噻二唑类杀菌剂对大鼠甲状腺干扰作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲状腺素对于机体具有不可或缺的重要意义。在众多的甲状腺素干扰物中,农药所占比例最大。噻二唑类农药由于其广谱、高效、低残留、持效期长等优点在我国主要作为杀菌剂得到广泛应用,暴露人群较大。本研究选取了噻枯唑以及与其化学结构相似的噻森铜、噻菌铜农药,利用20d雌鼠青春期实验对SD大鼠进行灌胃染毒,观察了三种药物对大鼠血清甲状腺素水平、甲状腺重量、甲状腺滤泡上皮细胞增殖以及甲状腺激素代谢关键酶等的影响,探讨噻二唑类农药对甲状腺功能的干扰作用及其机制,为这些化合物的风险管理与评价提供科学依据。主要研究结果如下:
     1、设定噻枯唑各组的给药剂量分别为10、20、40mg/kg/d,噻森铜各组的给药剂量分别为5、10、15mg/kg/d,噻菌铜各组的给药剂量分别为4、10、20和30mg/kg/d。通过灌胃染毒SD大鼠后,发现三种噻二唑类杀菌剂均能使大鼠甲状腺重量增加。
     2、利用ELISA大鼠激素测定试剂盒对大鼠血清T_3、T_4、TSH进行测定。测定结果显示:噻枯唑各剂量组均能使大鼠血清T_3、T_4水平显著降低,TSH水平显著增加;噻森铜染毒后5、10mg/kg/d剂量组能显著降低血清T_3水平;噻菌铜试验中的20和30mg/kg/d剂量组能显著降低大鼠血清T_3、T_4水平,同时显著增加血清TSH水平。
     3、在脏器重量和激素测定的基础上,利用组织形态学手段对三种药物可能的甲状腺干扰作用做进一步验证。实验结果表明:噻枯唑各剂量组均能对大鼠甲状腺功能产生明显影响,具体表现为甲状腺滤泡上皮细胞出现增殖和肥大。而噻森铜各染毒组没有出现明显的组织病理学改变。对于噻菌铜,实验发现4mg/kg/day的染毒剂量对大鼠甲状腺功能不产生任何可见影响,但随着染毒剂量的升高,噻菌铜具有明显促进甲状腺滤泡上皮细胞增生、降低滤泡中胶体面积和直径的作用。
     4、鉴于增殖细胞核抗原的敏感性优于组织病理学,本研究又利用免疫组化技术研究噻森铜染毒后大鼠体内甲状腺细胞增殖表达情况,以期进一步对其是否具有甲状腺功能干扰作用进行验证。结果表明,噻森铜在所设定的最高剂量15mg/kg/d下能够引起甲状腺滤泡细胞轻微的增生,虽然这种结果与空白组相比并没有统计上的差异性,但是可能具有生物学意义。
     5、最后通过测定大鼠体内甲状腺素代谢酶活性对三种药物可能的甲状腺干扰作用机制进行探讨。结果表明,噻枯唑染毒的10、20mg/kg/d剂量组能显著抑制GST酶活性,10mg/kg/d剂量组能显著诱导UDPGT活性;噻森铜染毒的10、15mg/kg/d剂量组能显著抑制GST酶活性,5、10mg/kg/d剂量组能显著抑制UDPGT的活性;噻菌铜染毒的30mg/kg/d剂量组能显著抑制GST酶活性,但同时能显著诱导UDPGT活性。
     6、噻森铜的甲状腺干扰作用机制可能不同于噻枯唑和噻菌铜,其具体的作用机制还有待进一步研究。
It is widely accepted that thyroid hormones play predominantly a nuclear roleand function in the growth and differentiation of many organs. Pesticide in THs hadthe greatest proportion. Due to thiadiazole compound's excellent bioactivities andvarious chemical structures, as well as the high activity and low toxicity, it isbecoming a new research hotspot for more and more scientists. In the present study,we used the pubertal female rat assay to detect the effect of bismerthiazol, saisentongand thiodiazole-copper on thyroid function in the intact juvenile female rat. We haveexamined the effect of these pesticides on several thyroid endpoints: serum hormoneconcentrations, thyroid gland weights, hyperplasia of thyroid follicular cells, as wellas hepatic microsome enzyme activities of thyroid metabolism. The disturbance effectand possible action mechanism were studied, which will provide scientific basis forrisk management of these compounds. The main results and conclusions are asfollows:
     1、Pubertal female rats were exposed to three thiadiazole compounds(bismerthiazol, saisentong and thiodiazole-copper) at different dosages of 10, 20,40mg/kg, 5, 10, 15mg/kg and 4, 10, 20, 30mg/kg, respectively, by oral gavage andthe control group was administered with vehicle alone. After treatments, the rats weresacrificed. The results indicated that three thiadiazole compounds administration wereincreased thyroid gland weights.
     2、The serum triiodothyronine(T_3), thyroxine(T_4) and thyroid stimulatinghormone(TSH) concentrations were determined by ELISA kits. The results indicatedthat a statistically significant decrease in serum T_3 and T_4 was observed in allbismerthiazol groups, meanwhile, the TSH was increased significantly in allbismerthiazol treated groups. In saisentong groups, the surm T_3 was found decreasedsignificantly at dosage of 5 and 10mg/kg. Thiodiazole-copper administration weredecreased serum T_3, T_4 and increased surm TSH at the dosage of 20 and 30mg/kg.
     3、In order to validate whether these pesticide have effect on the thyroid, thehistopathological examination was conducted based on the measurement of organweights and hormone. The results indicated all the group of bismerthiazol could haveeffect on the thyroid function significantly. The primary microscopic change of thethyroid follicular was diffuse hypertrophy and hyperplasia. There was no notablechange in the all saisentong treated groups. In all treated groups of thiodiazole-copper,the primary microscopic change of the thyroid gland was colloid depletion that wasoften associated with increased numbers of follicles in which lumens were decreasedin diameter and were devoid of colloid, though the dose of 4mg/kg/day inthiodiazole-copper did not be observed having effect on the thyroid function.
     4、The immunohistochemical of proliferating cell nuclear antigen on thyroidgland was studied in saisentong treatment groups to confirm whether saisentong haveeffect on the thyroid follicular cells. The result indicates that the dosage of 15mg/kg/dcould produce hyperplasia of thyroid follicular cells slightly, though this result is notstatistically significant for control groups, this finding may be biologicallymeaningful.
     5、Since UDPGT is an important hepatic enzyme that metabolizes T_4, helpingcharacterize possible biochemical mechanisms for thyroid hormone, the hepaticenzyme activity was tested at last. The results indicated the GST was restrained atdoses of 10, 20mg/kg/d and the UDPGT was induced at 10mg/kg/d in bismerthiazolgroups. In saisentong treated groups, the GST was restrained at doses of 10, 15mg/kg/d and the UDPGT was induced at dosage of 5, 10mg/kg/d. Thiodiazole-copperadministration were restrained GST and induced UDPGT at the same dosage of30mg/kg/d.
     6、The action mechanism of saisentong in disturbing thyroid may be different tobismerthiazol and thiodiazole-copper, which needs to be studied further.
引文
[1] 袁伯俊,廖明阳,李波.药物毒理学实验方法与技术[M].北京:化学工业出版社,2007:614-700.
    [2] 邓南圣.环境中的内分泌干扰物[M].北京:化学工业出版社,2004:1-2.
    [3] Hutchinson T H, Brown R. Ecological risk assessment of endocrine disruptors [J]. Environmental Health Perspectives, 2000, 108(11): 1-17.
    [4] Guillette L J Jr, Gross T S, Masson G R, et al. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida [J]. Environmental Health Perspectives, 1994, 102(8): 680-688.
    [5] Auher J, Kunstmann J M, Czyglik F, et al. Decline in semen quality among fertile men in paris during the past 20 years [J]. The New England journal of medicine, 1995, 332(5): 281-285.
    [6] David O. Carpenter. Environmental contaminants and learning and memory [J]. International Congress Series, 2006, 185-189.
    [7] Ejaz S, Akram W, Lira C W, et al. Endocrine disrupting pesticides: a leading cause of cancer among rural people in Pakistan [J]. Experimental Oncology, 2004, 26(2): 98-105.
    [8] Panganiban L, Cortes-Maramba N, Dioquino C, et al. Correlation between blood ethylenethhiourea and thyroid gland disorders among banana plantation workers in the Philippines [J]. Environmental Health Perspectives, 2004, 112(1): 42-45.
    [9] Solomon G M, Schettler T. Environment and health: 6. Endocrine disruption and potential human health implications [J]. Canadian Medical Association journal, 2000, 163(11): 1471-1476.
    [10] Waring R H, Harris R M. Endocrine disrupters: A human risk [J]? Molecular and Cellular Endocrinology, 2005, 244: 2-9.
    [11] Glinoer D, Delange F. The potential repercssions of maternal, fetal, and neonatal hypothyroxinemia on the progeny [J]. Thyroid, 2000, 10:871-887.
    [12] Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function [J]. Thyroid, 1998, 8: 827-856.
    [13] Langer P, Tajtakova M, Kocan A, et al. From naturally occurring goitrogens to the effects of anthropogenic endocrine disruptors on the thyroid in Slovakia [J]. Bratislavske Lekarske Listy, 2003, 104(3): 101-107.
    [14] Moriyama K, Taqami T, Akamizu T, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist [J]. The Journal of Clinical Endocrinology and Metabolism, 2002, 87: 5185-5190.
    [15] Thrasher J D, Herser G, Broughton A. Immunological abnormalities in humans chronically exposed to chlorpyrifos [J]. Archives of Environmental Health, 2002, 57(3): 181-187.
    [16] Takagi H, Mitsumori K, Onodera H, et al. Improvement of a two-stage carcinogenesis model to detect modifying effects of endocrine disrupting chemicals on thyroid carcinogenesis in rats [J]. Cancer Letters, 2002, 178(1): 1-9.
    [17] 钱春花,唐伟.环境内分泌干扰物与甲状腺疾病关系的研究进展[J].国外医学卫生学分册,2006,33(2):106-109.
    [18] Kuriyama S N, Wanner A, Fidalgo-Neto A A, et al. Developmental exposure to low-dose PBDE-99: Tissue distribution and thyroid hormone levels [J]. Toxicology, 2007, 242: 80-90.
    [19] Khan M A, Hansen L G. Orthosubstituted polychlorinated biphenyl (PCB) congeners (95 or 101) decrease pituitary response to thyrotropin releasing hormone [J]. Toxicology Letters, 2003, 144(2): 173-182.
    [20] Mariussen E; Fonnum F. Neurochemical Targets and Behavioral Effects of Organohalogen Compounds: An Update [J]. Critical Reviews in Toxicology, 2006, 36(3): 253-289.
    [21] Lee H J, Chattopadhyay S, Gong E Y, et al. Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor [J]. Toxicological Sciences, 2003, 75(1): 40-46.
    [22] Xu L C, Sun H, Chen J F, et al. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro [J]. Toxicology, 2005, 216(2-3): 197-203.
    [23] 张一宾,张怿.世界农药新进展[M].北京:化学工业出版社,2007:6-10.
    [24] Maervoet J, Vermeir G, Covaci A, et al. Association of Thyroid Hormone Concentrations with Levels of Organochlorine Compounds in Cord Blood of Neonates [J]. Environmental Health Perspectives, 2007, 115(12): 1780-1786.
    [25] Langer P, Kocan A, Maria Tajtakova M, et al. Possible effects of persistent organochlorinated pollutants cocktail on thyroid hormone levels and pituitary- thyroid interrelations [J]. Chemosphere, 2007, 70:110-118.
    [26] Hurley P M, Hill R N, Whiting R J. Mode of Carcinogenic Action of pesticides inducing Thyroid Follicular Cell Tumors in Rodents [J]. Environmental Health Perspectives, 1998, 106: 437-445.
    [27] 张素才,周子人,王文冬等.杀草强致甲状腺增生的量效关系初探[J].现代预防医学, 2008,35(7):1353-1357.
    [28] Wade M G, Parent S, Finnson K W, et al. Thyroid toxicity due to subchronic exposure to a complex mixture of 16 organochlorines, lead, and cadmium [J]. Toxicological Sciences, 2002, 67(2): 207-218.
    [29] Soldin O P, Aschner M. Effects of manganese on thyroid hormone homeostasis: Potential links [J]. NeuroToxicology, 2007, 28: 951-956.
    [30] Pine M, Lee B, Dearth R, et al. Manganese Acts Centrally to Stimulate Luteinizing Hormone Secretion: A Potential Influence on Female Pubertal Development [J]. Toxicological Sciences, 2005, 85: 880-885.
    [31] Ishitobi H, Mori K, Yoshida K, et al. Effects of perinatal exposure to low-dose cadmium on thyroid hormone-related and sex hormone receptor gene expressions in brain of offspring [J]. NeuroToxicology, 2007, 28(4): 790-797.
    [32] Davey J C, Nomikos A P, Wungjiranirun M, et al. Arsenic as an Endocrine Disruptor: Arsenic Disrupts Retinoic Acid Receptor- and Thyroid Hormone Receptor-Mediated Gene Regulation and Thyroid Hormone-Mediated Amphibian Tail Metamorphosis [J]. Environmental Health Perspectives, 2008, 116(2): 165-172.
    [33] 郑泽霖,耿小平,张德恒.甲状腺、甲状旁腺外科学[M].安徽合肥:安徽科学技术出版社,2006,1-8.
    [34] 郑捷.化学物质对甲状腺功能的影响[J].国外医学卫生学分册.2001,28(6):333-336.
    [35] Jahnke G D, Choksi N Y, Moore J A, et al. Thyroid Toxicants: Assessing Reproductive Health Effects [J]. Environmental Health Perspectives, 2004, 112(3): 363-368.
    [36] Ahmed O M, El-Gareib A W, El-bakry A M, et al. Thyroid hormones states and brain development interactions [J]. International Journal of Developmental Neuroscience, 2008, 26: 147-209.
    [37] Koibuchi N, Chin W W. Thyroid Hormone Action and Brain Development [J]. Trends in Endocrinology and Metabolism, 2000.11 (4): 123-128.
    [38] Zoeller R T, Tyl R W, Tan S W. Current and Potential Rodent Screens and Tests for Thyroid Toxicants [J]. Critical Reviews in Toxicology, 2007, 37: 55-95.
    [39] Zoeller R T, Tan S W, Tyl R W. General Background on the Hypothalamic-pituitary-Thyroid (HPT) Axis [J]. Critical Reviews in Toxicology, 2007, 37:11-53.
    [40] Zepik H H, Walde P, Kostoryz E L, et al. Lipid Vesicles as Membrane Models for Toxicological Assessment of Xenobiotics [J]. Critical Reviews in Toxicology, 2008, 38: 1-11.
    [41] Dellarco V L, McGregor D, Berry S C, et al. Thiazopyr and Thyroid Disruption: Case Study Within the Context of the 2006 IPCS Human Relevance Framework for Analysis of a Cancer Mode of Action [J]. Critical Reviews in Toxicology, 2006, 36: 793-801.
    [42] Oetting A, Yen P M. New insights into thyroid hormone action [J]. Best Practice and Research Clinical Endocrinology and Metabolism, 2007, 21 (2): 193-208.
    [43] Divi R L, Doerge D R. Mechanism-based inactivation of lactoperoxidase and thyroid peroxidase by resorcinol dericatives [J]. Biochemistry, 1994, 33: 9668-9674.
    [44] Divi R L, Doerge D R. Inhibition of thyroid peroxidase by dietary flavonoids [J]. Chemical Research in Toxicology, 1996, 9: 16-23.
    [45] Zoeller R T, Crofton K M. Mode of Action: Developmental Thyroid Hormone Insufficiency-Neurological Abnormalities Resulting From Exposure to Propylthiouracil [J]. Critical Reviews in Toxicology, 2005, 35(8/9): 771-781.
    [46] Setchell K D. Assessing Risks and Benefits of Genistein and Soy [J]. Environmental Health Perspectives, 2006, 114(6): 332-333.
    [47] Wolff J. Perchlorate and the thyroid gland [J]. Phamacological Reviews, 1998, 50:89-105.
    [48] Greer M A, Goodman G, Pleus R C, et al. Health effects assessment for environmental perchlorate contamination: The dose response for inhibition of thyroidal radioiodine uptake in humans [J]. Environmental Health Perspectives, 2002, 110: 927-937.
    [49] Meller J, Becker W. The continuing importance of thyroid scintigraphy in the era of high resolution ultrasound [J]. European Journal of Nuclear Medicine and Molecular Imaging, 2002, 29 Supply 2: 425-438.
    [50] Yamada T, Kunimatsu T, Miyata K. Enhanced rat Hershberger assay appears reliable for detection of not only (antr) androgenic chemicals but also thyroid hormone modulators [J].Toxicological Sciences, 2004, 79(1): 64-74.
    [51] Devito M, Biegel L, Brouwer A, et al. Screening methods for thyroid hormone disruptors [J].Environmental Health Perspectives, 1999, 107(5): 407-415.
    [52] Gatseva P, Vladeva S, Pavlov K. Incidence of goiter among children in a village with nitrate contamination of drinking water [J]. Folia Medica (Plovdiv), 1998, 40(3): 19-23.
    [53] Vladeva S, Gatseva P, Gopina G. Comparaive analysis of results from studies of goiter in children from Bulgarian villages with nitrate pollution of drinking water in 1995 and 1998 [J]. Central European Journal of Public Health, 2000, 8: 179-181.
    [54] Urbansky E T. Perchlorate as an environmental contaminant [J]. Environmental Science and Pollution research international, 2002, 9: 187-192.
    [55] Strawson J, Zhao Q, Dourson M. Reference dose for perchlorate based on thyroid hormone change in pregnant women as the critical effect [J]. Regulatory Toxicology Pharmacology, 2004, 39(1): 44-65.
    [56] De La Vieja A, Ginter CS, Carrasco N. The Q267E mutation in the sodium/iodide symporter (NIS) causes congenital iodide transport defect (TTD) by decreasing the NIS turnover number [J]. Journal of Cell Science, 2004, 117: 677-687.
    [57] De La Vieja A, Ginter CS, Carrasco N. Molecular analysis of a congenital iodide transport defect: G534E impairs maturation and trafficking of the Na+/I- symporter [J]. Molecular Endocrinology, 2005, 19: 2847-2858.
    [58] Breous E, Wenzel A, Loos U. The promoter of the human sodium/iodide symporter responds to certain phthalate plasticizers [J]. Molecular Cell Endocrinology, 2005, 244: 75-58.
    [59] Kester M H, Martinez de Mena R, Obregon M J, et al. Iodothyronine levels in the human developing brain: Major regulatory roles of iodothyronine deiodinases in different areas [J]. Journal of Clinical Endocrinology and Metabolism, 2004, 89: 3117-3128.
    [60] Kohrle J. Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination [J]. Best Practice and Research Clinical Endocrinology and Metabolism, 2007, 21(2): 173-191.
    [61] Kohrle J. The deiodinase family: selenoenzymes regulating thyroid hormone availability and action [J]. Cellular and Molecular Life Sciences, 2000, 57: 1853-1863.
    [62] Gereben B, Zeold A, Dentice M, et al. Activation and inactivation of thyroid hormone by deiodinases: Local action with general consequences [J]. Cellular and Molecular Life Sciences, 2008,65: 570-590.
    [63] Hood A, Klaassen C D. Differential effects of microsomal enzyme inducers on in vitro thyroxine (T(4)) and triiodothyronine (T(3)) glucuronidation [J]. Toxicological Sciences, 2000, 55: 78-84.
    [64] Hood A, Klaassen C D. Effects of microsomal enzyme inducers on outer-ring deiodinase activity toward thyroid hormones in various rat tissues [J]. Toxicology and Applied Pharmacology, 2000,163: 240-248.
    [65] Hood A, Allen M L, Liu Y, et al. Induction of T(4) UDP-GT activity, serum thyroid stimulating hormones, and thyroid follicular cell proliferation in mice treated with microsomal enzyme inducers [J]. Toxicology and Applied Pharmacology, 2003, 188: 6-13.
    [66] Klaassen C D, Hood A M. Effects of microsomal enzyme inducers on thyroid follicular cell proliferation and thyroid hormone metabolism [J]. Toxicologic Pathology, 2001, 29: 34-40.
    [67] Chauhan K R, Kodavanti P R, McKinney J D. Assessing the role of ortho-substitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein [J]. Toxicology and Applied Pharmacology, 2000, 162: 10-21.
    [68] Palha J A, Nissanov J, Fernandes R, et al. Thyroid hormone distribution in the mouse brain: The role of transthyretin [J]. Neuroscience, 2002, 113: 837-847.
    [69] Tan S W, Timm G E, Amcoff P. History and Genesis of the Detailed Review of Thyroid Hormone Disruption Assays [J]. Critical Reviews in Toxicology, 2007, 37: 1-4.
    [70] Tan S W, Zoeller R T. Integrating Basic Research on Thyroid Hormone Action into Screening and Testing Programs for Thyroid Disruptors [J]. Critical Reviews in Toxicology, 2007, 37: 5-10.
    [71] Zoeller R T, Tan S W. Implications of Research on Assays to Characterize Thyroid Toxicants [J]. Critical Reviews in Toxicology, 2007, 37: 195-210.
    [72] Cooper R L, Lamb J C, Barlow S M, et al. A Tiered Approach to Life Stages Testing for Agricultural Chemical Safety Assessment [J]. Critical Reviews in Toxicology, 2006, 36(1): 69-98.
    [73] Integrated summary report for Validation of a Test Method for Assessment of Pubertal Development and Thyroid Function in Juvenile Female Rats as a Potential Screen in the Endocrine Distuptor Screening Program Tier-1 Battery [R]. USA: EPA, 2007.
    [74] Baker V A. Endocrine disrupters—esting strategies to assess human hazard [J]. Toxicology in Vitro, 2001, 15:413-419.
    [75] Gelbke H P, Kayser M, Poole A. OECD test strategies and methods for endocrine disruptors [J]. Toxicology, 2004, 205: 17-25.
    [76] Harding A K, Daston G P, Boyd G R, et al. Endocrine Disrupting Chemicals Research Program of the U.S. Environmental Protection Agency: Summary of a Peer-Review Report [J]. Environmental Health Perspectives, 2006, 114(8): 1276-1282.
    [77] Doe J E, Boobis A R, Blacker A, et al. A Tiered Approach to Systemic Toxicity Testing for Agricultural Chemical Safety Assessment [J]. Critical Reviews in Toxicology, 2006, 36 (1): 37-68.
    [78] Clode S A. Assessment of in vivo assays for endocrine Disruption [J]. Best Practice and Research Clinical Endocrinology and Metabolism, 2006, 20(1): 35-43.
    [79] Kim H S, Shin J H, Moon H J, et al. Evaluation of the 20-Day Pubertal Female Assay in Sprague-Dawley Rats Treated with DES, Tamoxifen, Testosterone, and Flutamide [J]. Toxicological science, 2002, 67: 52-62.
    [80] Marry M S, Crissman J W, Carney E W. Evaluation of the EDSTAC Female Pubertal Assay in CD Rats Using 17 β -Estradiol, Steroid Biosynthesis inhibitors, and a Thyroid inhibitor [J]. Toxicological science, 1999, 52: 269-277.
    [81] Laws S C, Ferrell J M, Stoker T E, et al. The Effects of Atrazine on Female Wistar Rats: An Evaluation of the Protocol for Assessing Pubertal Development and Thyroid Function [J]. Toxicological science, 2000, 58: 366-376.
    [82] Stoker T E, Laws S C, Crofton K M, et al. Assessmet of DE-71, a Commercial Polybrominated Diphenyl Ether (PBDE) Mixture, in the EDSP Male and Female Pubertal Protocols [J]. Toxicological science, 2004, 78:144-155.
    [83] Kim H S, Shin J H, Moon H J, et al. Comparative estrogenic effects of p-nonylphenol by 3-day uterotrophic assay and female pubertal onset assay [J]. Reproductive Toxicology, 2002, 16: 259-268.
    [84] 张华,邢锦娟,刘琳等.噻二唑衍生物的合成及应用综述[J].渤海大学学报,2008,29(2): 128-132.
    [85] 罗晓艳,任叶果,黄明智.具杀菌活性噻唑类化合物的研究进展[J].农药研究与应用,2006,10(3):5-8。
    [86] 胡德禹,宋宝安,何伟等.噻唑类杀菌剂的合成及生物活性研究进展[J].合成化学,2006,14(4):319-328.
    [87] 刘长令.噻唑系列化合物[J].精细与专用化学品,2007,15(9):36-37.
    [88] 李在国,黄润秋,杨华铮等.化学合成植物病毒抑制剂研究进展[J].农药,1998,37(5):3-6.
    [89] 李宗成.近年来开发的农药新品种[J].农药,2001,40(2):.44-47.
    [90] 朱润庆,刘铭球,王福元等.敌枯双慢性毒性实验的病理形态学研究-实验大鼠脏器组织病理变化[J].湖北医学院学报,1992,13(3):236-239.
    [91] 刘铭球,王福元,朱润庆等.敌枯双慢性毒性实验的病理学研究-大鼠甲状腺和肝超微结构的改变[J].湖北医学院学报,1992,13(4):315-318.
    [92] 王文相,顾江涛,夏静.水稻白叶枯病菌抗药性现象的室内研究[J].植物保护学报,2000,25(2):156-160.
    [93] 沈光斌,周明国.叶枯唑防治水稻叶枯病的作用方式研究[J].农药学学报,2001,9(3):35-39.
    [94] 王津涛,孙丁,张浩等.二巯基敌枯双干扰大鼠甲状腺功能的时效关系研究[J].四川大学学报,2004,35(6):770-773.
    [95] 程薇波,孙丁,李群英等.二巯基敌枯双生物作用的实验研究Ⅱ:组织化学观察[J].现代预防医学,2003,30(3):309-311.
    [96] 程薇波,孙丁,王文东等.甲状腺激素干扰物二巯基敌枯双生物作用的实验研究Ⅰ:观察指标的探讨[J].现代预防医学,2003,30(2):129-131.
    [97] 程薇波,孙丁,李群英等.甲状腺激素干扰物体内甄别实验初探[J].四川大学学报,2003,34(3):472-475.
    [98] 孙丁,王津涛,潘红梅等.甲状腺素干扰物对甲状腺滤泡细胞分泌甲状腺球蛋白功能的影响[J].环境与健康杂志,2003,20(4):210-212.
    [99] 孙丁,吴德生,王津涛等.农药叶枯宁对大鼠血清甲状腺素水平影响的时效关系[J].环境与职业医学,2003,20(3):148-150.
    [100] 雷幼导,崔联和,徐维光.新农药二巯基敌枯双对大鼠甲状腺功能的损害[J].四川医学院学报,1983,14(3):263-268.
    [101] 肖邦良,周幼斌,徐维光.二巯基敌枯双所致大鼠实质性甲状腺肿的形态发生[J].四川医学院学报,1983,14(3):269-275.
    [102] 肖邦良,徐维光,王远萍.二巯基敌枯双致大鼠甲状腺滤泡细胞酶组织化学及超微结构的改变[J].四川医学院学报,1984,15(1):6-11.
    [103] 孙丁.环境甲状腺素干扰物甄别方法及其作用机制的初步研究[D].四川成都:四川大学华西公共卫生学院,2003.
    [104] 王津涛.环境甲状腺素干扰物体外作用机制及发育毒性研究[D].四川成都:四川大学华西公共卫生学院,2004.
    [105] 唐鹏,熊兴平,杜劲松.20%龙克菌(噻菌铜)对农作物细菌性病害的防治效果[J].农业科技与装备,2008,3:35-36,39.
    [106] Shin J H, Moon H J, Kang I H, et al. Repeated 28-day oral toxicity study of ketoconazole in rats based on the draft protocol for the "Enhanced OECD Test Guideline No. 407" to detect endocrine effects [J]. Archives of Toxicology, 2006, 80(12): 797-803.
    [107] 崔新仪.氟吗啉对大鼠内分泌干扰效应的初步研究[D].新疆乌鲁木齐:新疆农业大学农业与环境资源学院,2003.
    [108] 熊静芳,徐培渝,王正书等.叶枯唑原药对大鼠的亚慢性经口毒性研究[J].现代预防医学,2008,35(1):127-129.
    [109] 周炯林,徐培渝,王正书等.叶枯唑原药对亚慢性染毒大鼠甲状腺的影响[J].四川大学学报,2008,39(2):247-249.
    [110] 袁本利.药物安全评价中脏器系数的意义及不足[J].中国新药杂志,2003,12(11):960-963.
    [111] Stoker T E, Laws S C, Crofton K M, et al. Assessmet of DE-71, a Commercial Polybrominated Diphenyl Ether (PBDE) Mixture, in the EDSP Male and Female Pubertal Protocols [J]. Toxicological science, 2004, 78: 144-155.
    [112] O'Connor J C, Frame S R, Davis L G, et al. Detection of thyroid toxicants in a tier 1 screening battery and alterations in thyroid endpoints over 28 days of exposure [J]. Toxicological Sciences, 1999, 51: 54-70.
    [113] Almendral J M, Huebsch K, Blundell P A. Cloning and sequence of the human nuclear protein cyclin homology with DNA binding proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(3): 1575-1579.
    [114] 张素才,王宁,杨开选等。PCNA在PTU致大鼠甲状腺增生效应中的表达规律[J].四川大学学报,2008,39(1):101-104.
    [115] 宋楠萌,桑建利,徐恒.增殖细胞核抗原(PCNA)的分子结构及其生物学功能研究进展[J].自然科学进展,2006,16(10):1201-1208.
    [116] 钱金方.增殖细胞核抗原在常见肿瘤的研究进展[J].肿瘤基础与临床,2008,21(1):86-89
    [117] 安丰奇,罗英伟,李昕等.甲状腺肿瘤细胞增殖活性的研究[J].中华实验外科杂志,1995,12(6):364-365.
    [118] 罗泊涛,郑洪,李德祥.细胞增殖活性及形态计量学在甲状腺肿瘤中的诊断意义[J].贵州医药,2003,27(1):5-7.
    [119] Tengchaisri T, Chawengkirttikul R, Rachaphaew N. Antitumor activity of triptolide against cholangio carcinoma grow thin vitro and in hamsters [J]. Cancer Letters, 1998, 133(1): 169-175.
    [120] 王任飞,谭建.甲状腺肿瘤的免疫组化研究进展[J].国外医学内分泌学分册,2002,22(2):118-119.
    [121] 孙青,鹿伟,张传森等.甲状腺肿瘤增殖细胞核抗原表达的免疫组化研究[J].第一军医大学学报,2001,21(1):17-18。
    [122] Putz O, Schwartz C B, LeBlanc G A, et al. Neonatal low- and high-dose exposure to estradoil benzoate in the male rat: Ⅱ. Effects on male puberty and the reproductive tract [J]. Biology of Reproduction, 2001, 65:1506-17.
    [123] Almstrup K, Fernandez M F, Petersen J H, et al. Dual effects of phytoestrogens results in U-shaped dose-response curves [J]. Environmental Health Perspectives, 2002, 110: 743-48.
    [124] Ahn N S, Hu H, Park J S, et al. Molecular mechanisms of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced inverted U-shaped dose responsiveness in anchorage independent growth and cell proliferation of human breast epithelial cells with stem cell characteristics [J].Mutation Research, 2005, 579: 189-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700