游离脂肪酸受体1(GPR40)MAPK信号通路与内吞机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Characterization of the Endocytosis Pathway and ERK1/2 Phosphorylation Signaling of Free Fatty Acid Receptor 1(GPR40)
  • 作者:武春
  • 论文级别:硕士
  • 学科专业名称:生物化学与分子生物学
  • 学位年度:2012
  • 导师:周耐明
  • 学科代码:071010
  • 学位授予单位:浙江大学
  • 论文提交日期:2012-02-01
摘要
脂肪酸不仅仅是人体的能量来源,同时也参加一系列的生理活动,比如免疫反应和胰岛素分泌。2003年,三个独立的研究小组发现一系列的中长链脂肪酸能够激活孤儿G蛋白偶联受体GPR40。紧接着GPR40被命名为游离脂肪酸受体1 (FFAR1). GPR40仅在高浓度葡萄糖的存在下能够促进胰岛β细胞葡糖依赖性的胰岛素分泌,从而降低了低血糖的风险,因此成为非常重要的治疗2型糖尿病的靶标。了解调控GPR40的信号通路为GPR40生理功能的阐述及糖尿病的药物设计提供理论的基础。因此我们的研究着力于研究GPR40受体激活后内吞的转运机制。我们构建了融合GFP的表达载体,并筛选得到稳定表达GPR40-EGFP受体的单克隆HEK293稳定细胞株。荧光显微镜下观察发现,GPR40-EGFP主要分布在细胞膜上,也有很大部分位于胞内。在配体100μM LA的刺激下,受体分布发生改变,集中到细胞核周围,成点状聚集分布。后期研究发现GPR40的内吞主要通过clathrin依赖型的途径并受arrestin-3的调控。有趣的是,我们发现GPR40受体的本底细胞内表达水平很高,而clathrin和arrestin-3的knockdown并不影响GPR40受体的本底性内吞,暗示GPR40受体配体依赖性和不依赖性的内吞机制并不相同。
     所有的G蛋白偶联受体都能够促进MAPK的信号级联反应,参与调控细胞增殖和凋亡。促分裂素原活化蛋白激酶(mitogen-activated protein kinases, MAP激酶,MAPK)链是真核生物信号传递网络中的重要途径之一,其中细胞外信号调节蛋白激酶(extracellular regulated protein, ERK)为MAPK家族重要成员。ERK1/2信号途径对细胞的分裂、迁移和细胞凋亡等起到调控作用,如GLP-1受体信号转导能够通过ERK1/2途径抑制胰岛β细胞的凋亡。糖尿病产生的重要原因之一是胰岛素β细胞的损伤,因此,研究GPR40如何调控ERK1/2途径以及ERK1/2途径是否参与胰岛β细胞的增殖和凋亡过程具有重要的生理意义。第三章的实验研究中,我们着力于解决GPR40介导的ERK1/2磷酸化。通过利用稳定转染GPR40受体的HEK293细胞和内源性表达的β-TC-6细胞,我们发现在HEK细胞中,LA能够通过Ca2+/ PKC和Gi途径激活ERK1/2。考虑到脂肪酸受体的同源性,我们的研究也会给脂肪酸受体家族的其他受体提供参考和依据。
GPR40 that is abundantly expressed in pancreaticβ-cells, is activated by medium-and long-chain free fatty acids (FFAs) and is believed to be an attractive drug target for type 2 diabetes. GPR40 has been found to couple to Gq protein, leading to activation of phospholipase C and subsequent increases in the intracellular Ca2+level. However, the underlying mechanisms that regulate the internalization and desensitization of GPR40 remain to be elucidated. We have prepared a construct of GPR40 fused with enhanced green fluorescent protein (EGFP) at its C-terminus for direct imaging of the localization and internalization of GPR40 by confocal microscopy. In stable transfected HEK293 cells, GPR40-EGFP underwent rapid agonist-induced internalization and constitutive ligand-independent internalization. We demonstrated that the agonist-mediated internalization of GPR40 was significantly blocked by hypertonic sucrose treatment and by siRNA mediated depletion of the heavy chain of clathrin. In contrast, constitutive GPR40 internalization was not affected by hypertonic sucrose or by knock-down of clathrin expression, but it was affected by treatment with methyl-β-cyclodextrin (MβCD). We also performed an arrestin-3-EGFP redistribution assay and siRNA-mediated knock-down of arrestin-3 expression. We found that arrestin-3 plays a critical role in the regulation of agonist-mediated GPR40 internalization, but it has no role in the regulation of constitutive GPR40 internalization. Additionally, we observed that the internalized GPR40-EGFP co-localized extensively with Alexa Fluor 594-labeled transferrin in early endosomes and recycled to the cell plasma membrane. Because FFA receptors exhibit a high level of homology, our observations could be applicable to other members of this protein family.
     Considering insufficientβ-cell mass is one of the major contributors to type 2 diabetes, it is important to elucidate mechanisms closely linking cell proliferation and apoptosis which are mediated by GPR40. However, the underlying molecular mechanism of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by activated GPR40 remains to be elucidated. For that reason we have chosen to focus our attention on characterizing the MAPK pathways mediated by GPR40. Many GPCRs regulate ERK cascades via distinct G proteins,β-arrestin-dependent and EGFR transactivation signaling pathway, leading to activation of the extracellular signal-regulated kinases (ERKs), which function as transcriptional regulators. Previous study have demonstrated that HEK-293 cells that stably expressing GPR40-EGFP chimera exhibited the same activities in response to linoleic acid (LA) and linolenic acid (LNA, 100μM) as wild-type GPR40. In the present study, we demonstrated that upon stimulation with LA, activated GPR40 signal to ERK1/2 via Ca2+/PKC and Gi-dependent, butβ-arrestin and EGFR-independent pathways. Interestingly, high concentrations of LA significantly reduced ERK1/2 phosphorylation inβ-TC-6 cells. Considering the high level of homology among FFA receptors, our findings could provide new insight into the other members of this family.
引文
1. Yang, W., et al., Prevalence of diabetes among men and women in China. N Engl J Med,2010.362(12):p.1090-101.
    2. Leahy, J.L., Pathogenesis of type 2 diabetes mellitus. Arch Med Res,2005. 36(3):p.197-209.
    3. Ahren, B., Glucagon-like peptide-1 (GLP-1):a gut hormone of potential interest in the treatment of diabetes. Bioessays,1998.20(8):p.642-51.
    4. Chung, L.T.K., et al., Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochemical and Biophysical Research Communications,2009.390(3):p.613-618.
    5. Marre, M., et al., Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med,2009.26(3):p.268-78.
    6. Ahren, B., Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov,2009.8(5):p.369-85.
    7. Ahren, B., Glucagon-like peptide-1 (GLP1):a gut hormone of potential interest in the treatment of diabetes. Bioessays,1998.20:p.642-651.
    8. Trumper, A., Glucose-dependent insulinotropic polypeptide is a growth factor for [beta] (INS-1) cells by pleiotropic signaling. Mol. Endocrinol.,2001.15:p. 1559-1570.
    9. Meier, J.J., Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia, 2003.46:p.798-801.
    10. Vilsboll, T., Defective amplification of the late phase insulin response to glucose by GIP in obese Type Ⅱ diabetic patients. Diabetologia,2002.45:p. 1111-1119.
    11. Itoh, Y., Free fatty acids regulate insulin secretion from pancreatic [beta] cells through GPR40. Nature,2003.422:p.173-176.
    12. Brownlie, R., The long-chain fatty acid receptor, GPR40, and glucolipotoxicity:investigations using GPR40-knockout mice. Biochem. Soc. Trans.,2008.36:p.950-954.
    13. Flodgren, E., GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem. Biophys. Res. Commun.,2007.354:p.240-245.
    14. Salehi, A., Free fatty acid receptor 1 (FFA1R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res.,2005.322:p. 207-215.
    15. Vettor, R., et al., Loss-of-function mutation of the GPR40 gene associates with abnormal stimulated insulin secretion by acting on intracellular calcium mobilization. J. Clin. Endocrinol. Metab.,2008.93:p.3541-3550.
    16. Kebede, M., The fatty-acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes,2008.57:p.2432-2437.
    17. Zhang, Y., The role of G protein-coupled receptor 40 in lipoapoptosis in mouse [beta]-cell line NIT-1. J. Mol. Endocrinol.,2007.38:p.651-661.
    18. Overton, H.A., M.C.T. Fyfe, and C. Reynet, GPR119, a novel G-protein-coupled receptor target for the treatment of type 2 diabetes and obesity. Br. J. Pharmacol.,2008.153:p. S76-S81.
    19. Hirasawa, A., et al., Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med,2005.11(1):p.90-4.
    20. Winzell, M.S., Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet. Diabetologia,2007.50:p. 1453-1462.
    21. Filipsson, K., The neuropeptide pituitary adenylate cyclase-activating polypeptide and islet function. Diabetes,2001.50:p.1959-1969.
    22. Jamen, F., PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. J. Clin. Invest.,2000.105: p.1307-1315.
    23. Hauge-Evans, A.C., A role for kisspeptin in islet function. Diabetologia,2006. 49:p.2131-2135.
    24. Ahren, B., Neuropeptides and the regulation of islet function. Diabetes,2006. 55(Suppl.2):p. S98.
    25. Peterhoff, M, Inhibition of insulin secretion via distinct signaling pathways in [alpha]2-adrenoceptor knockout mice. Eur. J. Endocrinol.,2003.149:p. 343-350.
    26. Muhlbauer, E. and E. Peschke, Evidence for expression of both the MT1-and in addition, the MT2-melatonin receptor in the rat pancreas, islet and [beta]-cell. J. Pineal Res.,2007.42:p.105-106.
    27. Peschke, E., Melatonin and type 2 diabetes [mdash] a possible link? J. Pineal Res.,2007.42:p.350-358.
    28. Juan-Pico, P., Cannabinoid receptors regulate Ca2+signals and insulin secretion in pancreatic [beta]-cells. Cell Calcium,2006.39:p.155-162.
    29. Di Marzo, V., The endocannabinoid system in obesity and type 2 diabetes. Diabetologia,2008.51:p.1356-1367.
    30. Henquin, J.C., Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues. Diabetes,2004.53 Suppl 3:p. S48-58.
    31. Sorhede Winzell, M. and B. Ahren, G-protein-coupled receptors and islet function [mdash] implications for treatment of type 2 diabetes. Pharmacol. Ther.,2007.116:p.437-448.
    32. Drucker, D.J., Glucagon-like peptide-1 and the islet [beta]-cell:augmentation of cell proliferation and inhibition of apoptosis. Endocrinology,2003.144:p. 5145-5148.
    33. Buteau, J., et al., Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes,2001.50(10):p. 2237-43.
    34. Buteau, J., et al., Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes,2003.52(1):p.124-32.
    35. Hui, H., et al., Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A-and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology,2003. 144(4):p.1444-55.
    36. Jhala, U.S., et al., cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev,2003.17(13):p.1575-80.
    37. Hardy, S., et al., Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J Biol Chem,2005.280(14):p.13285-91.
    38. Itoh, Y., et al., Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature,2003.422(6928):p.173-6.
    39. Talukdar, S., J.M. Olefsky, and O. Osborn, Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci,2011.32(9):p.543-50.
    40. Briscoe, C.P., et al., The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem,2003.278(13):p. 11303-11.
    41. Kotarsky, K., et al., A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun,2003.301(2):p. 406-10.
    42. Stoddart, L.A., N.J. Smith, and G. Milligan, International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1,-2, and-3: pharmacology and pathophysiological functions. Pharmacol Rev,2008.60(4): p.405-17.
    43. Schnell, S., M. Schaefer, and C. Schofl, Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from beta-cells through activation of GPR40. Mol Cell Endocrinol,2007.263(1-2):p.173-80.
    44. Shapiro, H., et al., Role of GPR40 in fatty acid action on the beta cell line INS-1E. Biochem Biophys Res Commun,2005.335(1):p.97-104.
    45. Nagasumi, K., et al., Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes,2009.58(5):p.1067-76.
    46. Hidalgo, M.A., et al., Oleic acid induces intracellular calcium mobilization, MAPK phosphorylation, superoxide production and granule release in bovine neutrophils. Biochemical and Biophysical Research Communications,2011. 409(2):p.280-286.
    47. Fujiwara, K., F. Maekawa, and T. Yada, Oleic acid interacts with GPR40 to induce Ca2+signaling in rat islet beta-cells:mediation by PLC and L-type Ca2+channel and link to insulin release. Am J Physiol Endocrinol Metab, 2005.289(4):p. E670-7.
    48. Alquier, T., et al., Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets. Diabetes,2009.58(11):p.2607-15.
    49. Ferguson, S.S., Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev,2001.53(1): p.1-24.
    50. Xu, Z.Q., X. Zhang, and L. Scott, Regulation of G protein-coupled receptor trafficking. Acta Physiol (Oxf),2007.190(1):p.39-45.
    51. Vassilatis, D.K., et al., The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A,2003.100(8):p.4903-8.
    52. Wagener, B.M., et al., Adaptor protein-2 interaction with arrestin regulates GPCR recycling and apoptosis. Traffic,2009.10(9):p.1286-300.
    53. Angelotti, T., et al., Regulation of G-Protein Coupled Receptor Traffic by an Evolutionary Conserved Hydrophobic Signal. Traffic,2010.
    54. Miller, F.J., et al., A Differential Role for Endocytosis in Receptor-Mediated Activation of Noxl. Antioxidants& Redox Signaling,2010.12(5):p. 583-593.
    55. Estall, J.L., B. Yusta, and D.J. Drucker, Lipid raft-dependent glucagon-like peptide-2 receptor trafficking occurs independently of agonist-induced desensitization. Mol Biol Cell,2004.15(8):p.3673-87.
    56. Li, G., et al., Internalization of the human nicotinic acid receptor GPR109A is regulated by G(i), GRK2, and arrestin3. J Biol Chem,2010.285(29):p. 22605-18.
    57. Oakley, R.H., et al., Differential affinities of visual arrestin, beta arrestinl, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem,2000.275(22):p.17201-10.
    58. Schmid, S.L., Clathrin-coated vesicle formation and protein sorting:an integrated process. Annu Rev Biochem,1997.66:p.511-48.
    59. Insel, P.A., et al., Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae. Biochem Soc Trans,2005. 33(Pt5):p.1131-4.
    60. Chini, B. and M. Parenti, G-protein coupled receptors in lipid rafts and caveolae:how, when and why do they go there? J Mol Endocrinol,2004.32(2): p.325-38.
    61. Syme, C.A., L. Zhang, and A. Bisello, Caveolin-1 regulates cellular trafficking and function of the glucagon-like Peptide 1 receptor. Mol Endocrinol,2006. 20(12):p.3400-11.
    62. Freedman, N.J. and R.J. Lefkowitz, Desensitization of G protein-coupled receptors. Recent Prog Horm Res,1996.51:p.319-51; discussion 352-3.
    63. Luttrell, L.M. and R.J. Lefkowitz, The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci,2002. 115(Pt3):p.455-65.
    64. Wellendorph, P., L.D. Johansen, and H. Brauner-Osborne, Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol Pharmacol,2009.76(3):p.453-65.
    65. Petaja-Repo, U.E., et al., Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J Biol Chem,2000.275(18):p.13727-36.
    66. Hemar, A., et al., The metabotropic glutamate receptor mGluR5 is endocytosed by a clathrin-independent pathway. Journal of Biological Chemistry,2003.278(14):p.12222-12230.
    67. Paing, M.M., et al., beta-Arrestins regulate protease-activated receptor-1 desensitization but not internalization or Down-regulation. J Biol Chem,2002. 277(2):p.1292-300.
    68. Marsh, M., et al., Endocytosis of the viral chemokine receptor US28 does not require beta-arrestins but is dependent on the clathrin-mediated pathway. Traffic,2003.4(4):p.243-253.
    69. Moore, C.A., S.K. Milano, and J.L. Benovic, Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol,2007.69:p.451-82.
    70. Brown, A.J., et al., The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem,2003.278(13):p.11312-9.
    71. Wang, J., et al.. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem,2006.281(45):p.34457-64.
    72. Overton, H.A., M.C. Fyfe, and C. Reynet, GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity. Br J Pharmacol, 2008.153 Suppl 1:p. S76-81.
    73. Lorenz, K., et al., A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med,2009.15(1):p.75-83.
    74. Ahn, S., et al.,{beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation. J Biol Chem,2009.284(13):p.8855-65.
    75. Powis, G., et al., Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res,1992.52(10):p.2835-40.
    76. Morfis, M., et al., Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology,2008. 149(11):p.5423-31.
    77. Parker, S.L., et al., Characterization of G protein and phospholipase C-coupled agonist binding to the Y1 neuropeptide Y receptor in rat brain:sensitivity to G protein activators and inhibitors and to inhibitors of phospholipase C. J Pharmacol Exp Ther,1998.286(1):p.382-91.
    78. Martin, N.P., et al., PKA-mediated phosphorylation of the beta1-adrenergic receptor promotes Gs/Gi switching. Cell Signal,2004.16(12):p.1397-403.
    79. Xiao, R.P., Beta-adrenergic signaling in the heart:dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE,2001. 2001(104):p. re15.
    80. Zamah, A.M., et al., Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J Biol Chem,2002.277(34):p.31249-56.
    81. Schafer, B., A. Gschwind, and A. Ullrich, Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene,2004.23(4):p.991-9.
    82. Rozengurt, E., Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol,2007.213(3):p.589-602.
    83. Schafer, B., et al., Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J Biol Chem, 2004.279(46):p.47929-38.
    84. Yan, Y., K. Shirakabe, and Z. Werb, The metalloprotease Kuzbanian (ADAM 10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J Cell Biol,2002.158(2):p.221-6.
    85. Lin, A.L., et al., Distinct pathways of ERK activation by the muscarinic agonists pilocarpine and carbachol in a human salivary cell line. Am J Physiol Cell Physiol,2008.294(6):p. C1454-64.
    86. Gesty-Palmer, D., et al., Distinct beta-arrestin-and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK 1/2 activation. J Biol Chem,2006.281(16):p.10856-64.
    87. Wu, P., L. Yang, and X. Shen, The relationship between GPR40 and lipotoxicity of the pancreatic beta-cells as well as the effect of pioglitazone. Biochem Biophys Res Commun,2010.403(1):p.36-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700