hGSTP1-1及其半胱氨酸突变体的原核表达载体构建、诱导表达、纯化和部分性质研究和两种EGFP-hsTRAIL融合蛋白表达载体的构建、融合蛋白纯化、生物学活性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人胎盘型谷胱甘肽S-转移酶(GST P1-1、GST-π、GST-pi)是人体内GSTs的一种重要的活性亚型,因其首先在人体胎盘(placenta)中被克隆而得名。GST P1-1在多种肿瘤组织细胞和转化的细胞株中丰度极高,且与肿瘤细胞的耐药性密切相关。对GST P1-1的早期研究集中于分子空间结构及其多态性和催化活性与上述人类疾病的关系,是目前所有人类GSTs中研究最为广泛和深入的一种亚型。
     本实验构建了E. coli重组表达载体pET-28a-His_6-hGST P1-1、pET-28a-His_6-hGST P1-1~(C47A/C101A)、pET-28a-His_6-hGST P1-1~(C14A/C47A/C101A)、pET-28a-His_6-hGST P1-1~(C14A/C47A/C101A/C169A)、pET-28a-His_6-hGST P1-1~(Y7F)和pET-28a-His_6-rEK-hGST P1-1。并在E. coli BL21(DE3)中实现了高效诱导表达,靶蛋白约占菌体总蛋白的30-50%。并初步建立了His_6-hGST P1-1蛋白纯化工艺,利用该工艺路线我们可以从1 L细菌诱导物中最终获得50-60 mg纯度大于93%的His_6-hGST P1-1蛋白,转移酶活性及对底物GSH和CDNB亲和常数K_m与已报道的重组hGST P1-1和从人胎盘纯化的hGST P1-1相似,为进一步研究His_6-hGST P1-1的性质奠定了坚实的基础。
     我们的实验结果表明,hGST P1-1半胱氨酸的突变并未使酶的催化活性完全丧失,但在一定程度上抑制了hGST P1-1对底物GSH和CDNB亲和力,因此半胱氨酸并不是hGST P1-1发挥转移酶活性所必需的,但的确影响了酶的催化效率。另外,热稳定性研究推测Cys169在维持酶的热稳定性方面发挥重要作用。
     我们的研究揭示,hGST P1-1在氧化应激时单体间通过Cys47和Cys101间形成二硫键,之后进一步使Cys14和Cys1169间形成单体间二硫键。
     肿瘤坏死因子相关的凋亡诱导配体(TNF-related apoptosis-inducing ligand, TRAIL/Ap02L)属于肿瘤坏死因子超基因家族成员。TRAIL及其受体在诱导肿瘤细胞凋亡的同时能保护正常细胞而免于细胞毒副反应,是一种具有开发潜力的新的抗肿瘤药物。
     本实验室从MegaMan~(TM)人转录组文库(MegaMan~(TM) Human Transcriptome Library)中扩增得到了表达人肿瘤坏死因子相关的凋亡诱导配体(hTRAIL)胞外可溶性功能区(114位氨基酸残基至281位氨基酸残基,命名为sTR114和95位氨基酸残基至281位氨基酸残基,命名为sTR95)的cDNA序列,通过重叠延伸PCR将TR95s和TR114s的cDNA序列分别与增强型绿色荧光蛋白(EGFP)基因融合,并将此融合基因克隆至pET-28a表达载体中。融合蛋白(EGFP-sTR95和EGFP-sTR114)诱导表达后通过IDA-Ni2~+亲和层析柱纯化得到的EGFP-sTR95和EGFP-sTR114这两种融合蛋白在体外诱导多种肿瘤细胞系凋亡的活性。由于并融合蛋白保留了EGFP的荧光活性,可用于检测细胞表面表达TRAIL受体的各种细胞系。
The bacterial expression and purification of human glutathione S-transferase P1-1(hGST P1-1), as a hexahistidine-tagged polypeptide, was performed. Site-directed mutagenesis was used to construct mutants in which alanine replaced two (C47A/C101A), three (C14A/C47A/C101A) or all four (C14A/C47A/ C101A/C169A) cysteine residues using the plasmid for the wild type enzyme. Analysis of their catalytic activities and kinetic parameters suggested that cysteins are not essential for the catalytic activity but may contribute to some extent to the catalytic efficiency. Moreover, on SDS-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions, hexahistidine-tagged hGST P1-1 (His_6-hGST P1-1) treated with 1 mM H_2O_2 showed at least three extra bands, in addition to the native His_6-hGST P1-1 subunit band. These extra bands were not detected in the cysteinyl mutants. Thus, it indicated that disulfide bonds were formed mainly within subunits between cysteine residues, causing an apparent reduction in molecular weight, only small amounts of binding between subunits being observed.
     The extracellular portion (amino acids 95-281 or 114-281) of the human TNF-related apoptosis-inducing ligand (sTRAIL) was genetically linked to the C-terminus of the fluoresce-enhanced green fluorescent protein variant (EGFP) to generate two versions of EGFP-sTRAIL fusion protein, designated EGFP-sTR95 and EGFP-sTR114 respectively. The two versions of EGFP-sTRAIL fusion protein both induce extensive apoptosis in lymphoid as well as non-lymphoid tumor cell lines. In addition, the two versions of fusion protein retain similar fluorescence spectra to those of EGFP, and have shown the specific binding to TRAIL receptor positive-cells, thus the stained cells could be analyzed with flow cytometry. Hence, the two versions of fusion protein represent a readily obtainable source of biologically active sTRAIL that may prove useful in exploit fully the characteristics of both the soluble TRAIL and its receptor system.
引文
Abdalla, A. M., Bruns, C. M., Tainer, J. A., Mannervik, B., and Stenberg, G. (2002).Design of a monomeric human glutathione transferase GST P1, a structurally stable but catalytically inactive protein. Protein Engineering. 15, 827—834.
    Aceto A, Caccuri AM, Sacchetta P, et al. (1992) Dissociation and unfolding ofpi class glutathione S-transferase. Evidence for a monomeric inactive intermediate. Biochem. J. 285: 241-245.
    Ahmad H, Wilson DE, Fritz RR, et al. Primary and secondary structural analysis of glutathione S-transferase-pi gene. (1990)Arch Biochem Biophys. 278:398-408.
    Aizawa S, Ookawa K, Kudo T, Asano J, Hayakari M and Tsuchida S. (2003) Characterization of cell death induced by ethacrynic acid in a human colon cancer cell line DLD-1 and suppression by N-acetyl-L-cysteine. Cancer Sci. 94: 886-893.
    Alder V, Yin Z, Tew KD and Ronai Z. (1999b) Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18:6104-6111.
    Anderson ME. (1998) Glutathione: an overview of biosynthesis and modulation. Chem-Biol. Interact. 111-112: 1-14.
    Andersson SGE and Kurland CG. (1990) Codon preferences in free-living microorganisms. Microbiol. Rev. 54, 198-210.
    Bass NM, Kirsch RE, Tuff SA, Marks I and Saunders SJ. (1977) Ligandin heterogeneity: evidence that the two non-identical subunits are monomers of two distinct proteins. Biochem. Biophys. Acta. 492:163-175.
    Battistoni A, Mazzetti AP, Petruzzelli R. Muramatsu M. Federici G, Ricci G, and Lo Bello M. (1995) Cytoplasmic and periplasmic production of human placental glutathione transferase in Escherichia coli. Protein Expression Purif 6, 579-587.
    Booth J, Boyland E and Sims P. (1961) An enzyme from rat liver catalyzing conjugates with glutathione. Biochem. J. 79:516-524.
    Boyer TD. (1989) The glutathione S-transferase: an update. Hepatology 9: 486-496.
    Boyer TD, Vessey DA, Kempner E. (1986) Radiation inactivation of microsomal glutathione S-transferease. J. Biol. Chem. 79:516-524.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248—254.
    Caccuri, A. M., Petruzzelli, R., Polizio, E, Federici, G., and Desideri, A. (1992). Inhibition of glutathione transferase π from human placenta by 1-chloro-2,4-dinitrobenzene occurs because of covalent reaction with cysteine 47.Arch. Biochem. Biophys. 297,119-122.
    
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N and Williamson B. (1975) An endotoxin-induced serum factor that causes necrosis of tumours. Proc. Natl. Acad.Sci. USA 72: 3666-3670.
    
    Cho SG, Lee YH, Park HS, Ryoo K, Kang KW, Park J, Eom SJ, Kim MJ, Chang TS, Choi SY, Shim J, Kim Y, Dong MS, Lee MJ, Kim SG, Ichijo H and Choi EJ. (2001) Glutathione S-transferase Mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1.J. Biol. Chem. 276: 12749-12755.
    
    Coughlin SS and Piper M. (1999) Genetic Polymorphisms and Risk of Breast Cancer. Cancer Epidem. Biomar. 8: 1023-1032.
    
    Davis RJ. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239-252.
    
    De Smit MH and van Duin J. (1990) Control of prokaryotic translation initiation by mRNA secondary structures. Prog. Nucleic Acids Res. 36, 1-33.
    
    Dirr HW, Mann K, Huber R, Ladenstein R and Reinemer R. (1991) Class pi glutathione S-transferase from pig lung. Purification, biochemical characterization,primary structure and crystallization. Eur. J. Biochem. 196: 693-698.
    
    Dirr, H., Reinemer, P., and Huber, R. (1994). X-ray crystal structures of cytosolic glutathione S-transferases implications for protein architecture, substrate recognition and catalytic function. J.Mol.Biol. 243, 645—661.
    
    Elsby R, Kitteringham NR, Goldring CE, Lovatt CA, Chamberlain M, Henderson CJ,Wolf CR and Park BK. (2003) Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J. Biol. Chem. 278:22243-22249.
    
    Fields WR, Morrow CS, Doss AJ, Sundberg K, Jernstrom B and Townsend AJ. (1998) Overexpression of Stably transfected human glutathione S-transferase P1-1 protects against DNA damage by Benzo[a]pyrene diol-epoxide in human T47D cells. Mol.Pharm. 54: 298-304.
    Filomeni G, Rotilio G and Ciriolo MR. (2002) Cell signaling and the glutathione redox system. Biochem.Pharmacol 64: 1057-1064.
    Fuchs SY, Xie B, Adler V, Fried VA, Davis RJ and Ronai Z. (1997) c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors.J. Biol. Chem. 272: 32163-32168.
    Fuchs SY, Fried VA and Ronai Z. (1998) Stress-activated kinases regulate protein stability. Oncogene 17: 1483-1490.
    Gate L and Tew KD. (2001) Glutathione S-transferases as emerging therapeutic targets. Expert. Opin. Ther. Targets. 5: 477-489.
    Gate L, Lunk A and Tew KD. (2003) Resistance to phorbol 12-myristate 13-acetate-induced cell growth arrest in an HL60 cell line chronically exposed to a glutathione S-transferase π inhibitor. Biochem. Pharmacol. 65: 1611-1622.
    Gate L, Majumdar RS, Lunk A and Tew KD. (2004) Increased myeloproliferation in glutathione S-transferase π-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathway. J. Biol. Chem. 279: 8608-8616.
    Goto S, Ihara Y, Urata Y, Izumi S, Abe K, Koji T and Kondo T. (2001) Doxorubicm-induced DNA intercalation and scavenging by nuclear glutathione S-transferase π. FASEB J. 15: 2702-2714.
    
    Guthenberg, C, and Mannervik, B. (1981). Glutathione S-transferase (transferase π) from human placenta is identical or closely related to glutathione S-transferase (transferase ρ) from human erythrocytes. Biochim. Biophys. Acta. 661, 89--93.
    
    Habig, W. H., Pabst, K. J., and Jakoby, W. B. (1974).Glutathione S-transferase: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249,7130--7139.
    
    Hayers JD and Pulford DJ. (1995) The glutathione S-transferase supergene family:regulation of GST and the contributions of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30: 445-600.
    Hayes JD and Strange RC. (2000) Glutathione-S-transferase polymorphisms and their biological consequences. Pharmacology 61: 154-166.
    Hayes JD, Flangan JU and Jowsey IR. (2005) Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45: 51-88.
    Homma H and Listowsky I. (1985) Identification of Yb glutathione S-transferase as a major rat liver protein labeled with dexamethasome 21-methanesulfonate. Proc. Natl. Acad. Sci. USA 82:7165-7169.
    Jakoby WB. (1978) The glutathione S-transferase: a group of multifunctional detoxification proteins. Adv. Enzymol. Relat. Areas. Mol. Biol. 46: 383-414.
    Jakoby WB, Ketterer B and Mannervik B. (1984) Glutathione S-transferases: nomenclature. Biochem. Pharmacol. 33: 2539-2540.
    Kolm RH, Stenberg G, Mikael W and Mannervik B. (1995) High-level bacterial expression of human glutathione transferase P1-1 encoded by semisynthetic DNA. Protein Expression Purif. 6, 265-271.
    Kong, K.-H., Inoue, H., and Takahashi, K. (1991). Non-essentiality of cysteine and histidine residues in the activity of human class pi glutathione S-transferase. Biochem. Biophys. Res. Commun. 181, 748—755.
    Kong KH, Nishida M, Inoue H and Yakahashi K. (1992) Tyrosine-7 is an essential residue for the catalytic activity of human class pi glutathione S-transferase: chemical modification and site-directed mutagenesis studies. Biochem. Biophys. Res. Commun. 182: 1122-1129.
    Kramer RA, Zakher J and Kim G. (1988) Role of the glutathione redox cycle in acquired and de nove multidrug resistance. Science 241:694-697.
    Lewis AD, Hayes JD and Wolf CR. (1988) Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: intrinsic differences and cell cycle effects. Carcinogenesis 9:1283-1287.
    Lo Bello, M., Nuccetelli, M., Caccuri, A. M., Stella, L., Parker, M. W., Rossjohn, J., McKinstry, W. J., Mozzi, A. F., Federici, G., Polizio, F., Pedersen, J. Z., and Ricci, G. (2001). Human glutathione transferase P1-1 and nitric oxide carriers. J.Biol.Chem. 276,42138-42145.
    Mannervik, B. (1985). The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol. 57, 357--417.
    
    Mannervik B and Danielson UH. (1988) Glutathione transferases-structure and catalytic activity. Crit. Rev. Biochem. 23: 283-337.
    McIlwain CC, Townsend DM and Tew KD. (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25: 1639-1648.
    Morgenstern R, DePierre JW, Jornvall H. (1985)J.Biol.Chem. 260: 13976-13983.
    Morrow CS, Cowan KH, Goldsmith ME. Structure of human genomic glutathione S-transferase-pi gene. (1989)Gene. 75: 3-11.
    Moscow JA, Fairchild CR, Madden MJ, Ransom DT, Wieand HS, O'Brien EE,Poplack DG, Cossman J, Myers CE and Cowan KH. (1989) Expression of anionic glutathione S-transferase P-glycoprotein genes in human tissue and tumors. Cancer Res. 49: 1422-1428.
    Nishida, M., Harada, S., Noguchi, S., Satow, Y., Inoue, H., and Takahashi, K. (1998).(1998). Three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate: catalytic roles of Cys10 and His106.J. Mol. Biol. 281, 135.
    
    Nuccetelli, M., Mazzetti, A. P., Rossjohn, J., Parker, M. W., Board, P., Caccuri, A. M., Federici, G, Ricci, G, and Lo Bello, M. (1998). Shifting substrate specificity of human glutathione transferase (from class Pi to class Alpha) by a single point mutation. Biochem Biophys Res Commun. 252, 184--189.
    
    Oakley AJ, Lo Bello M, Mazzetti AP, Federici G and Parker MW. (1997) The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes. FEBS Lett. 419: 32-36.
    
    Park, H. J., Lee, K. S., Cho, S. H., and Kong, K. H. (2001). Functional studies of cysteine residues in human glutathione S-transferase P1-1 by site-directed mutagenesis. Bull. Korean Chem. Soc, 22, 77--83.
    
    Pastore A, Federici G, Bertini E and Piemonte F. (2003) Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta. 333: 19-39.
    Pickett CB and Lu AY. (1989) Glutathione S-transferase gene structure, regulation, and biological function. Annu. Rev. Biochem. 58: 743-764.
    Pinkus R, Weiner LM and Daniel V. (1995) Role of quinone-mediated generation of hydroxyl radicals in the induction of glutathione S-transferase gene expression.Biochemistry 34: 81-88.
    Puchalski RB and Fahl WE. (1990) Expression of recombinant glutathione S-transferase π, Ya, or Ybi confers resistance to alkylating agents. Proc. Natl. Acad. Sci. USA 87: 2443-2447.
    
    Reinemer, P., Dirr, H. W., Ladenstein, R., Schaffer, J., Gallay, O., and Huber, R.(1991). The three dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 10, 1997--2005.
    Reinemer, P., Dirr, H. W., Ladenstein, R., Huber, R., Lo Bello, M., Federici, G, and Parker, M. W. (1992). The three dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J. Mol. Biol 227, 214-226.
    Ricci, G, Del Boccio, G, Pennellin, A., Lo Bello, M., Petruzelli, R., Caccuri, A. M., Barra, D., and Federici, G. (1991). Redox forms of human placenta glutathione transferase. J. Biol Chem. 266,21409-21415.
    Ricci, G, Lo Bello, M., Caccuri, A. M., Pastore, A., Nuccetelli, M., Parker, M. W.,and Federici, G. (1995) Site-directed mutagenesis of human glutathione transferase P1-1. J Biol. Chem. 270,1243--1248.
    Ruscoe JE, Rosario LA, Wang T, Gate L, Arifoglu P, Wolf CR, Henderson CJ, Ronai Z and Tew KD. (2001) Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTπ) influences cell proliferation pathways. J. Pharmacol.Exp. Ther. 298: 339-345.
    
    Rushmore TH and Pickett CB. (1993) Glutathione S-transferase, structure, regulation, and therapeutic implications. J. Biol. Chem. 268: 11475-11478.
    
    Ryoo K, Huh SH, Lee YH, Yoon KW, Cho SG and Choi EJ. (2004) Negative regulation of MEKK1-induced signaling by glutathione S-transferase Mu. J. Biol.Chem. 279: 43589-43594.
    
    Sato K, Kitahara A, Satoh K, Ishikawa T, Tatematsu M and Ito N. (1984) The placental form of glutathione S-transferase as a new marker protein for prenoeplasia in rat chemical hepatocarcinogenesis. Gann 75: 199-202.
    
    Sheehan D, Meade G, Foley VM and Dowd CA. (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360:1-16.
    
    Shen, H., Tamai, K., Satoh, K., Hatayama, I., Tsuchida, S., and Sato, K. (1991). (1991). Identification of cysteine residues involved in disulfide formation in the inactivation of glutathione transferase P form by hydrogen peroxide. Arch. Biochem.Biophys. 286, 178--182.
    Sluis-Cremer, N., Naidoo, N. N., Kaplan, W. H., Fahl, W.E., and Dirr, H. (1996).Class pi glutathione S-transferase is unable to regain its native conformation after oxidative inactivation by hydrogen peroxide. Eur. J. Biochem. 242, 301-307.
    
    Solt DB and Shlklar G. (1982) Rapid induction of gamma-glutamyl transpeptidase-rich intraepithelial clones in 7,12-dimethylbenz(a)- anthracene-treated hamster buccal pouch. Cancer Res. 42: 285-291.
    
    Strange RC, Spiteri MA, Ramachandran S and Fryer AA. (2001) Glutathione -S-transferase family of enzymes. Mut. Res. 482: 21-26.
    Tamai, K., Satoh, K., Tsuchida, K., Hatayama, I., Maki, T., and Sato, K. (1990). Specific inactivation of glutathione S-transferase in class pi by SH-modifiers.Biochem. Biophys. Res. Commun. 167, 331--338.
    
    Tamai, K., Shen, H., Tsuchida, S., Hatayama, I., Satoh, K., Yasui, A., Oikawa, A., and Sato, K. (1991) Role of cysteine residues in the activity of rat glutathione
    transferase P (7-7): elucidation by oligonucleotide site-directed mutagenesis.Biochem. Biophys. Res. Commun. 179, 790-797.
    
    Tew KD. (1994) Glutathione-associated enzymes in anticancer drug resistance.Cancer Res. 54:4313-4320.
    Townsend DM, Shen H, Staros AL, Gate L and Tew KD. (2002) Efficacy of a glutathione 5-transferase π-activated prodrug in platinum-resistant ovarian cancer cells. Mol. Cancer Ther. 1: 1089-1095.
    Townsend DM and Tew KD. (2003a) Cancer drugs, genetic variation and the glutathione-S-transferase gene family. Am. J. Pharmocogenomics 3: 157-172.
    Townsend DM and Tew KD. (2003b) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22: 7369-7375.
    Tsabouri SE, Georgious I, Alamanos I and Bourantas KL. (2000) Increased prevalence of GSTM1(1) null genotype in patients with myelodyspalstic syndrome: a case-control study. Acta Haematol. 104: 169-173.
    Tsuchida S and Sato K. (1992) Glutathione S-transferase and cancer. Crit. Rev.Biochem. Mol. Biol. 27: 337-384.
    
    Vega, M. C, Walsh, S. B., Mantles, T. J., and Coll, M. (1998). The three-dimensional structure of Cys-47-modified mouse liver glutathione S-transferase P1-1. Carboxymethylation dramatically decreases the affinity for glutathione and is associated with a loss of electron density in the alphaB-310B region. J. Biol. Chem. 273, 2844—2850.
    Wang T, Arifoglu P, Ronai Z and Tew KD. (2001) Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) Signaling through interaction with the C terminus. J. Biol. Chem. 276: 20999-21003.
    Xue B, Wu Y, Yin Z, Zhang H, Sun S, Yi T and Luo L. (2005) Regulation of Lipopolysaccharide-induced inflammatory response by Glutathione S-transferase P1 in RAW264.7 cells. FEBS Lett. 579: 4081-4087.
    Yang Y, Chen JZ, Singhal SS, Saini M, Pandya U, Awasthi S and Awasthi YC. (2001) Role of glutathione S-transferases in protection against lipid peroxidiation. J. Biol. Chem. 276: 19220-19230.
    Yin Z, Ivanov VN, Habelhah H, Tew KD and Ronai Z. (2000) GSTP-elicited protection against H_2O_2-induced cell death is mediated by coordinated regulation of stress kinases. Cancer Res. 60: 4053-4057.
    Yin Z, Liu A and Jiang Y. (2001) Glutathione S-transferase π protects serum depletion-induced cell death by inhibiting ASK1-MKK7-JNK pathway in the 293 cells. Acta. Biochem. Biophys. Sinica 33: 185-190.
    Zhou L, Jing Y, Styblo M, Chen Z and Waxman S. (2005) Glutathione-S-transferase inhibits As_2O_3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide catabolism. Blood 105:1198-1203.
    Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C,Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L,Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999 ) Safety and antitumor activity of recombinantsoluble Apo2 ligand. J Clin Invest 104:155-162.
    
    Chalfie M (1995) Green fluorescent protein. Photochem Photobiol 60: 651-656.
    
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802-805.
    
    Chang Wei-Hong. (2001). TRAIL and Cancer Treatment. Chin J Cancer Biother.8(2):157-159
    
    Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L. (1997) Death Receptor 5, a New Member of the TNFR Family, and DR4 Induce FADD-Dependent Apoptosis and Activate the NF-κB Pathway. Immunity 7:821-830.
    
    Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene (Amst.) 173: 33-38.
    
    Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding,improving and using green fluorescent proteins. Trends Biochem Sci20: 448-455.
    
    Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF,Goodwin RG, Smith CA. (1997) Cloning and characterization of TRAIL-R3 a I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 189: 1451-1460.
    
    Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B, Hillan K,Totpal K, DeForge L, Schow P, Hooley J, Sherwood S, Pai R, Leung S, Khan L,Gliniak B, Bussiere J, Smith CA, Strom SS, Kelley S, Fox JA, Thomas D,Ashkenazi A. (2001) Differential hepatocytetoxicity of recombinant Apo2L/TRAIL versions. Nat Med 7: 383-385.
    
    Martinez-Lorenzo MJ, Alava MA, Gamen S, Kim KJ, Chuntharapai A, Pinerio A,Naval J, Anel A . (1998) Involvment of APO2/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur J Immuno 28: 2174-2725.
    Ormo M,Cubitt A B ,Kattio K, et al. (1996 ) Crystal structure of the Aequorea victo2 ria green fluorescent protein. Science 273(5280) .1392 - 1395.
    
    Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277: 815-818.
    Pan G, Ni J, Yu G, Wei YF, Dixit VM. (1998) TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL. FEES Lett 424: 41-45.
    Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM. (1997) The Receptor for the Cytotoxic Ligand TRAIL. Science 276: 111-113.
    Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. (1996) Induction of apoptosis by Apo-2 ligand, a new member ofthe tumor necrosis factor cytokine family. J Biol Chem 271: 12687-12690. novel member of the emerging TRAIL receptor family. J Exp Med 186: 1165-1170.
    
    Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, Dodds RA, JamesIE, Rosenberg M, Lee JC, Young PR. (1998) Osteoprotegerinis a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363 -14367.
    
    Heim R, Prasher DC, Tsien RY. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci 91: 12501-12504.
    Heim R ,Cubitt A B ,Tsien R Y. Improved green fluorescence. (1995) Nature 373 :663 - 664.
    
    Heim R , Tsien RY. Engineering green fluorescent protein for improved brightness,longer wavelengths and fluorescece resonance energy transfer. (1996) Curr Biol 6:178-182.
    
    Hymowitz SG,Christinger HW, Fuh G, et al. (1999) Triggering Cell Death : The Crystal Structure of Apo2L/TRAIL In a Complex With Death Receptor 5. Mol Cell 4: 563-571.
    
    Jeremias, C. Kupatt, B. Baumann et al. (1998) Inhibition of Nuclear Factor kappa B Activation Attenuates Apoptosis Resistancein Lymphoid Cells. Blood 91(12): 4624-4631.
    
    Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, Strom SC. (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6: 564-567.
    Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H. (1999) Type
    Prasher D ,Echenrode V ,Wand W, et al . (1992) Primary structure of the Aequores victoria green fluorescent protein. Gene 111 :229 - 233.
    Rosorius O, Heger P, Stelz G, Hirschmann N, Hauber J, Stauber R.H. (1999) Direct observation of nucleo-cytoplasmic transport by microinjection of GFP-tagged proteins in living cells. Biotechniques 27: 350-355.
    Shen YL, Xia XX, Zhang Y, Liu JW, Wei DZ and Yang SL. (2003) Biotech Lett. 25:2097-2101.
    Shimomura O. (1979) Structure of the chromophore of Aequorea green fluorescent protein. FEBS Letters 104 :220 - 222.
    Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N,Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT. (1997) TRAIL - R2: a novel apoptosis - mediating receptor for TRAIL. EMBO J 16:5386-5397.
    Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J,Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5: 157-163.
    Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157-163.
    Wang Liang-Hua, JIAO Bing-Hua. (1998) A New Member of Tumor Nercrosis Factor Superfamily. Prog.Biochem.Biophys. 25 (5) 392-395.
    Wei Xiao-Chao, LIN Xin-Li, WANG Xin-Juan. (2001) TNF-Related Apoptosis Inducing Ligand and Its Research Progress on Cancer Treatment. Progress In Physiological Science 32(1) 18-22.
    
    Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR,Smith TD, Rauch C, Smith CA, Goodwin RG. (1995) Identification and characterization of a new member of the TNF family thatinduces apoptosis.Immunity 3: 673-682.
    
    Wu GS, Burns TF, McDonald ER, Jiang W, Meng R, Krantz ID, Kao G, Gan DD,Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G, El-Deiry
    WS. (1997) KILLER /DR5 is a DNA damage-inducible p53 - regulated death receptor gene. Nat Genet 17: 141-143.
    
    WH Hu, H. Johnson, and HB Shu. (1999)Tumor Necrosis Factor-related Apoptosis-inducing Ligand Receptors Signal NF-kappa B and JNK Activation and Apoptosis through Distinct Pathways.J. Biol. Chem 274(43):30603-30610
    Xiong Shi-Qin, ZHU Xi-Hua. (2002) The Molecular Mechanism of Caspase Activation and Regulation. Prog. Biochem. Biophys 27 (1) 33-35.
    Yang TT, Cheng L, Kain SR (1996) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res 24: 4592-4593.
    
    Yi Wei, QI Yi-Peng. (2000) A New Member of TNA Family- TRAIL . J. WuHan Univ.(Nat. Sci. Ed.) 46 (4) 511-514.
    Yong Lin, Anne Devin, Amy Cook, Maccon M. et al. (2000)The Death Domain Kinase RIP Is Essential for TRAIL (Apo2L)-Induced Activation of I B Kinase and c-Jun N-Terminal Kinase. Mol. Cell. Biol. 20: 6638-6645.
    Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NKcells. J Exp Med 188: 2375-2380.
    Zhang XD, Franco A, Myers K, et al. (1999) Relation of TNF-Related Apoptosis-Inducing Ligand (TRAIL) Receptor and FLICE-Inhibitory Protein Expression To TRAIL-Induced Apoptosis of Melanoma. Cancer Research 59: 2747-2753.
    Zolotukhin S, Potter M, Hauswirth W W, et al. (1996) A "Humanized" green fluorescent protein cDNA adapted for high-level expression in mammalian cells. Journal of Virology 70(7):4646-4654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700