开放量子系统的非马尔科夫动力学和弱测量反馈控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
任何一个真实的量子体系不可避免地会与外部环境发生相互作用,从而导致量子体系退相干。研究开放量子系统的退相干性质及其动力学行为,必然要考虑其所处环境的特点,不同类型的环境可能会导致完全不同的动力学结果。处理开放量子体系的传统方法往往只考虑系统与环境的弱耦合情况,把环境看成没有记忆的马尔科夫环境。但是,在系统与环境强耦合条件下,环境的记忆反馈作用产生的非马尔科夫效应必须考虑。最近几年来,实验技术的发展使得制备适合量子信息处理的强耦合系统成为现实。因此,研究开放量子系统的非马尔科夫动力学和相关反馈控制有着重要的理论和应用意义。本文运用开放量子系统理论和量子信息理论研究开放量子系统的非马尔科夫动力学和弱测量反馈控制,取得了一系列创新性成果:
     1.从阻尼Jaynes-Cummings模型出发,研究了开放二能级系统的非马尔科夫熵压缩动力学,考察了非马尔科夫效应和失谐量对熵压缩的影响。结果表明:非马尔科夫效应和失谐的共同作用可以使系统的熵压缩保持相当长的时间。原因在于:在非马尔科夫环境中,失谐能够更有效地抑制系统相干性的衰减。这些结果为利用压缩性质进行高精密测量提供了更有利的条件。
     2.研究了一个与非马尔科夫库耦合的三能级Λ系统的动力学。针对洛伦兹形式的谱线,详细讨论了在弱耦合和强耦合两种情形下的非马尔科夫含时衰减系数和激发态布居的动力学行为。结果表明:非马尔科夫效应不仅存在于强耦合情形,也存在于弱耦合情况,只不过其非马尔科夫效应非常弱,在很多时侯可以忽略不计。最后,从信息流动的角度对这些结果进行了解释。
     3.提出了两种非马尔科夫环境下使量子体系间的量子纠缠和量子discord长时间保持的理论方案:一是通过失谐调控技术来保持纠缠和量子discord;二是通过外加经典驱动场来保持纠缠。最后利用准模理论,唯象地解释了这两种情况下纠缠能够长时间保持的物理原因。这为实际量子信息处理中利用非马尔科夫效应抑制退相干提供了新的途径。
     4.研究了基于弱测量方式的反馈控制策略对抑制开放二能级系统噪声的作用。研究表明:对于某些合适的系统初态,针对不同的噪声,基于弱测量方式的反馈控制方案总是要比基于投影测量的方案更能有效地抑制噪声对系统状态的干扰。这一方案很好地平衡了量子测量过程对系统的信息提取和扰动之间的矛盾,为实现最优量子反馈控制提供了新的思路。
Any realistic physical system will suffer from unwanted interactions with the out-side environments, causing decoherence and destroying entanglement. In order to in-vestigate the quantum decoherence and the entanglement dynamics of open quantum systems, we must take account of the characteristics of the environments coupled to the system. Usually, in the standard theory of the open quantum systems, environments are treated as the Markovian environments without memory. However, in the strong cou-pling regime, non-Markovian effects induced by the memory and feedback interactions of environments should be considered carefully. Recently, the strong coupling systems for quantum information processing has been realized with the development of science and technology. Thus, investigating the non-Markovian dynamics and related quantum feedback control of open quantum systems have important theoretical and partical sig-nificance. In this thesis, non-Markovian dynamics and weak measurement feedback control of open quantum systems have been studied by using the theories of open quan-tum systems and quantum information, and a series of significant results are obtained. The concrete contents are listed as follows:
     1. Based on the damped Jaynes-Cummings model, the entropy squeezing dynamics of a two-level atom off-resonantly coupled to a non-Markovian reservoir has been inves-tigated. The influences of non-Markovian effects and detunings on the atomic squeezing have been examined. It is interesting to note that atomic squeezing can be protected for a long time when both the non-Markovian effect and detuning are present simultaneously. The physical mechanism is that the decay rate is suppressed much more by detuning in the non-Markovian regime than in the Markovian case. These results provide a poten-tial method to extend the possible usage time of squeezing, which would be useful in high-precision applications.
     2. We have studied the excited-state population dynamics of a three-level A-atom coupled to a non-Markovian reservoir. Comparing the Lorentzian time-dependent decay rate and population dynamics for the weak coupling regime with those for the strong coupling regime, we have noted that non-Markovian features exist in both regimes, but population dynamics shows fairly different behaviors since the non-Markovian effect can be neglected safely in weak coupling regime. The results have been interpreted from the perspective of information flow.
     3. We have presented two theoretical methods to protect the entanglement and quantum discord in non-Markovian regime:One is based on the technology of detuning control; the other is based on the classical driving fields acted upon the systems. The physical mechanism behind our results has been explained via the quasimode theory. Our schemes would be helpful for suppressing the decoherence and dis-entanglement by non-Markovian effect in practical quantum information processing.
     4. We have examined the use of weak measurement-based feedback control for stabilizing quantum states in the presence of different noise sources and with respect to different system states. We have found that the approach is sensitive to the system state, but for some suitable states, it works well for all typical types of noise sources. This scheme fairly balanced the trade-off between information gain and disturbance in quantum measurement, which might shed some new light on the achievement of optimal quantum feedback control.
引文
[1]M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information. Cam-bridge: Cambridge University Press,2000.
    [2]G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rotteler, H. Weinfurter, R. Werner and A. Zeilinger, Quantum Information:An Introduction to Basic Theoretical Concepts and Experiments. Beijing: World Publishing Corporatin,2004.
    [3]L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in Many-Body Systems Rev. Mod. Phys.2008,80:517.
    [4]M. Keyl, Fundamentals of Quantum Information Theory, Phys. Rep.2002,369:431.
    [5]D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, Experi-mental Quantum Teleportation, Nature,1997,390:575.
    [6]V. Vedral, Introdution to Quantum Information Science. Oxford: Oxford University Press,2006.
    [7]C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters. Tele-porting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett.1993,70:1895.
    [8]W. H. Zurek, Decoherence, Einselection, and the Quantum Origins of the Classical. Rev. Mod. Phys.2003,75:715.
    [9]H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford: Oxford University Press,2007.
    [10]U. Weiss, Quantum Dissipative Systems. Singapore:World Scientific Press,2008.
    [11]C. W. Gardiner and P. Zoller,Quantum Noise. Berlin:Springer-Verlag Press,1999.
    [12]F. Benatti, R. Floreanini and M. Piani, Environment Induced Entanglement in Markovian Dissipative Dynamics. Phys. Rev. Lett.2003,91:070402.
    [13]M. Scala, R. Migliore and A. Messina, Dissipation and Entanglement Dynamics for Two Interacting Qubits Coupled to Independent Reservoirs. J. Phys. A:Math. Theor.2008, 41:435304.
    [14]W. Song, L. Chen and S. L. Zhu, Sudden Death of Distillability in Qutrit-Qutrit Systems. Phys. Rev. A 2009,80:012331.
    [15]F. Dubin, D. Rotter, M. Mukherjee, C. Russo, J. Eschner and R. Blatt, Photon Correlation versus Interference of Single-Atom Fluorescence in a Half-Cavity. Phys. Rev. Lett.2007, 98:183003.
    [16]P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen and S. Bay, Fundamental Quantum Optics in Structured Reservoirs. Rep. Prog. Phys.2000,63:455.
    [17]B. L. Hu, J. P. Paz and Y. Zhang, Quantum Brownian Motion in a General Environ-ment: Exact Master Equation with Nonlocal Dissipation and Colored Noise. Phys. Rev. D 1992,45:2843.
    [18]H.-P. Breuer, D. Burgarth and F. Petruccione, Non-Markovian Dynamics in a Spin Star System:Exact Solution and Approximation Techniques. Phys. Rev. B 2004,70:045323
    [19]X. Xiao, M. F. Fang, Y. L. Li, G. D. Kang and C. Wu, Non-Markovian Entanglement Dynamics of Two Spin-1/2 Particles Embedded in Two Separate Spin Star Baths with Tunable External Magnetic Fields.2010 Eur. Phys. J. D 2010,57:447.
    [20]K. Shiokawa and B. L. Hu, Qubit Decoherence and Non-Markovian Dynamics at Low Temperatures via an Effective Spin-Boson Model. Phys. Rev. A 2004,70:062106.
    [21]K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu and A. Imamoglu, Quantum Nature of a Strongly Coupled Single Quantum Dot-Cavity System. Nature,2007,445:896.
    [22]Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger and J. Reichel, Strong Atom-Field Coupling for Bose-Einstein Condensates in an Optical Cavity on a Chip. Nature, 2007,450:272.
    [23]X. Xiao, M. F. Fang and Y. M. Hu, Protecting Atomic Squeezing by Detuning in Non-Markovian Environments. Phys. Scr. 2011,84:045011.
    [24]X. Xiao, M. F. Fang and Y. L. Li, Non-Markovian Dynamics of a Three Level A Atom Coupled to a Structured Reservoir: Comparison Between Weak Coupling Regime and Strong Coupling Regime. Phys. Scr. 2011,83:015013.
    [25]T. Yu and J. H. Eberly, Finite-Time Disentanglement Via Spontaneous Emission. Phys. Rev. Lett.2004,93:140404.
    [26]T. Yu and J. H. Eberly, Quantum Open System Theory: Bipartite Aspects. Phys. Rev. Lett.2006,97:140403.
    [27]T. Yu, J.H. Eberly, Sudden Death of Entanglement. Science,2009,323:598.
    [28]M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro and L. Davidovich, Environment-Induced Sudden Death of Entanglement. Science,2007,316: 579.
    [29]B. Bellomo, R. Lo Franco, and G. Compagno, Non-Markovian Effects on the Dynamics of Entanglement. Phys. Rev. Lett.2007,99:160502.
    [30]B. Bellomo, R. Lo Franco and G. Compagno, Entanglement Dynamics of Two Indepen-dent Qubits in Environments with and Without Memory. Phys. Rev. A 2008,77:032342.
    [31]B. Bellomo, R. Lo Franco, S. Maniscalco and G. Compagno, Entanglement Trapping in Structured Environments, Phys. Rev. A 2008,78:060302(R).
    [32]J. S. Xu, C. F. Li, C. J. Zhang, X. Y. Xu, Y. S. Zhang and G. C. Guo, Experimental Investigation of the Non-Markovian Dynamics of Classical and Quantum Correlations, Phys. Rev. A 2010,82:042328.
    [33]J. S. Tang, C. F. Li, Y. L. Li, X. B. Zou, G. C. Guo, H. P. Breuer, E. M. Laine and J. Piilo, Measuring Non-Markovianity of Processes with Controllable System-Environment Interaction, EPL 2012,97:10002.
    [34]B. H. Liu, L. Li, Y. F. Huang, C. F. Li, G. C. Guo, E. M. Laine, H. P. Breuer and J. Piilo, Experimental Control of the Transition from Markovian to Non-Markovian Dynamics of Open Quantum Systems, Nat. Phys.2012,7,931.
    [35]K. H. Madsen, S. Ates, T. Lund-Hansen, A. Loffler, S. Reitzenstein, A. Forchel and P. Lo-dahl, Observation of Non-Markovian Dynamics of a Single Quantum Dot in a Micropillar Cavity, Phys. Rev. Lett.2011,106:233601.
    [36]X. Xiao, M. F. Fang, Y. L. Li, K. Zeng and C. Wu, Robust Entanglement Preserving by Detuning in Non-Markovian Regime. J. Phys. B:At. Mol. Opt. Phys.2009,42:235502.
    [37]X. Xiao, M. F. Fang and Y. L. Li, Non-Markovian Dynamics of Two Qubits Driven by Classical Fields: Population Trapping and Entanglement Preservation. J. Phys. B:At. Mol. Opt. Phys.2010,43:185505.
    [38]E. Bihama,G. Brassardb, D. Kenigsberga and T. Mor, Quantum Computing Without En-tanglement. Theor. Comput. Sci.2004,320:15.
    [39]E. Knill and R. Laflamme, Power of One Bit of Quantum Information. Phys. Rev. Lett. 1998,81:5672.
    [40]L. Henderson and V. Vedral, Classical, Quantum and Total Correlations. J. Phys. A: Math. Theor.2001,34:6899.
    [41]H. Ollivier and W. H. Zurek, Quantum Discord:A Measure of the Quantunmess of Cor-relations. Phys. Rev. Lett.2001,88:017901.
    [42]B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, Experimental Quantum Computing without Entanglement. Phys. Rev. Lett.2008,101:200501.
    [43]P. Giorda and M. G. A. Paris, Gaussian Quantum Discord. Phys. Rev. Lett.2010,105: 020503.
    [44]D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani and A. Winter, Operational Inter-pretations of Quantum Discord. Phys. Rev. A 2011,83:032324.
    [45]S. Luo and S. Fu, Geometric Measure of Quantum Discord. Phys. Rev. A 2010,82: 034302.
    [46]S. Luo, Quantum Discord for Two-Qubit Systems. Phys. Rev. A 2008,77:042303.
    [47]C. C. Rulli and M. S. Sarandy, Global Quantum Discord in Multipartite Systems. Phys. Rev. A 2011,84:042109.
    [48]L. Ciliberti, R. Rossignoli, and N. Canosa, Quantum Discord in Finite XY Chains. Phys. Rev. A 2010,82:042316.
    [49]B. Li, Z. X. Wang and S. M. Fei, Quantum Discord and Geometry for a Class of Two-Qubit States. Phys. Rev. A 2010,83:022321.
    [50]C. K. Lee, L. C. Kwek and J. Cao, Stochastic Resonance of Quantum Discord. Phys. Rev. A 2011,84:062113.
    [51]C. Zhang, S. Yu, Q. Chen and C. H. Oh, Detecting the Quantum Discord of an Unknown State by a Single Observable. Phys. Rev. A 2011,84:032122.
    [52]A. Streltsov, H. Kampermann, and D. BruB, Behavior of Quantum Correlations under Local Noise. Phys. Rev. Lett.2011,107:170502.
    [53]X. Xiao, M. F. Fang, Y. L. Li, G. D. Kang and C. Wu, Quantum Discord in Non-Markovian Environments. Opt. Commun.2010,283:3001.
    [54]P. Zanardi and M. Rasetti, Noiseless Quantum Codes. Phys. Rev. Lett.1997,79:3306.
    [55]D. A. Lidar, D. Bacon and K. B. Whaley, Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes. Phys. Rev. Lett.1999,82:4556.
    [56]M. Manirul Ali, P. W. Chen and H. S. Goan, Decoherence-Free Subspace and Disen-tanglement Dynamics for Two Qubits in a Common Non-Markovian Squeezed Reservoir, Phys. Rev. A 2010,82:022103.
    [57]H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control. Cambridge: Cambridge University Press,2009.
    [58]X. Xiao and M. Feng, Reexamination of the Feedback Control on Quantum States via Weak Measurements. Phys. Rev. A 2011,83:054301.
    [59]R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum Eentanglement. Rev. Mod. Phys.2009,81:865.
    [60]O. Guhne and G. Toth, Entanglement Detection. Phys. Rep.2009,474:1.
    [61]W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett.1998,80:2245.
    [62]L. Henderson and V. Vedral, Information, Relative Entropy of Entanglement, and Irre-versibility. Phys. Rev. Lett.2000,84:2263.
    [63]K. Modi, T. Paterek, W. Son, V. Vedral and M. Williamson, Unified View of Quantum and Classical Correlations. Phys. Rev. Lett.2010,104:080501.
    [64]B. Dakic, V. Vedral and C. Brukner, Necessary and Sufficient Condition for Nonzero Quantum Discord. Phys. Rev. Lett.2010,105,190502.
    [65]曾谨言.量子力学.北京:科学出版社,2001.
    [66]K. Hornberger, Introduction to Decoherence Theory. Lect. Notes Phys.2009,768:221.
    [67]S. Nakajima, On Quantum Theory of Transport Phenomena. Prog. Theor. Phys.1958, 20:948.
    [68]R. Zwanzig, Ensemble Method in the Theory of Irreversibility. J. Chem. Phys.1960,33: 1338.
    [69]W. H. Louisell, Quantum Statistical Properties of Radiation. New York: Wiley,1973.
    [70]G. Landblad, On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys.1976,48:119.
    [71]S. Chaturvedi and F. Shibata, Time-Convolutionless Projection Operator Formalism for Elimination of Fast Variables: Applications to Brownian Motion. Z. Phys. B 1979,35: 297.
    [72]H.-P. Breuer, B. Kapplera and F. Petruccionea, The Time-Convolutionless Projection Op-erator Technique in the Quantum Theory of Dissipation and Decoherence. Ann. Phys. 2002,291:36.
    [73]A. Shabani and D. A. Lidar, Completely Positive Post-Markovian Master Equation via a Measurement Approach. Phys. Rev. A 2005,71:020101(R).
    [74]M. M. Jack, Non-Markovian Quantum Trajectories. (PhD Thesis, University of Auck-land,1999).
    [75]G. Schaller and T. Brandes, Preservation of Positivity by Dynamical Coarse Graining. Phys. Rev. A 2008,78:022106.
    [76]B. J. Dalton, S. M. Barnett and B. M. Garraway, Theory of Pseudomodes in Quantum Optical Processes. Phys. Rev. A 2001,64:053813.
    [77]H. M. Wiseman and G. J. Milburn, Quantum Theory of Optical Feedback via Homodyne Detection. Phys. Rev. Lett.1993,70:548.
    [78]A. C. Doherty and K. Jacobs, Feedback Control of Quantum Systems Using Continuous State Estimation. Phys. Rev. A 1999,60:2700.
    [79]A. C. Doherty, K. Jacobs and G. Jungman, Information, Disturbance, and Hamiltonian Quantum Feedback Control. Phys. Rev. A 2001,63:062306.
    [80]V. Giovannetti, P. Tombesi and D. Vitali, Non-Markovian Quantum Feedback from Ho-modyne Measurements: The Effect of a Nonzero Feedback Delay Time. Phys. Rev. A 1999,60:1549.
    [81]J. Wang, H. M. Wiseman and G. J. Milburn, Non-Markovian Homodyne-Mediated Feed-back on a Two-Level Atom:A Quantum Trajectory Treatment. Chem. Phys.2001,268: 221.
    [82]董道毅,量子控制策略与学习控制算法研究.博士学位论文,中国科学技术大学,2006.
    [83]W. Heisenberg, The Actual Content of Quantum-Theoretic Kinematics and Dynamics. Z. Phys.1927,43:172.
    [84]I. Bialynicki-Birula and J. Mycielski, Uncertainty Relations for Information Entropy in Wave Mechanics. Commun. Math. Phys.1975,44:129.
    [85]D. Deutsch, Uncertainty in Quantum Measurements. Phys. Rev. Lett.1983,50:631.
    [86]M. Kitagawa and M. Ueda, Squeezed Spin States. Phys. Rev. A 1993,47:5138.
    [87]K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein and N. Mavalvala, A quantum-Enhanced Prototype Gravitational-Wave Detector. Nat. Phys.2008,4:472.
    [88]O. Miyakawa, R. Ward, R. Adhikari, M. Evans, B. Abbott, R. Bork, D. Busby, J. Heefner, A. Ivanov, M. Smith, R. Taylor, S. Vass and A. Weinstein, Measurement of Optical Re-sponse of a Detuned Resonant Sideband Extraction Gravitational Wave Detector. Phys. Rev.D 2006,74:022001.
    [89]K. Goda, Development of Techniques for Quantum-Enhanced Laser-Interferometric Gravitational-Wave Detectors. (Ph.D. Thesis, Massachusetts Institute of Technology, 2007).
    [90]D. J. Wineland, J. J. BolIonger and W. M. Itano, Squeezed Atomic States and Projection Noise in Spectroscopy. Phys. Rev. A 1994,50:67.
    [91]J. L. Sφrensen, J. Hald and E. S. Polzik, Quantum Noise of an Atomic Spin Polarization Measurement. Phys. Rev. Lett.1998,80:3487.
    [92]J. Ye, H. J. Kimble and H. Katori, Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps. Science 2008,320:1734.
    [93]X. S. Li, D. L. Lin and T. F. George, Squeezing of Atomic Variables in the One-Photon and Two-Photon Jaynes-Cummings Model. Phys. Rev. A 1989,40:2504.
    [94]M. M. Ashraf and M. S. K. Razmi, Atomic-Dipole Squeezing and Emission Spectra of the Nondegenerate Two-Photon Jaynes-Cummings Model. Phys. Rev. A 1992,45:8121.
    [95]P. Zhou and J. S. Peng, Dipole Squeezing in the Two-Photon Jaynes-Cummings Model with Superposition State Preparation. Phys. Rev. A 1991,44:3331.
    [96]M. F. Fang, P. Zhou and S. Swain, Entropy Squeezing for a Two-Level Atom. J. Mod. Opt.2000,47:1043.
    [97]J. Paavola, Non-Markovian Reservoir-Dependent Squeezing. Phys. Scr. 2010, T140: 014030.
    [98]P. Haikka and S. Maniscalco, Non-Markovian Dynamics of a Damped Driven Two-State System. Phys. Rev. A 2010,81:052103.
    [99]C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe and D. J. Wineland, Decoherence of Quantum Superpositions Through Coupling to Engineered Reservoirs. Nature 2000,403:269.
    [100]S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler and P. Zoller, Quantum States and Phases in Driven Open Quantum Systems with Cold Atoms. Nat. Phys.2008,4:878.
    [101]Z. Y. Xu and M. Feng, Sudden Death and Birth of Entanglement Beyond the Markovian Approximation. Phys. Lett. A 2009,373:1906.
    [102]B. J. Dalton, R. McDuff and P. L. Knight, Coherent Population Trapping. J. Mod. Opt, 1985,32:61.
    [103]M. Fleischhauer, A. Imamoglu and J. P. Marangos, Electromagnetically Induced Trans-parency: Optics in Coherent Media. Rev. Mod. Phys.2005,77:633.
    [104]V. I. Romanenko and L. P. Yatsenko, Adiabatic Population Transfer in the Three-Level Λ-System: Two-Photon Lineshape. Opt. Commun.1997,140:231.
    [105]M. O. Scully and M. S. Zubairy, Quantum Optics Cambridge: Cambridge University Press,1997.
    [106]B. J. Dalton and B. M. Garraway, Non-Markovian Decay of a Three-Level Cascade Atom in a Structured Reservoir. Phys. Rev. A 2003,68:033809.
    [107]B. M. Garrawayand B. J. Dalton, Theory of Non-Markovian Decay of a Cascade Atom in High-Q Cavities and Photonic Band Gap Materials. J. Phys. B:At. Mol. Opt. Phys. 2006,39:S767.
    [108]H. Spohn, Kinetic Equations from Hamiltonian Dynamics: Markovian Limits. Rev. Mod. Phys.1980,52:569.
    [109]J. Piilo, S. Maniscalco, K. Harkonen and K. A. Suominen, Non-Markovian Quantum Jumps. Phys. Rev. Lett.2008,100:180402.
    [110]H.-P. Breuer, E.-M. Laine and J. Piilo, Measure for the Degree of Non- Markovian Be-havior of Quantum Processes in Open Systems. Phys. Rev. Lett.2009,103:210401.
    [111]E. M. Laine, J. Piilo and H.-P. Breuer, Measure for the Non-Markovianity of Quantum Processes. Phys. Rev. A 2010,81:062115.
    [112]Z. Y. Xu, W. L. Yang, and M. Feng, Proposed Method for Direct Measurement of the Non-Markovian Character of the Qubits Coupled to Bosonic Reservoirs. Phys. Rev. A 2010,81:044105.
    [113]A. K. Rajagopal, A. R. Usha Devi and R. W. Rendell, Kraus Representation of Quantum Evolution and Fidelity as Manifestations of Markovian and Non-Markovian Forms. Phys. Rev. A 2010,82:042107.
    [114]X. M. Lu, X. G. Wang and C. P. Sun, Quantum Fisher Information Flow and Non-Markovian Processes of Open Systems. Phys. Rev. A 2010,82:042103.
    [115]P. Haikka, J. D. Cresser, and S. Maniscalco, Comparing Different Non-Markovianity Measures in a Driven Qubit System. Phys. Rev. A 2011,83:012112.
    [116]J. G. Li, J. Zou and B. Shao, Non-Markovianity of the Damped Jaynes-Cummings Model with Detuning. Phys. Rev. A 2010,81:062124.
    [117]Angel Rivas, S. F. Huelga and M. B. Plenio, Entanglement and Non-Markovianity of Quantum Evolutions. Phys. Rev. Lett.2010,105:050403.
    [118]H. P. Breuer and J. Piilo, Stochastic Jump Processes for Non-Markovian Quantum Dy-namics. Europhys. Lett.2009,85:50004.
    [119]S. Maniscalco, F. Francica, R. L. Zaffino, N. Lo Gullo and F. Plastina, Protecting Entan-glement via the Quantum Zeno Effect. Phys. Rev. Lett.2008,100:090503.
    [120]L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen and B. M. Garraway, Sudden Death and Sudden Birth of Entanglement in Common Structured Reservoirs. Phys. Rev. A 2009, 79: 042302.
    [121]Y. Li, J. Zhou, and H. Guo, Effect of the Dipole-Dipole Interaction for Two Atoms with Different Couplings in a Non-Markovian Environment. Phys. Rev. A 2009,79:012309.
    [122]J. Zhou, C. J. Wu, M. Y. Zhu and H. Guo, Non-Markovian Dynamics of Entanglement for Multipartite Systems. J. Phys. B:At. Mol. Opt. Phys.2009,42:215505.
    [123]J. H. An, and W. M. Zhang, Non-Markovian Entanglement Dynamics of Noisy Continuous-Variable Quantum Channels. Phys. Rev. A 2007,76:042127.
    [124]J. H. An, M. Feng and W. M. Zhang, Non-Markovian Decoherence Dynamics of Entan-gled Coherent States. Quant. Inf. Comput.2009,9:0317.
    [125]J. H. An, Y. Yeo, W. M. Zhang and C. H. Oh, Entanglement Oscillation and Survival In-duced by Non-Markovian Decoherence Dynamics of Entangled Squeezed-State. J. Phys. A:Math. Theor.2009,42:015302.
    [126]Q. J. Tong, J. H. An, H. G. Luo and C. H. Oh, Mechanism of Entanglement Preservation. Phys. Rev. A 2010,81:052330.
    [127]X. F. Cao and H. Zheng, Non-Markovian Disentanglement Dynamics of a Two-Qubit System. Phys. Rev. A 2008,77:022320.
    [128]Z. G Lu and H. Zheng, Non-Markovian Dynamical Effects and Time Evolution of the Entanglement Entropy of a Dissipative Two-State System. EuroPhys. Lett.2009,86: 60009.
    [129]Y. J. Zhang, Z. X. Man and Y. J. Xia, Non-Markovian Effects on Entanglement Dynamics in Lossy Cavities. Eur. Phys. J. D.2009,55:173.
    [130]Y. J. Zhang, Z. X. Man, X. B. Zou, Y. J. Xia and G. C. Guo, Dynamics of Multipartite Entanglement in the Non-Markovian Environments, J. Phys. B:At. Mol. Opt. Phys. 2010,43:,045502.
    [131]F. Q. Wang, Z. M. Zhang and R. S. Liang, Decoherence of Two Qubits in Non-Markovian Reservoirs without the Rotating-Wave Approximation. Phys. Rev. A 2008,78:062318.
    [132]E. Knill, Quantum Computing. Nature 2010,463:441.
    [133]N. Gisin and R. Thew, Quantum Communication. Nat. Photonics 2007,1:165.
    [134]V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrology. Phys. Rev. Lett.2006, 96:010401.
    [135]S. Lloyd, Universal Quantum Simulators. Science 1996,273:1073.
    [136]J. S. Xu, C. F. Li, M. Gong, X. B. Zou, C. H. Shi, G. Chen and G. C. Guo, Experimental Demonstration of Photonic Entanglement Collapse and Revival. Phys. Rev. Lett.2010, 104:100502.
    [137]J. G. Oliveira Jr, R. Rossi Jr and M. C. Nemes, Protecting, Enhancing, and Reviving Entanglement. Phys. Rev. A 2008,78:044301.
    [138]S. Maniscalco, S. Olivares and M. G. A. Paris, Entanglement Oscillations in Non-Markovian Quantum Channels. Phys. Rev. A 2007,75:062119.
    [139]J. Laurat, K. S. Choi, H. Deng, C. W. Chou and H. J. Kimble, Heralded Entanglement between Atomic Ensembles: Preparation, Decoherence, and Scaling. Phys. Rev. Lett. 2007,99:180504.
    [140]Z. Ficek and R. Tanas, Dark Periods and Revivals of Entanglement in a Two-Qubit Sys-tem. Phys. Rev. A 2006,74:024304.
    [141]P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh and W. L. Vos, Controlling the Dynamics of Spontaneous Emission From Quantum Dots by Photonic Crystals. Nature,2004,430:654.
    [142]A. Datta, A. Shaji and C. M. Caves, Quantum Discord and the Power of One Qubit. Phys. Rev. Lett.2008,100:050502.
    [143]A. Datta and S. Gharibian, Signatures of Nonclassicality in Mixed-State Quantum Com-putation. Phys. Rev. A 2009,79:042325.
    [144]J. Cui and H. Fan, Correlations in the Grover Search. J. Phys. A:Math. Theor.2010, 43:045305.
    [145]R. Dillenschneider, Quantum Discord and Quantum Phase Transition in Spin Chains. Phys. Rev. B 2008,78:224413.
    [146]M. S. Sarandy, Classical Correlation and Quantum Discord in Critical Systems. Phys. Rev. A 2009,80:022108.
    [147]A. Shabani and D. A. Lidar, Vanishing Quantum Discord is Necessary and Sufficient for Completely Positive Maps. Phys. Rev. Lett.2009,102:100402.
    [148]A. Datta, Quantum Discord Between Relatively Accelerated Observers. Phys. Rev. A 2009,80:052304.
    [149]T. Werlang, S. Souza, F. F. Fanchini and C. J. Villas Boas, Robustness of Quantum Dis-cord to Sudden Death. Phys. Rev. A 2009,80:024103.
    [150]R. F. Werner, Quantum States with Einstein-Podolsky-Rosen Correlations Admitting a Hidden-Variable Model. Phys. Rev. A 1989,40:4277.
    [151]E. Knill and R. Laflamme, Theory of Quantum Error-Correcting Codes. Phys. Rev. A 1997,55:900.
    [152]W. H. Zurek and R. Laflamme, Quantum Logical Operations on Encoded Qubits. Phys. Rev. Lett.1996,77:4683.
    [153]E. L. Hahn, Spin Echoes. Phys. Rev.1950,80:580.
    [154]L. Viola and S. Lloyd, Dynamical Suppression of Decoherence in Two-State Quantum Systems. Phys. Rev. A 1998,58:2733.
    [155]L. Viola, E. Knill and S. Lloyd, Dynamical Decoupling of Open Quantum Systems. Phys. Rev. Lett.1999,82:2417.
    [156]N. Khaneja, B. Luy and S. J. Glaser, Boundary of Quantum Evolution under Decoher-ence. Proceedings of the National Academy of Sciences,2003,100:13162.
    [157]A. M. Branczyk, P. E. M. F. Mendonca, A. Gilchrist. A. C. Doherty and S. D. Bartlett, Quantum Control of a Single Qubit. Phys. Rev. A 2007,75:012329.
    [158]J. Preskill, Lecture Notes for Physics 219: Quantum Information and Computation. Cal-tech, Pasadena, CA,1999.
    [159]C. W. Helstrom, Quantum Detection and Estimation Theory. Mathematics in Science and Engineering Vol.123 (Academic, New York,1976).
    [160]P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko and J. Wrachtrup, Multipartite Entanglement Among Single Spins in Diamond. Science 2008,320:1326.
    [161]T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer and J. Wrachtrup, Room-Ttemperature Coherent Coupling of Single Spins in Diamond. Nat. Phys.2006,2:408.
    [162]J. Twamley, Quantum-Cellular-Automata Quantum Computing with Endohedral Fullerenes, Phys. Rev. A 2003,67:052318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700