HSP70介导细胞氧化应激反应及扇贝多肽的神经保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化应激参与神经退行性疾病和神经元缺血损伤的发生发展。活性氧(Reactive oxygen species, ROS)引起神经细胞损伤的同时,细胞内会启动相应抗损伤应激反应。热休克蛋白70家族(heat shock protein70, HSP70)是多种应激原诱导细胞产生的一组保守性蛋白,HSP70(HSP72)和葡萄糖调节蛋白78(glucose-regulated protein 78, GRP78)是分别位于胞浆和内质网的HSP70家族成员。研究表明,HSP70(HSP72)除作为蛋白质分子伴侣外,还可直接抗凋亡和抗DNA损伤。丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)和生长抑制DNA损伤诱导蛋白(growth arrest and DNA damage inducible protein, GADD)是可被ROS激活并分别与细胞凋亡和DNA损伤关系密切的应激因子,神经细胞氧化应激损伤中HSP70的保护作用是否与MAPK和GADD有关尚不明确。GRP78是内质网应激反应(Endoplasmic Reticular Stress, ERS)的分子伴侣标志,过强过久ERS也可启动细胞凋亡。以GRP78表达增加为标志的ERS如何介导氧化应激损伤尚需探讨。抗氧化剂可拮抗神经细胞氧化损伤,目前关于海洋活性物质抗神经细胞氧化损伤的研究甚少。课题组前期研究表明,从海洋生物栉孔扇贝(Chlamys farreri)中提取的活性物质——扇贝多肽(polypeptide from Chlamys farreri, PCF)具有抗氧化作用,在大鼠大脑中动脉缺血模型中发挥神经保护作用,但其分子机制还不明确。
     基于以上背景,本研究采用MTT、ESR、透射电镜、荧光染色、Western blot、RT-PCR、酶化学和流式细胞术等研究方法,针对HSP70、GRP78介导神经细胞氧化应激和PCF的作用分三部分进行如下研究:首先,建立过氧化氢(H202)致人成神经母细胞瘤细胞(SH-SY5Y)氧化应激损伤模型,检测损伤后不同时间HSP70、MAPK、GADD153和GADD45β的表达;HSP70表达诱导剂GGA或抑制剂quercetin预孵育细胞后再行损伤,观察MAPK和GADD的表达变化,研究HSP70在H202所致SH-SY5Y细胞氧化应激损伤中的作用。其次,观察内质网超微结构、GRP78/Bip及GADD153/CHOP蛋白表达,明确H2O2是否能引起ERS。ROS清除剂N-乙酰半胱氨酸和ERS抑制剂4-PBA分别预处理细胞再进行损伤,检测细胞活性、细胞凋亡、细胞内ROS水平和内质网途径相关凋亡调控分子GRP78、CHOP、JNK和Bcl-2的表达,探讨ERS在氧化损伤致神经元凋亡中的作用。(3)观察细胞活性、ROS、脂质过氧化、DNA氧化及抗氧化酶活性,探讨PCF的抗氧化特性;检测MAPK、GRP78、CHOP/GADD153、HSP70及Bcl-2表达,研究PCF的抗凋亡分子靶点。
     研究结果如下:①对正常对照组相比,H2O2模型组细胞活性降低,胞内ROS水平、HSP70、GADD153/CHOP、GADD45β表达及ERK1/2和JNK磷酸化水平增加,上述效应呈时间依赖性;与H2O2模型组相比,GGA诱导HSP70高表达组细胞活性升高,DNA损伤和细胞凋亡减轻,ERK1/2、JNK磷酸化及GADD153表达减弱,GADD45P表达增强;②对正常对照组相比,H2O2模型组细胞内质网扩张脱颗粒,GRP78和CHOP表达增加,其表达呈时间依赖性;与H2O2模型组相比,NAC和4-PBA预处理组细胞活性增加,细胞凋亡减少,GRP78和CHOP表达减少,JNK活化减弱,Bcl-2表达增加;③与H2O2模型组相比,PCF预处理能提高损伤细胞活性,减少ROS和细胞凋亡,抑制脂质过氧化及DNA氧化损伤,提高GSH、SOD、CAT、GPx活性和细胞总抗氧化能力,抑制JNK磷酸化及GRP78和CHOP表达,上调HSP70和Bcl-2表达。
     以上结果表明:①神经细胞氧化损伤后HSP70介导的抗凋亡抗DNA损伤作用与抑制ERK1/2和JNK活化、调控GADD45β和GADD153基因表达有关;②氧化应激可诱导ERS,GRP78/CHOP/JNK/Bcl-2参与H2O2经内质网途径激活的细胞凋亡;③PCF的神经保护作用与其抗氧化特性和抗凋亡有关,PCF可上调HSP70和抑制ERS, CHOP/JNK/Bcl-2是其抗凋亡分子靶点。
     本研究初步探讨了HSP70家族介导神经细胞氧化应激的分子机制和PCF的神经保护作用。创新之处有:①ESR技术检测SH-SY5Y细胞损伤后ROS的经时变化;②GADD45β和GADD153是HSP70参与神经细胞DNA损伤修复的靶向下游分子;③HSP70/ERS/CHOP/JNK/Bcl-2是海洋抗氧化剂PCF神经保护作用的分子靶点。研究有待继续深入的方面有:①构建特异的HSP70高表达和沉默细胞株研究其功能;②HSP70与MAPK、GADD的直接相互作用或间接调控机制;③H202经ERS致细胞凋亡的下游途径;④PCF药代动力学和对原代神经元的抗凋亡分子机制。
Oxidative stress has long been linked to cell death in many neurodegenerative conditions. Oxidative damages mediated by reactive oxygen species (ROS) could trigger cellular stress responses at the same time. Heat shock protein70 (HSP70) is a highly conserved stress proteins family expressed under pathological conditions. HSP70(HSP72) and glucose-regulated protein 78 (GRP78) are two HSP70 members respectively located in cytoplasm and endoplasmic reticulum. HSP70 (HSP72) mainly function as protein chaperones and some studies have shown its anti-apoptotic and anti-DNA damage effects. Mitogen-activated protein kinase (MAPK) and growth arrest and DNA damage inducible protein (GADD) are two stress response families which could be activated by ROS and highly related to cell apoptosis and DNA damage, however, whether the function of HSP70 in protection neurons against oxidative stress is related to MAPK and GADD is still unknown. GRP78 is the molecular chaperone mark of endoplasmic reticular stress (ERS) and severe ERS could initiate apoptosis. Whether and how ERS characterized by increased expression of GRP78 participated in the neuronal injury mediated by oxidatve stress need further study. Treatment with antioxidants is a promising approach for inhibiting neuronal oxidative damage. Owing to severe adverse effects, many synthetic antioxidants is restricted to clinical usage, therefore, searching for natural antioxidants with neuroprotective potential may provide new insight into therapeutic strategies. Until now the antioxidative effects of marine active products are rarely studied. The previous studies have demonstrated the neuroprotective effect of polypeptide from Chlamys farreri (PCF), a natural marine antioxidant, in an rat middle cerebral artery occlusion (MCAO) and reperfusion model and the molecular mechanisms need to verify.
     In the present study, MTT, electronspinresonance (ESR), transmission electric micscopy, fluorescence staining, western blot, RT-PCR, enzyme and biochemical assays are performed to investigate the role of HSP70 and GRP78 marked ERS in neuronal oxidative stress and the neuroprotective mechanisms of PCF. The study consist of three parts:first, the neuroblastoma SH-SY5Y cells are used as an in vitro model to established hydrogen peroxide (H2O2)-induced neuronal oxidative damage. After observing the time-course expression of HSP70, MAPK, GADD153 and GADD45βin H2O2-treated cells, the cells are pretreated with GGA (inducer of HSP70 expression) or quercetin (inhibitor of HSP70 expression) before H2O2-incubution and the difference in the expression of MAPK, GADD153 and GADD45βare assesed to explore the role of HSP70 in neuronal oxidative injury. Second, the H2O2-induced endoplasmic reticular ultrastructure changes and the expression of GRP78/Bip and GADD153/CHOP are studied to verify the ERS. Then NAC (ROS scavenger) and 4-PBA (an chemical chaperones and inhibitor of ERS) are pretreated to the medium before H2O2-incubution and cell viability, apoptosis, ROS production and the expression of GRP78, CHOP, JNK and are investigated to explore the role of ERS in neuronal oxidative stress. In the last part the antioxidative proterty of PCF on ROS production, lipid peroxidation, DNA oxidative damage and the activity of endogenous antioxidant defense components are assesed and the anti-apoptotic mechanisms of PCF on the expression of MAPK, GRP78, CHOP/GADD153, HSP70 and Bcl-2 are assesed
     The results are as following:①More ROS production, increased expression of HSP70, GADD153/CHOPmRNA and GADD45βmRNA, activation of ERK1/2 and JNK accompanied by decreased cell viability in a time-dependent manner were observed in H2O2-treated cell compared to control non-treated cells; Compared to H2O2-alone-treated cells, GGA pretreatment induced high levels of HSP70 expression with DNA oxidative damage, apoptosis, phosphorylations of ERK1/2 and JNK and the expression of GADD153mRNA inhibition;②Endoplasmic reticulum dilation and increased expression of GRP78 and CHOP in a time-dependent manner were observed in H2O2-alone-treated cells, while NAC and 4-PBA pretreated cells showed more cell viability, less apoptosis and decreased expression of GRP78 and CHOP, less activation of JNK and increased level of Bcl-2 than H2O2-alone-treated cells;③PCF treatment inhibited H2O2-induced cell death, ROS production, apoptosis, LPO and DNA damage, meanwhile promoted endogenous antioxidant defense components including glutathione peroxidase, catalase, superoxide dismutase, glutathione and total antioxidative capacity. PCF significantly blocked H2O2-induced phosphorylation of c-Jun N-terminal kinase (JNK) of the MAPK family and the expression of GRP78 and CHOP. The levels of HSP70 and Bcl-2 were increased in PCF-pretreated cells.
     These results showed that:①The anti-apoptotic function and anti-DNA damage of HSP70 is related to the inhibition of phosphorylation of ERK1/2 and JNK and the regulation of GADD45βmRNA and GADD153 mRNA expression;②Oxidative stress could trigger ERS, GRP78/CHOP/JNK/Bcl-2 participated in SH-SY5Y apoptosis mediated by H2O2-induced ERS;③The antioxidative and anti-aopototic properties contribute to the neuroprotective effects of PCF. PCF could upregulate HSP70 and inhibit ERS and CHOP/JNK/Bcl-2 may be the downstream target of PCF.
     In conclusion, this study mainly focuse on the molecular role of HSP70 and GRP78 mediated stress responses in neuronal oxidative stress injury and the neuroprotective effects of PCF. This study provided useful information for developing effective antioxidant with neuroprotective function. The highlight of innovation of the study are:①Time-course changes of ROS in H2O2-induced SH-SY5Y cells were measured by ESR;②GADD45βand GADD153 are the downstream signal for HSP70 participating in neuronal oxidative DNA damage and repair;③H2O2 could activate ERS and lead to SH-SY5Y cell apoptosis by CHOP/JNK pathways;④The study have first provided evidence that the neuroprotective effect of marine antioxidant PCF were mediated, at least, through scavenging oxygen free radicals, reinforcement of endogenous antioxidant defense, prevention of oxidation of macromolecules, lipids, and DNA, upregulating HSP70, and blocking the ERS and activation of downstream CHOP/JNK1/2. PCF could inhibit JNK pathway and thus inhibit SH-SY5Y cell apoptosis. In the future, further study as following should be performed:①Special stable overexpression and downexpression of HSP70 neuronal cell model should be developed to overexpress or knockdown HSP70 then to investigate the functions of HSP70;②Interaction of HSP70 and MAPK and GADD need be further verified;③the molecular targets for ERS induced apoptosis mediated by H2O2, the pharmacokinetics of PCF in neurodegeneration therapies and the molecular mechanisms of PCF on the signaling pathways of ROS-mediated primary neuronal cell growth and apoptosis.
引文
[1]Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke.2009 Dec; 4(6):461-70.
    [2]Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm. 2009 Sep; 116(9):1111-62.
    [3]Ischiropoulos H, Beckman, J. S. Oxidative stress and nitration in neurodegeneration:cause, effect, or association? J. Clin. Invest.2003,111:163-169;.
    [4]Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci.2002.5:291-309.
    [5]Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson's disease. Neurobiol. Dis.2000.7:240-250.
    [6]Behl C. Alzheimer's disease and oxidative stress:implications for novel therapeutic approaches. Prog. Neurobiol.1999.57:301-323.
    [7]Schlesinger MJ. Heat shock proteins:the search for functions. J Cell Biol.1986 Aug;103(2):321-5.
    [8]Soti C, Csermely P. Protein stress and stress proteins:implications in aging and disease. J Biosci.2007 Apr;32(3):511-5.
    [9]Tutar L, Tutar Y. Heat Shock Proteins; An Overview. Curr Pharm Biotechnol.2010 Feb 16.
    [10]Ashburner M, Bonner JJ. The induction of gene activity in drosophilia by heat shock. Cell. 1979 Jun;17(2):241-54.
    [11]Vass K, Welch WJ, Nowak TS Jr. Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol.1988;77(2):128-35.
    [12]Belay HT, Brown IR. Spatial analysis of cell death and Hsp70 induction in brain, thymus, and bone marrow of the hyperthermic rat. Cell Stress Chaperones.2003 Winter;8(4):395-404.
    [13]Nissim I, States B, Hardy M, Pleasure J, Nissim I. Effect of glutamine on heat-shock-induced mRNA and stress proteins. J Cell Physiol.1993 Nov;157(2):313-8.
    [14]Lu TZ, Quan Y, Feng ZP. Multifaceted Role of Heat Shock Protein 70 in Neurons. Mol Neurobiol.2010 Apr 1.
    [15]Witt SN. Hsp70 molecular chaperones and Parkinson's disease. Biopolymers.2010 Mar;93(3):218-28.
    [16]Magrane J, Smith RC, Walsh K, Querfurth HW. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci. 2004 Feb 18;24(7):1700-6.
    [17]Lee KS, Chung JH, Oh BH, Hong CH. Increased plasma levels of heat shock protein 70 in patients with vascular mild cognitive impairment. Neurosci Lett.2008 May 9;436(2):223-6.
    [18]Daugaard M, Rohde M, Jaattela M. The heat shock protein 70 family:Highly homologous proteins with overlapping and distinct functions. FEBS Lett.2007 Jul 31;581(19):3702-10.
    [19]Salo DC, Donovan CM, Davies KJ. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med.1991;11(3):239-46.
    [20]Jornot L, Mirault ME, Junod AF. Differential expression of hsp70 stress proteins in human endothelial cells exposed to heat shock and hydrogen peroxide. Am J Respir Cell Mol Biol. 1991 Sep;5(3):265-75.
    [21]Dreher D, Vargas JR, Hochstrasser DF, Junod AF. Effects of oxidative stress and Ca2+ agonists on molecular chaperones in human umbilical vein endothelial cells. Electrophoresis. 1995 Jul; 16(7):1205-14.
    [22]Zhu WM, Roma P, Pirillo A, Pellegatta F, Catapano AL. Oxidized LDL induce hsp70 expression in human smooth muscle cells. FEBS Lett.1995 Sep 18;372(1):1-5.
    [23]Liu H, Lightfoot R, Stevens JL. Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem.1996 Mar 1;271(9):4805-12.
    [24]Schiaffonati L, Tiberio L. Gene expression in liver after toxic injury:analysis of heat shock response and oxidative stress-inducible genes. Liver.1997 Aug; 17(4):183-91.
    [25]Kim YH, Park EJ, Han ST, Park JW, Kwon TK. Arsenic trioxide induces Hsp70 expression via reactive oxygen species and JNK pathway in MDA231 cells. Life Sci.2005 Oct 14;77(22):2783-93.
    [26]Kamii H, Kinouchi H, Sharp FR, Koistinaho J, Epstein CJ, Chan PH. Prolonged expression of hsp70 mRNA following transient focal cerebral ischemia in transgenic mice overexpressing CuZn-superoxide dismutase. J Cereb Blood Flow Metab.1994 May;14(3):478-86.
    [27]Shpund S, Gershon D. Alterations in the chaperone activity of HSP70 in aging organisms. Arch Gerontol Geriatr.1997 Mar-Apr;24(2):125-31.
    [28]Nagata T, Ilieva H, Murakami T, Shiote M, Narai H, Ohta Y, Hayashi T, Shoji M, Abe K. Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res.2007 Dec;29(8):767-71.
    [29]Yamauchi T, Sakurai M, Abe K, Matsumiya G, Sawa Y. Impact of the endoplasmic reticulum stress response in spinal cord after transient ischemia. Brain Res.2007 Sep 12; 1169:24-33. Epub 2007 Jul 31.
    [30]Lee J, Bruce-Keller AJ, Kruman Y, Chan SL, Mattson MP. 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury:evidence for the involvement of stress proteins. J Neurosci Res.1999 Jul 1;57(1):48-61.
    [31]Lee YJ, Corry PM. Metabolic oxidative stress-induced HSP70 gene expression is mediated through SAPK pathway. Role of Bcl-2 and c-Jun NH2-terminal kinase. J Biol Chem.1998 Nov 6;273(45):29857-63.
    [32]Costa VM, Silva R, Ferreira R, Amado F, Carvalho F, de Lourdes Bastos M, Carvalho RA, Carvalho M, Remiao F. Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytes. Toxicology.2009 Mar 4;257(1-2):70-9.
    [33]Bruce JL, Price BD, Coleman CN, Calderwood SK. Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res. 1993 Jan 1;53(1):12-5.
    [34]Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS.The glucose-regulated proteins (GRP78 and GRP94):functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr. 1994;4(1):1-18.
    [35]Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo SV. GRP78:a multifunctional receptor on the cell surface. Antioxid Redox Signal.2009 Sep;11 (9):2299-306.
    [36]Bertolotti A, Wang X, Novoa I, Jungreis R, Schlessinger K, Cho JH, West AB, Ron D. Increased sensitivity to dextran sodium sulfate colitis in IRE1 beta-deficient mice. J Clin Invest.2001 Mar;107(5):585-93.
    [37]Luo S, Baumeister P, Yang S, Abcouwer SF, Lee AS. Induction of Grp78/BiP by translational block:activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J Biol Chem.2003 Sep 26;278(39):37375-85.
    [38]Wadhwa R, Taira K, Kaul SC. An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones.2002 Jul;7(3):309-16.
    [39]Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR. Extracellular heat shock proteins in cell signaling. FEBS Lett.2007 Jul 31;581(19):3689-94. Epub 2007 Apr 25.
    [40]Lowenstein DH, Chan PH, Miles MF. The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity. Neuron.1991 Dec;7(6):1053-60.
    [41]Beaucamp N, Harding TC, Geddes BJ, Williams J, Uney JB. Overexpression of hsp70i facilitates reactivation of intracellular proteins in neurones and protects them from denaturing stress. FEBS Lett.1998 Dec 18;441(2):215-9.
    [42]Sun Y., Ouyang Y. B., Xu L., Chow A. M., Anderson R., Hecker J. G. and Giffard R. G. The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J. Cereb. Blood Flow Metab.2006.26,937-950.
    [43]Kelly S., Bieneman A., Horsburgh K., Hughes D., Sofroniew M. V., McCulloch J. and Uney J. B. Targeting expression of Hsp70i to discrete neuronal populations using the Lmo-1 promoter:assessment of the neuroprotective effects of hsp70i in vivo and in vitro. J. Cereb. Blood Flow Metab.2001.21,972-981.
    [44]Kelly S, Zhang ZJ, Zhao H, Xu L, Giffard RG, Sapolsky RM, Yenari MA, Steinberg GK. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia:influence of Bcl-2. Ann Neurol.2002 Aug;52(2):160-7.
    [45]Badin RA, Lythgoe MF, van der Weerd L, Thomas DL, Gadian DG, Latchman DS. Neuroprotective effects of virally delivered HSPs in experimental stroke. J Cereb Blood Flow Metab.2006 Mar;26(3):371-81.
    [46]Roodveldt C, Bertoncini CW, Andersson A, van der Goot AT, Hsu ST, Fernandez-Montesinos R, de Jong J, van Ham TJ, Nollen EA, Pozo D, Christodoulou J, Dobson CM. Chaperone proteostasis in Parkinson's disease:stabilization of the Hsp70/alpha-synuclein complex by Hip. EMBO J.2009 Dec 2;28(23):3758-70.
    [47]Koren J 3rd, Jinwal UK, Lee DC, Jones JR, Shults CL, Johnson AG, Anderson LJ, Dickey CA. Chaperone signalling complexes in Alzheimer's disease. J Cell Mol Med. 2009 Apr; 13(4):619-30.
    [48]Kalmar B, Novoselov S, Gray A, Cheetham ME, Margulis B, Greensmith L. Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem.2008 Oct;107(2):339-50.
    [49]Jorgensen ND, Andresen JM, Pitt JE, Swenson MA, Zoghbi HY, Orr HT. Hsp70/Hsc70 regulates the effect phosphorylation has on stabilizing ataxin-1. J Neurochem.2007 Sep;102(6):2040-8.
    [50]Williams AJ, Knutson TM, Colomer Gould VF, Paulson HL. In vivo suppression of polyglutamine neurotoxicity by C-terminus of Hsp70-interacting protein (CHIP) supports an aggregation model of pathogenesis. Neurobiol Dis.2009 Mar;33(3):342-53.
    [51]Liu M, Aneja R, Sun X, Xie S, Wang H, Wu X, Dong JT, Li M, Joshi HC, Zhou J. Parkin regulates Eg5 expression by Hsp70 ubiquitination-dependent inactivation of c-Jun NH2-terminal kinase. J Biol Chem.2008 Dec 19;283(51):35783-8.
    [52]Kizelsztein P, Komarnytsky S, Raskin I. Oral administration of triptolide ameliorates the clinical signs of experimental autoimmune encephalomyelitis (EAE) by induction of HSP70 and stabilization of NF-kappaB/IkappaBalpha transcriptional complex. J Neuroimmunol. 2009 Dec 10;217(1-2):28-37. Epub 2009 Sep 30.
    [53]Krantic S, Mechawar N, Reix S, Quirion R. Apoptosis-inducing factor:a matter of neuron life and death. Prog Neurobiol.2007 Feb;81(3):179-96.
    [54]Chi L, Ke Y, Luo C, Gozal D, Liu R. Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo. Neuroscience.2007 Feb 9;144(3):991-1003.
    [55]Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta.2010 Jan;1802(1):228-34.
    [56]Mosser D D, Caron A W, Bourget L, Denis-Larose C and Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis; Mol. Cell Biol.1997; 17: 5317-5327
    [57]Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol.2000 Aug;2(8):469-75.
    [58]Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol.2000 Aug;2(8):476-83.
    [59]L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol.2001 Sep;3(9):839-43.
    [60]Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM and Mosser DD. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J. Biol. Chem.2005 Nov 18;280(46):38729-39.
    [61]Meriin AB, Gabai VL, Yaglom J, Shifrin VI, Sherman MY. Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. J Biol Chem.1998 Mar 13;273(11):6373-9.
    [62]Gabai VL, Meriin AB, Yaglom JA, Volloch VZ, Sherman MY. Role of Hsp70 in regulation of stress-kinase JNK:implications in apoptosis and aging. FEBS Lett.1998 Oct 30;438(1-2):1-4.
    [63]Yaglom JA, Gabai VL, Meriin AB, Mosser DD, Sherman MY. The function of HSP72 in suppression of c-Jun N-terminal kinase activation can be dissociated from its role in prevention of protein damage. J Biol Chem.1999 Jul 16;274(29):20223-8.
    [64]Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Hφyer-Hansen M, Weber E, Multhoff G, Rohde M, Jaattela M.Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med. 2004 Aug 16;200(4):425-35.
    [65]Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I, Zylicz A, Knudsen J, Sandhoff K, Arenz C, Kinnunen PK, Nylandsted J, Jaattela M. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature.2010 Jan 28;463(7280):549-53.
    [66]Hartl FU. Heat shock proteins in protein folding and membrane translocation. Semin Immunol.1991 Jan;3(1):5-16.
    [67]Haigh NG, Johnson AE. A new role for BiP:closing the aqueous translocon pore during protein integration into the ER membrane. J Cell Biol.2002 Jan 21;156(2):261-70.
    [68]Schonthal AH. Endoplasmic reticulum stress and autophagy as targets for cancer therapy. Cancer Lett.2009 Mar 18;275(2):163-9.
    [69]Naidoo N. The endoplasmic reticulum stress response and aging. Rev Neurosci. 2009;20(1):23-37.
    [70]Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis.2009 Aug;14(8):996-1007.
    [71]Bandopadhyay R, de Belleroche J. Pathogenesis of Parkinson's disease:emerging role of molecular chaperones. Trends Mol Med.2010 Jan;16(1):27-36. Epub 2009 Dec 24.
    [72]Nagatsu T, Sawada M. Cellular and molecular mechanisms of Parkinson's disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol.2006 Jul-Aug; 26(4-6):781-802.
    [73]Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL, Dawson TM, Ross CA. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet.2005 Dec 15;14(24):3801-11.
    [74]Yokota T, Sugawara K, Ito K, Takahashi R, Ariga H, Mizusawa H. Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun.2003 Dec 26;312(4):1342-8.
    [75]Wang HQ, Takahashi R.Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson's disease. Antioxid Redox Signal.2007 May;9(5):553-61.
    [76]Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell.2001 Jun 29;105(7):891-902.
    [77]Uehara T. Accumulation of misfolded protein through nitrosative stress linked to neurodegenerative disorders. Antioxid Redox Signal.2007 May;9(5):597-601.
    [78]Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER stress in Alzheimer's disease:a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation.2009 Dec 26;6:41.
    [79]Mattson MP, Guo Q, Furukawa K, Pedersen WA. Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease. J Neurochem.1998 Jan;70(1):1-14.
    [80]Kanekura K, Suzuki H, Aiso S, Matsuoka M. ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol.2009 Apr;39(2):81-9.
    [81]Cho KJ, Lee BI, Cheon SY, Kim HW, Kim HJ, Kim GW. Inhibition of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and nuclear huntingtin fragments in a mouse model of Huntington disease. Neuroscience.2009 Nov 10; 163(4): 1128-34.
    [82]Reijonen S, Putkonen N, Nφrremφlle A, Lindholm D, Korhonen L. Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res.2008 Mar 10;314(5):950-60.
    [83]Massa SM, Longo FM, Zuo J, Wang S, Chen J, Sharp FR. Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain. J Neurosci Res. 1995 Apr 15;40(6):807-19.
    [84]Saleh MC, Connell BJ, Saleh TM. Ischemic tolerance following low dose NMDA involves modulation of cellular stress proteins. Brain Res.2009 Jan 9;1247:212-20.
    [85]Xu L, Voloboueva LA, Ouyang Y, Emery JF, Giffard RG. Overexpression of mitochondrial Hsp70/Hsp75 in rat brain protects mitochondria, reduces oxidative stress, and protects from focal ischemia. J Cereb Blood Flow Metab.2009 Feb;29(2):365-74.
    [86]Voloboueva LA, Duan M, Ouyang Y, Emery JF, Stoy C, Giffard RG. Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab.2008 May;28(5):1009-16.
    [87]Kim SW, Park S, You KH, Kwon OY. Expression of the endoplasmic reticulum chaperone GRP94 gene in ischemic gerbil brain. Z Naturforsch C.2003 Sep-Oct;58(9-10):736-9.
    [88]Chen J, Graham SH, Zhu RL, Simon RP. Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab.1996 Jul;16(4):566-77.
    [89]Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab.2005 Jul;25(7):899-910.
    [90]Salehi AH, Morris SJ, Ho WC, Dickson KM, Doucet G, Milutinovic S, Durkin J, Gillard JW, Barker PA. AEG3482 is an antiapoptotic compound that inhibits Jun kinase activity and cell death through induced expression of heat shock protein 70. Chem Biol.2006 Feb;13(2): 213-23.
    [91]Bienemann AS, Lee YB, Howarth J, Uney JB. Hsp70 suppresses apoptosis in sympathetic neurones by preventing the activation of c-Jun. J Neurochem.2008 Jan;104(1):271-8.
    [92]Barzilai A. The contribution of the DNA damage response to neuronal viability. Antioxid Redox Signal.2007 Feb;9(2):211-8.
    [93]Pan MH, Hsieh MC, Kuo JM, Lai CS, Wu H, Sang S, Ho CT.6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol Nutr Food Res.2008 May;52(5):527-37.
    [94]Velazquez JM, Lindquist S. hsp70:nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell.1984 Mar;36(3):655-62.
    [95]Santos CX, Tanaka LY, Wosniak J, Laurindo FR. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response:roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal.2009 Oct;11(10):2409-27.
    [96]Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases:a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol.2009 Mar;7(1):65-74.
    [97]Balsano C, Alisi A. Antioxidant effects of natural bioactive compounds.Curr Pharm Des. 2009;15(26):3063-73.
    [98]Soory M. Relevance of nutritional antioxidants in metabolic syndrome, ageing and cancer: potential for therapeutic targeting. Infect Disord Drug Targets.2009 Aug;9(4):400-14.
    [99]王春波,贺孟泉,秦守哲,等。海洋肽的体外抗氧化作用。中国海洋药物,1998,,17(3):15-17.
    [100]Liu X, Shi S, Ye J, Liu L, Sun M, Wang C. Effect of polypeptide from Chlamys farreri on UVB-induced ROS/NF-kappaB/COX-2 activation and apoptosis in HaCaT cells. J Photochem Photobiol B.2009 Aug 3;96(2):109-16.
    [101]Xing YX, Li P, Miao YX, Du W, Wang CB. Involvement of ROS/ASMase/JNK signalling pathway in inhibiting UVA-induced apoptosis of HaCaT cells by polypeptide from Chlamys farreri. Free Radic Res.2008 Jan;42(1):12-9.
    [102]Li BH, Zhou YB, Guo SB, Wang CB. Polypeptide from Chlamys farreri inhibits UVB-induced HaCaT cells apoptosis via inhibition CD95 pathway and reactive oxygen species. Free Radic Res.2007 Nov;41(11):1224-32.
    [103]Li JL, Liu N, Chen XH, Sun M, Wang CB. Inhibition of UVA-induced apoptotic signaling pathway by polypeptide from Chlamys farreri in human HaCaT keratinocytes. Radiat Environ Biophys.2007 Aug;46(3):263-8.
    [104]沈若武,张蓓,王春波-,扇贝多肽对大鼠脑缺血后缺血半影区Bcl-2和Bax蛋白表达的影响。青岛大学医学院学报,2003,39(2):148-151.
    [105]Miloso M, Scuteri A, Foudah D, Tredici G. MAPKs as mediators of cell fate determination:an approach to neurodegenerative diseases. Curr Med Chem. 2008;15(6):538-48.
    [106]Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, Rice-Evans C. MAPK signaling in neurodegeneration:influences of flavonoids and of nitric oxide. Neurobiol Aging.2002 Sep-Oct;23(5):861-80.
    [107]Borsello T, Forloni G. JNK signalling:a possible target to prevent neurodegeneration. Curr Pharm Des.2007;13(18):1875-86.
    [108]Cheung EC, Slack RS. Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE.2004 Sep 14;2004(251):PE45.
    [109]Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, Legos JJ, Erhardt JA, Ohlstein EH, Hunter AJ, Harrison DC, Philpott K, Smith BR, Adams JL, Parsons AA. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev.2001 Mar;21(2):129-45.
    [110]Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin Ⅵ, Sherman MY. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem.1997 Jul 18;272(29):18033-7.
    [111]Lee JS, Lee JJ, Seo JS. HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem.2005 Feb 25;280(8):6634-41.
    [112]Doulias PT, Kotoglou P, Tenopoulou M, Keramisanou D, Tzavaras T, Brunk U, Galaris D, Angelidis C. Involvement of heat shock protein-70 in the mechanism of hydrogen peroxide-induced DNA damage:the role of lysosomes and iron. Free Radic Biol Med.2007 Feb 15;42(4):567-77. Epub 2006 Nov 30.
    [113]Wang K, Jiang L, Deng G, Chen G, Tan S, Tu Z, Jiang B, Xiao X. Heat shock protein 70 interacts with nucleolin and inhibits its cleavage, down-regulation and apoptosis induced by hydrogen peroxide in myocytes. J Biol Chem.2010 Feb 22. [Epub ahead of print]
    [114]Kurz, T.; Leake, A.; Von Zglinicki, T.; Brunk, U. T. Relocalized redoxactive lysosomal iron is an important mediator of oxidative-stress-induced DNA damage. Biochem. J.2004,378:1039-1045.
    [115]Oh-Hashi K, Maruyama W, Isobe K. Peroxynitrite induces GADD34,45, and 153 VIA p38 MAPK in human neuroblastoma SH-SY5Y cells. Free Radic Biol Med.2001 Jan 15;30(2):213-21.
    [116]Stokes AH, Freeman WM, Mitchell SG, Burnette TA, Hellmann GM, Vrana KE. Induction of GADD45 and GADD153 in neuroblastoma cells by dopamine-induced toxicity. Neurotoxicology.2002 Dec;23(6):675-84.
    [117]Harada J, Sugimoto M. Inhibitors of interleukin-1 beta-converting enzyme-family proteases (caspases) prevent apoptosis without affecting decreased cellular ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide in cerebellar granule neurons. Brain Res.1998 May 18;793(1-2):231-43.
    [118]Groeger G, Quiney C, Cotter TG. Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal.2009 Nov;11(11):2655-71.
    [119]Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling:role of NAD(P)H oxidase. Mol Cell Biochem.2004 Sep;264(1-2):85-97.
    [120]Bijur GN, Jope RS. Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem.2000 Dec;75(6):2401-8.
    [121]Escobar Mdel C, Souza V, Bucio L, Hernandez E, Gomez-Quiroz LE, Gutierrez Ruiz MC. MAPK activation is involved in cadmium-induced Hsp70 expression in HepG2 cells. Toxicol Mech Methods.2009 Oct;19(8):503-9.
    [122]Nishitai G, Matsuoka M. Differential regulation of HSP70 expression by the JNK kinases SEK1 and MKK7 in mouse embryonic stem cells treated with cadmium. J Cell Biochem.2008 Aug 1;104(5):1771-80.
    [123]Hung JJ, Cheng TJ, Lai YK, Chang MD. Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells. J Biol Chem.1998 Nov 27;273(48):31924-31.
    [124]Vogel P, Dux E, Wiessner C. Evidence of apoptosis in primary neuronal cultures after heat shock. Brain Res.1997 Aug 1;764(1-2):205-13.
    [125]Montgomery MK. RNA interference:historical overview and significance. Methods Mol Biol.2004;265:3-21.
    [126]Ikeyama S, Kusumoto K, Miyake H, Rokutan K, Tashiro S. A non-toxic heat shock protein 70 inducer, geranylgeranylacetone, suppresses apoptosis of cultured rat hepatocytes caused by hydrogen peroxide and ethanol. J Hepatol.2001 Jul;35(l):53-61.
    [127]Fudaba Y, Ohdan H, Tashiro H, Ito H, Fukuda Y, Dohi K, Asahara T. Geranylgeranylacetone, a heat shock protein inducer, prevents primary graft nonfunction in rat liver transplantation. Transplantation.2001 Jul 27;72(2):184-9.
    [128]Kawai T, Teshima S, Kusumoto K, Kawahara T, Kondo K, Kishi K, Rokutan K. A non-toxic heat shock protein 70 inducer, geranyl-geranyl-acetone, restores the heat shock response in gastric mucosa of protein-malnourished rats. J Lab Clin Med.2000 Aug; 136(2):138-48.
    [129]Endo S, Hiramatsu N, Hayakawa K, Okamura M, Kasai A, Tagawa Y, Sawada N, Yao J, Kitamura M. Geranylgeranylacetone, an inducer of the 70-kDa heat shock protein (HSP70), elicits unfolded protein response and coordinates cellular fate independently of HSP70. Mol Pharmacol.2007 Nov;72(5):1337-48.
    [130]Lee YJ, Curetty L, Hou ZZ, Kim SH, Kim JH, Corry PM. Effect of pH on quercetin-induced suppression of heat shock gene expression and thermotolerance development in HT-29 cells. Biochem Biophys Res Commun.1992 Jul 31;186(2):1121-8.
    [131]Elia G, Santoro MG. Regulation of heat shock protein synthesis by quercetin in human erythroleukaemia cells.Biochem J.1994 May 15;300 (Pt 1):201-9.
    [132]Torres M, Forman HJ. Redox signaling and the MAP kinase pathways. Biofactors. 2003;17(1-4):287-96.
    [133]Ruffels J, Griffin M, Dickenson JM. Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells:role of ERK1/2 in H2O2-induced cell death. Eur J Pharmacol.2004 Jan 12;483(2-3):163-73.
    [134]Chen L, Liu L, Yin J, Luo Y, Huang S. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol.2009 Jun;41(6):1284-95.
    [135]Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2:role in cell survival following oxidant injury. J. Biol. Chem.1996. 271,4138-4142.
    [136]Crossthwaite AJ, Hasan S, Williams RJ. Hydrogen peroxidemediated phosphorylation of ERK1/2, Akt/PKB and JNK in cortical neurones:dependence on Ca2+and PI3-kinase. J. Neurochem.2002.80,24-35.
    [137]Jin K, Mao XO, Zhu Y, Greenberg DA. MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. J. Neurochem.2002.80,119-125.
    [138]Maher, P., How protein kinase C activation protects nerve cells from oxidative stress-induced cell death. J. Neurosci.2001.21,2929-2938.
    [139]Sanvicens N, Gomez-Vicente V, Messeguer A, Cotter TG The radical scavenger CR-6 protects SH-SY5Y neuroblastoma cells from oxidative stress-induced apoptosis:effect on survival pathways. J Neurochem.2006 Aug;98(3):735-47.
    [140]Dedmon MM, Christodoulou J, Wilson MR, Dobson CM. Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species.J Biol Chem.2005 Apr 15;280(15):14733-40.
    [141]Donaire V, Niso M, Moran JM, Garcia L, Gonzalez-Polo RA, Soler G, Fuentes JM. Heat shock proteins protect both MPP(+) and paraquat neurotoxicity. Brain Res Bull.2005 Nov 30;67(6):509-14. Chaperone signalling complexes in Alzheimer's disease.
    [142]Koren J 3rd, Jinwal UK, Lee DC, Jones JR, Shults CL, Johnson AG, Anderson LJ, Dickey CA. J Cell Mol Med.2009 Apr;13(4):619-30.
    [143]Park HS, Cho SG, Kim CK, Hwang HS, Noh KT, Kim MS, Huh SH, Kim MJ, Ryoo K, Kim EK, Kang WJ, Lee JS, Seo JS, Ko YG, KimS and Choi EJ. Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1; Mol. Cell Biol.2002.22: 7721-7730.
    [144]Hwang JR, Zhang C, Patterson C. C-terminus of heat shock protein 70-interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1-dependent apoptosis. Cell Stress Chaperones.2005 Summer; 10(2):147-56.
    [145]Gao Y, Han C, Huang H, Xin Y, Xu Y, Luo L, Yin Z. Heat shock protein 70 together with its co-chaperone CHIP inhibits TNF-alpha induced apoptosis by promoting proteasomal degradation of apoptosis signal-regulating kinasel. Apoptosis.2010 Mar 27. [Epub ahead of print].
    [146]Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets.2009 Dec;9(8):915-30.
    [147]Nakano H. Signaling crosstalk between NF-kappaB and JNK. Trends Immunol.2004 Aug;25(8):402-5.
    [148]Smith ML, Seo YR. p53 regulation of DNA excision repair pathways. Mutagenesis.2002 Mar; 17(2):149-56.
    [149]Paunesku T, Mittal S, Protic M, Oryhon J, Korolev SV, Joachimiak A, Woloschak GE. Proliferating cell nuclear antigen (PCNA):ringmaster of the genome. Int JRadiat Biol.2001 Oct;77(10):1007-21.
    [150]Sheikh. MS, Hollander MC, Fornance AJ Jr. Role of Gadd45 in apoptosis. Biochem Pharmacol.2000 Jan 1;59(1):43-5.
    [151]Maytin EV, Habener JF. Transcription factors C/EBP alpha, C/EBP beta, and CHOP (Gadd153) expressed during the differentiation program of keratinocytes in vitro and in vivo. J Invest Dermatol.1998 Mar;110(3):238-46.
    [152]Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis.2002 Aug;7(4):335-45.
    [153]Lovat PE, Oliverio S, Corazzari M, Ranalli M, Pearson AD, Melino G, Piacentini M, Redfern CP. Induction of GADD153 and Bak:novel molecular targets of fenretinide-induced apoptosis of neuroblastoma. Cancer Lett.2003 Jul 18; 197(1-2):157-63.
    [154]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress.Cell Death Differ.2004 Apr; 11 (4):381-9.
    [155]Kim R, Emi M, Tanabe K, Murakami S. Role of the unfolded protein response in cell death. Apoptosis.2006 Jan;11(1):5-13.
    [156]Xiao C, Chen S, Li J, Hai T, Lu Q, Sun E, Wang R, Tanguay RM, Wu T. Association of HSP70 and genotoxic damage in lymphocytes of workers exposed to coke-oven emission. Cell Stress Chaperones.2002 Oct;7(4):396-402.
    [157]Tsuchiya D, Hong S, Matsumori Y, Shiina H, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR. Overexpression of rat heat shock protein 70 is associated with reduction of early mitochondrial cytochrome C release and subsequent DNA fragmentation after permanent focal ischemia. J Cereb Blood Flow Metab.2003 Jun;23(6):718-27.
    [158]Gao YJ, Xiao CF, Chen S, Wang RB, He HZ, Tanguay RM, Wu TC. In vitro study on role of Hsp70 expression in DNA damage of human embryonic lung cells exposed to Benzo[a]pyrene. Biomed Environ Sci.2004 Jun; 17(2):144-52.
    [159]Sherman MY, Gabai V, O'Callaghan C, Yaglom J. Molecular chaperones regulate p53 and suppress senescence programs. FEBS Lett.2007 Jul 31;581(19):3711-5.
    [160]Malhotra V, Wong HR. Interactions between the heat shock response and the nuclear factor-kappa B signaling pathway. Crit Care Med.2002 Jan;30(1 Suppl):S89-95.
    [161]Gaestel M. Molecular chaperones in signal transduction. Handb Exp Pharmacol. 2006;(172):93-109.
    [162]Arakawa M, Ito Y. N-acetylcysteine and neurodegenerative diseases:Basic and clinical pharmacology.Cerebellum.2007 Jan 19:1-7.
    [163]Inden M, Kitamura Y, Takeuchi H, Yanagida T, Takata K, Kobayashi Y, Taniguchi T, Yoshimoto K, Kaneko M, Okuma Y, Taira T, Ariga H, Shimohama S. Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem.2007 Jun;101(6):1491-1504.
    [164]Mueller S. Iron regulatory protein 1 as a sensor of reactive oxygen species. Biofactors. 2005;24(1-4):171-81.
    [165]Lovat PE, Oliverio S, Corazzari M, Ranalli M, Pearson AD, Melino G, Piacentini M, Redfern CP.Induction of GADD153 and Bak:novel molecular targets of fenretinide-induced apoptosis of neuroblastoma. Cancer Lett.2003 Jul 18;197(1-2):157-63.
    [166]Scott DW, Longpre JM, Loo G. Upregulation of GADD153 by butyrate:involvement of MAPK. DNA Cell Biol.2008 Nov;27(11):607-14.
    [167]Sekine Y, Takeda K, Ichijo H. The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr Mol Med.2006 Feb;6(1):87-97.
    [168]Kim AH, Khursigara G, Sun X, Franke TF, Chao MV. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol.2001 Feb;21(3):893-901.
    [169]Liu J, Lin A. Role of JNK activation in apoptosis:a double-edged sword. Cell Res. 2005 Jan; 15(1):36-42.
    [170]Klee M, Pallauf K, Alcala S, Fleischer A, Pimentel-Muinos FX. Mitochondrial apoptosis induced by BH3-only molecules in the exclusive presence of endoplasmic reticular Bak. EMBO J.2009 Jun 17;28(12):1757-68.
    [171]Teles AV, Ureshino RP, Dorta DJ, Lopes GS, Hsu YT, Smaili SS. Bcl-x(L) inhibits Bax-induced alterations in mitochondrial respiration and calcium release. Neurosci Lett. 2008 Sep 12;442(2):96-9.
    [172]Achanta G; Huang P. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res.2004.64:6233-6239.
    [173]Struthers L.; Patel R; Clark J; Thomas S. Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues. Anal. Biochem.1998.255:20-31.
    [174]Ohkawa H; Ohishi N; Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem.1979.95:351-358.
    [175]Katiyar SK; Agarwal R; Mukhtar H. Inhibition of spontaneous and photo-enhanced lipid peroxidation in mouse epidermal microsomes by epicatechin derivatives from green tea. Cancer Lett.1994.79:61-66.
    [176]Katiyar SK, Afaq F, Perez A, Mukhtar H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis.2001.22:287-294.
    [177]Flohe L; Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984.105:114-121.
    [178]Akerboom TP; Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples.1981.Methods Enzymol.77:373-382.
    [179]Nelson DP; Kiesow L A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25℃ (with molar extinction coefficients of H2O2 solutions in the UV. Anal. Biochem. 1972.49:474-478.
    [180]Misra HP; Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase.1972.247:3170-3175.
    [181]Han ZW, Chu X, Liu C; Wang YJ, Mi S, Wang CB. Free radical scavenging abilities of polypeptide from Chlamys farreri. Chinese Journal of Oceanology and Limnology,2006. 24(3):325-328.
    [182]Chong ZZ; Li F; Maiese K. Oxidative stress in the brain:novel cellular targets that govern survival during neurodegenerative disease. Prog. Neurobiol.2005.75:207-246.
    [183]Breen AP; Murphy JA. Reactions of oxyl radicals with DNA. Free Radic. Biol. Med. 1995.18:1033-1077.
    [184]Wiseman, H.; Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J.1996.313:17-29.
    [185]Sun, Y. Free radical antioxidant enzymes and carcinogenesis. Free Radic.Biol. Med. 1990.8:583-599.
    [186]Waris, G.; Ahsan, H. Reactive oxygen species:role in the development of cancer and various chronic conditions.2006. J. Carcinog.5:14.
    [187]Martin HL, Teismann P. Glutathione--a review on its role and significance in Parkinson's disease. FASEB J.2009 Oct;23(10):3263-72.
    [188]Shen HM, Liu ZG JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med.2006.40:928-39.
    [189]Matsuzawa A, Ichijo H. Redox control of cell fate by MAP kinase:physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta.2008.1780: 1325-36.
    [190]Saitoh, M.; Nishitoh, H.; Fujii, M.; Takeda, K.; Tobiume, K.; Sawada, Y.; Kawabata, M.; Miyazono, K.; Ichijo, H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J.1998.17:2596-2606.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700