雷公藤氯内酯醇(T_4)通过激活Wnt/β-catenin信号通路减轻寡聚态Aβ_(1-42)诱导的神经元凋亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察寡聚态Aβ1-42对原代培养的大鼠皮层神经元凋亡的诱导作用及可能机制,探讨雷公藤氯内酯醇(tripchlorolide, T4)保护大鼠皮层神经元免于发生凋亡的作用及可能机制。
     方法:选用孕16-18d的清洁级SD(Sprague-Dawley)大鼠,分离纯化皮层神经元,应用5μmol/l寡聚态Aβ1-42以及Wnt/β-catenin信号通路激动剂Wnt3a和抑制剂Dkk1处理神经元,分别通过MTT法、TUNEL染色和蛋白免疫印迹术观察神经元存活率、细胞凋亡情况以及β-catenin和GSK3β及其磷酸化产物的表达水平,了解Wnt/β-catenin信号通路在寡聚态Aβ1-42诱导的神经元凋亡过程中的作用,并进一步探讨T4保护神经元免于凋亡的可能分子机制。
     结果:1、5μmol/l寡聚态Aβ1-42与原代培养的胎鼠皮层神经元共同孵育24h后,MTT检测神经元存活率较正常对照组明显下降,TUNEL染色神经元胞体缩小,细胞突起变短、消失,胞核深染。2、寡聚态Aβ1-42作用于胎鼠皮层神经元24h后,GSK、磷酸化GSK、磷酸化β-catenin水平升高,非磷酸化β-catenin水平下降,这与Wnt/β-catenin通路抑制剂Dkk1的作用类似。3、用不同浓度T4对胎鼠的皮层神经元进行预处理后再加入寡聚态Aβ1-42共同孵育,发现T4对寡聚态Aβ1-42诱导的神经元损伤有明显的保护作用,表现为T4可显著提高寡聚态Aβ1-42作用后的皮层神经元生存率,减少神经元凋亡;此外T4可选择性降低细胞内β-catenin的磷酸化程度,稳定细胞内β-catenin水平,同时减少GSK及其磷酸化产物水平,这与Wnt/β-catenin通路激动剂Wnt3a的作用类似。
     结论:1、寡聚态Aβ1-42可诱导胎鼠皮层神经元凋亡;Wnt/β-catenin信号通路是Aβ1-42诱导胎鼠的皮层神经元凋亡的可能途径。2、一定剂量T4预处理可减轻寡聚态Aβ1-42诱导胎鼠的皮层神经元凋亡。T4的神经元保护作用可能是通过活化Wnt/β-catenin信号通路选择性降低细胞内β-catenin的磷酸化程度,稳定细胞内β-catenin水平,同时减少GSK及其磷酸化产物水平来实现的。T4在阿尔茨海默病的治疗方面可能具有潜在的应用价值。
Objective:To investigate the effect and the molecular mechanisms of oligomeric Aβ1-42-induced apoptosis in primary cultured rat cortical neurons, and to explore the underlied mechanism of protective action of tripchlorolide (T4) in oligomeric Aβ1-42-treated neurons.
     Methods:Primary cultures of cortical neurons were prepared from the embryonic day 16-18d Sprague-Dawley rats. The oligomeric Aβ1-42 (5μM for 24 h) was applied to induce apptotic neuronal death. Prior to treatment with Ap for 24 h, the cultured neurons were pre-incubated with T4 (2.5,10 and 40nM), Wnt3a (Wnt signaling agonists) and Dkkl (inhibitors) for indicated time. Then the cell viability, neuronal apoptosis, and protein levels of Wnt, glycogen synthase kinase (GSK3β),β-catenin and phospho-β-catenin were measured by MTT assay, TUNEL staining and Western blot, respectively.
     Results:
     1. Oligomeric Aβ1-42 induced apoptotic neuronal cell death in a time-and dose-dependent manner. After treatment with 5μmol/1 oligomeric Aβ1-42 for 24 hours, the cortical neuronal survival was significantly decreased by 20% compared with control group by MTT assay. The neural body shrank, process shortened or dismissed and nucleus was stained black by TUNEL
     2. Treatment with oligomeric Aβ1-42 significantly increased the protein levels of phosphorylatedβ-catenin and GSK. In contrast, the non-phosphorylatedβ-catenin protein levels were decrease. Wnt signaling inhibitors Dkkl produced the familiar effect on the protein changes of P-catenin and GSK.
     3. Pretreatment with T4 significantly increased the neuronal cell survival and attenuated apoptotic neuronal death. Moreover, oligomeric Aβ1-42-induced the phosphorylation ofβ-catenin and GSKwas markedly inhibited by T4. Additionally, T4 stabilized cytoplasmicβ-catenin to activate P-catenin downsteam signaling. Wnt signaling agonists Wnt3a produced the familiar effect on the protein changes ofβ-catenin and GSK30.
     Conclusion:Tripchlorolide protects against the neurotoxicity of Aβby regulating Wnt/β-catenin signaling pathway. This will provide insight into the clinical application of tripchlorolide to Alzheimer's disease.
引文
[1]Braak H, Braak E. Staging of Alzheimer-related cortical destruction. Int Psychogeriatr. 1997,9 Suppl 1:257-261; discussion 269-272.
    [2]Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging.1997,18(4):351-357.
    [3]Dong MJ, Peng B, Lin XT, et al. The prevalence of dementia in the People's Republic of China:a systematic analysis of 1980-2004 studies. Age Ageing.2007,36(6):619-624.
    [4]Bertoni-Freddari C, Fattoretti P, Casoli T, et al. Neuronal apoptosis in Alzheimer's disease: the role of age-related mitochondrial metabolic competence[J]. Ann N Y Acad Sci, 2009,1171:18-24.
    [5]Nikolaev A, McLaughlin T, O'Leary DD, et al. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases[J]. Nature,2009,457(7232):981-989.
    [6]Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science.2002,297(5580):353-356.
    [7]White JA, Manelli AM, Holmberg KH, et al. Differential effects of oligomeric and fibrillar amyloid-beta 1-42 on astrocyte-mediated inflammation. Neurobiol Dis. 2005,18(3):459-465.
    [8]Dahlgren KN, Manelli AM, Stine WB, Jr., et al. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem. 2002,277(35):32046-32053.
    [9]Lacor PN, Buniel MC, Furlow PW, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci.2007,27(4):796-807.
    [10]Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration:lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol.2007,8(2):101-112.
    [11]Wang Q, Rowan MJ, Anwyl R. Beta-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J Neurosci. 2004,24(27):6049-6056.
    [12]Poling A, Morgan-Paisley K, Panos JJ, et al. Oligomers of the amyloid-beta protein disrupt working memory:Confirmation with two behavioral procedures. Behav Brain Res. 2008.
    [13]Knobloch M, Farinelli M, Konietzko U, et al. Abeta oligomer-mediated long-term potentiation impairment involves protein phosphatase 1-dependent mechanisms. J Neurosci.2007,27(29):7648-7653.
    [14]Inestrosa NC, Toledo EM. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease[J]. Mol Neurodegener,2008;3:9.
    [15]Fogarty MP, Kessler JD, Wechsler-Reya RJ. Morphing into cancer:the role of developmental signaling pathways in brain tumor formation[J]. J Neurobiol,2005;64(4):458-475.
    [16]Logan CY, Nusse R:The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004,20:781-810.
    [17]Nusse R:Wnt signaling and stem cell control. Cell Res 2008,18:523-527.
    [18]Steiner JP, Connolly MA, Valentine HL, et al. Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nat Med.1997,3(4):421-428.
    [19]Tao X, Cush JJ, Garret M, et al. A phase I study of ethyl acetate extract of the chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis[J]. J Rheumatol, 2001,28(10):2160-2167.
    [20]马伟光,张滔,张超,等.有毒药物雷公藤的研究及展望.中华中医药杂志.2006,21(2):117-120.
    [21]吕诚,胡小令,石嘉庆,等.雷公藤多甙对大鼠海马内注射Ap所致学习记忆障碍的改善作用.中国行为医学科学.2005,14(1):39-40,52.
    [22]吕诚,胡小令,张宪郁,等.雷公藤多甙对大鼠海马内注射p-淀粉样蛋白后小胶质细胞反应的影响.解剖学杂志.2005,28(2):225-226.
    [23]Zhou HF, Liu XY, Niu DB, et al. Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiol Dis.2005,18(3):441-449.
    [24]Yu DQ, Zhang DM, Wang HB, et al. Structure modification of triptolide, a diterpenoid from Tripterygium wilfordii[J]. Acta Pharmaceutica Sinica,1992,27(11):830-836.
    [25]Pan XD, Chen XC, Zhu YG, et al. Tripchlorolide protects neuronal cells from microglia-mediated beta-amyloid neurotoxicity through inhibiting NF-kappaB and JNK signaling[J]. Glia,2009,57(11):1227-38.
    [26]Roher AE, Chaney MO, Kuo YM, et al. Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J Biol Chem. 1996,271(34):20631-20635.
    [27]Stine WB, Jr., Dahlgren KN, Krafft GA, et al. In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis[J]. J Biol Chem, 2003,278(13):11612-11622.
    [28]Moore KJ, El Khoury J, Medeiros LA, et al. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid[J]. J Biol Chem,2002,277(49):47373-47379.
    [29]Chen XC, Chen LM, Zhu YG, et al. Involvement of CDK4, pRB, and E2F1 in ginsenoside Rgl protecting rat cortical neurons from beta-amyloid-induced apoptosis. Acta Pharmacol Sin.2003,24(12):1259-1264.
    [30]Woo MS, Jang PG, Park JS, et al. Selective modulation of lipopolysaccharide-stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells. Brain Res Mol Brain Res.2003,113(1-2):86-96.
    [31]Magdesian MH, Carvalho MM, Mendes FA, et al. Amyloid-beta binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/beta-catenin signaling [J]. J Biol Chem, 2008,283(14):9359-9368.
    [32]Inestrosa N, De Ferrari GV, Garrido JL, et al. Wnt signaling involvement in P-amyloid-dependent neurodegeneration. Neurochem Int 2002,41:341-344.
    [33]Garrido JL, Godoy JA, Alvarez A, et al. Protein kinase C inhibits amyloid β peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J 2002,16:1982-1984.
    [34]陈龙飞,阮志芳,李智文,等.雷公藤氯内酯醇对阿尔茨海默病大鼠学习记忆障碍的影响.中国老年学杂志,2009,29(7):790-792.
    [35]顾明,周慧芳,王晓民,等.雷公藤单体T10对Aβ1-42所致PC12细胞凋亡的抑制作用.生理学报,2004,56(1):73-78.
    [36]Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469-480
    [37]Gould TD, Manji HK:Glycogen synthase kinase-3:a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 2005,30:1223-1237.
    [38]Wada A, Yokoo H, Yanagita T,et al:Lithium:potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. J Pharmacol Sci 2005,99:307-321.
    [39]De Ferrari GV, Chacon MA, Barria MI, et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol Psychiatry 2003,8:195-208.
    [40]Alvarez G, Munoz-Montano JR, Satrustegui J,et al. Regulation of tau phosphorylation and protection against β-amyloid-induced neurodegeneration by lithium.Possible implications for Alzheimer's disease. Bipolar Disord 2002,4:153-165.
    [41]Quintanilla RA, Munoz FJ, Metcalfe MJ, et al. Trolox and 17β-estradiol protect against amyloid β-peptide neurotoxicity by a mechanism that involves modulation of the Wnt signaling pathway. JBiol Chem 2005,280:11615-11625.
    1. 吕志迈,徐运.β淀粉样蛋白代谢相关基因与阿尔茨海默病的研究进展.国际神经病学神经外科学志,2007,34(6):527-530
    2. Kohn AD, Moon RT. Wnt and calcium signaling:beta-catenin-independent pathways. Cell calcium.2005;38(3-4):439-446
    3. Kuhl M, Sheldahl LC, Park M et al. The Wnt/Ca2+pathway:a new vertebrate Wnt signaling pathway takes shape. Trends Genet.2000;16(7):279-283
    4. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science.2004;303(5663):1483-1487
    5. Fogarty MP, Kessler JD, Wechsler-Reya RJ. Morphing into cancer:the role of developmental signaling pathways in brain tumor formation. Journal of
    neurobiology.2005;64(4):458-475
    6. Liu X, Rubin JS, Kimmel AR. Rapid, Wnt-induced changes in GSK3beta associations that regulate beta-catenin stabilization are mediated by Galpha proteins. Curr Biol.2005;15(22):1989-1997
    7. Liu F, van den Broek 0, Destree 0, Hoppler S. Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/beta-catenin signalling in mesoderm development. Development.2005;132(24):5375-5385
    8. Inestrosa NC, Toledo EM. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Mol Neurodegener.2008;3:9
    9. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469-480
    10. Alvarez AR, Godoy JA, Mullendorff K et al. Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res.2004;297(1):186-196
    11. Kennell JA, MacDougald OA. Wnt signaling inhibits adipogenesis through beta-catenin-dependent and-independent mechanisms. J Biol Chem. 2005;280(25):24004-24010
    12. Chacon MA, Varela-Nallar L, Inestrosa NC et al. Frizzled-1 is involved in the neuroprotective effect of Wnt3a against Abeta oligomers. J Cell Physiol. 2008;217(1):215-227
    13. Cabrera CV, Alonso MC, Johnston P et al. Phenocopies induced with antisense RNA identify the wingless gene. Cell.1987;50(4):659-663
    14. Diep DB, Hoen N, Backman M et al. Characterisation of the Wnt antagonists and their response to conditionally activated Wnt signalling in the developing mouse forebrain. Brain Res Dev Brain Res.2004; 153(2):261-270
    15. Esposito G, Scuderi C, Lu J et al. S100B induces tau protein hyperphosphorylation via Dickopff-1 up-regulation and disrupts the Wnt pathway in human neural stem cells. J Cell Mol Med.2008;12(3):914-927
    16. Ivins KJ, Ivins JK, Sharp JP, Cotman CW. Multiple pathways of apoptosis in PC 12 cells. CrmA inhibits apoptosis induced by beta-amyloid. J Biol Chem. 1999;274(4):2107-2112
    17. Alvarez G, Munoz-Montano JR, Satrustegui J et al. Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer's disease. Bipolar Disord.2002;4(3):153-165
    18. Nunes PV, Forlenza OV, Gattaz WF. Lithium and risk for Alzheimer's disease in elderly patients with bipolar disorder. Br J Psychiatry.2007;190:359-360
    19. Zhong H, Zou H, Semenov MV et al. Characterization and development of novel small-molecules inhibiting GSK3 and activating Wnt signaling. Mol Biosyst.2009 Nov;5(11):1356-1360.
    20. Quintanilla RA, Munoz FJ, Metcalfe MJ et al. Trolox and 17beta-estradiol protect against amyloid beta-peptide neurotoxicity by a mechanism that involves modulation of the Wnt signaling pathway. J Biol Chem. 2005;280(12):11615-11625
    21. Vlad SC, Miller DR, Kowall NW, Felson DT. Protective effects of NS AIDs on the development of Alzheimer disease. Neurology.2008;70(19):1672-1677
    22. Farias GG, Godoy JA, Vazquez MC et al. The anti-inflammatory and cholinesterase inhibitor bifunctional compound IBU-PO protects from beta-amyloid neurotoxicity by acting on Wnt signaling components. Neurobiol Dis.2005;18(1):176-183
    23. Bernardo A, Minghetti L. PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des.2006;12(1):93-109
    24. Inestrosa NC, Godoy JA, Quintanilla RA et al. Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents beta-amyloid neurodegeneration:role of Wnt signaling. Exp Cell Res.2005;304(1):91-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700