Abumrad, N.A., Hajjar, D.P., et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism[j]. J. Biol. Chem, 1999,274:19055-19062.
    [5] Van der Vusse GJ, Glatz JFC, Stam HCG, et al. Fatty acid homeostasis in the normoxic and ischemic heart[j]. Physiol Rev, 1992, 72:881-940.
    [6] Kiens B, Roemen THM, Van der Vusse GJ. Muscular long-chain fatty acid content during graded exercise in humans[j]. J Appl Physiol, 1999, 278:E352-E357.
    [7] Bonen A, Luiken JJFP, Arumugam Y, et al. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase[j]. J Biol Chem,2000, 12:14501-14508.
    [8] Van der Lee KAJM, Vork MM, De Vries JE, et al. Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes[j]. J Lipid Res, 2000, 41:279-293.
    [9] Van der Lee KAJM, Willemsen PHM, Samec S, et al. Fasting induced changes in the expression of genes controlling substrate metabolism in the rat heart[j]. J Lipid Res, 2001, 42:1752-1758.
    [10] Van Nieuwenhoven FA, Verstijnen CPHJ, Abumrad NA, et al. Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are coexpressed in rat heart and skeletal muscles[j]. Biochem Biophys Res Commun, 1995, 207:747-752.
    [11] Bonen A, Luiken JJFP, Arumugam Y, et al. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase[j]. J Biol Chem, 2000, 275:14501-14508.
    [12] Luiken JJFP, Dyck DJ, Han X-X, et al. Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane[j]. Am J Physiol Endocrinol Metab, 2002, 282(2):E491-5.
    [13] Lemieux K, Hart X-X, Dombrowski L, et al. The transferring receptor defines two distinct contraction-responsive GLUT4 vesicle populations[j]. Diabetes, 2000, 49:183-189.
    [14] Coburn, C.T., Knapp, Jr,F.F., Febbraio, M., et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice[j]. J. Biol. Chem, 2000, 275: 32523-32529.
    [15] S.L. Coort, D.M. Hasselbaink, D.E Koonen, et al. Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats[j]. Diabetes. 2004, 36:1655-1663.
    [16] J.J. Luiken, Y. Arumugam, D.J. Dyck, et al. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats[j]. J. Biol. Chem, 2001, 276:40567-40573.
    [17] S.L. Coort, J.J. Luiken, G.J. Van Der Vusse, et ai. Increased FAT (fatty acid translocase)/CD36-mediated long-chain fatty acid uptake in cardiac myocytes from obese Zucker rats. Biochem. Soc. Trans. 2004; 32:83-85.
    [18] Tanaka, T., Nakata, T., Oka, T., et al. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations[j]. J. Lipid. Res, 2001, 42:751-759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700