蒙古冰草抗旱相关基因克隆、表达及RNAi载体构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒙古冰草(Agropyron mongolicum Keng)是我国荒漠草原和典型草原优良的禾本科牧草,具有抗旱、抗寒、耐盐碱、耐瘠薄、抗病虫等优异特性,是牧草和农作物抗性改良的重要基因资源。同时,蒙古冰草是冰草属中珍贵的二倍体物种,不仅具有较高的饲用价值,还具有重要的生态价值和遗传育种价值。我国拥有丰富的蒙古冰草种质资源,开展蒙古冰草抗逆性基因资源的挖掘和利用,对于我国蒙古冰草种质资源的保护和种质创新具有重要意义。本研究以蒙古冰草为材料,开展了以抗旱基因为主的受逆境胁迫表达基因的克隆及其抗逆分子机制研究,主要结果如下:
     1.采用PCR和RACE技术,从蒙古冰草中克隆了1个第四组LEA基因,命名为MwLEA。该基因cDNA全长961bp,编码171个氨基酸。具有LEA-4超基因家族N端特征结构域,C端序列不具备保守性,二级结构中α-螺旋占主导,该基因前140个氨基酸的亲水性较强,尾部序列亲水性减弱,受干旱胁迫诱导表达。
     2.采用RT-PCR技术,从蒙古冰草中克隆了1个第三组LEA基因家族成员,命名为MwLEA3,基因全长1004bp,包含3个内含子区和3个外显子区,编码189个氨基酸。具有8个重复的11aa-基元序列,氨基酸组成中丙氨酸、赖氨酸和苏氨酸三种氨基酸约占总量的50%,不含半胱氨酸和色氨酸。二级结构中α-螺旋占主导,亲水性较强,经Southern杂交分析,认为该基因在基因组中以基因家族形式存在。
     3.采用RT-PCR方法对MwLEA3基因的表达模式分析显示,该基因在根茎中的表达量高于叶片中的表达量;受干旱、高盐、外源激素ABA的诱导,在植物体内高水平表达。不同诱导条件下的基因表达模式存在差异。为深入研究MwLEA3基因的功能,以MwLEA3基因为靶标构建了RNAi表达载体pRNAiMwLEA3。
     4.采用RT-PCR方法从蒙古冰草中克隆到肌动蛋白(Actin)基因,命名为MwACT。在诱导表达分析中,MwACT不受外界因素诱导表达量恒定,是组成型表达的管家基因。为研究其他基因在蒙古冰草中表达提供内标参照。
     5.从蒙古冰草中克隆到谷胱甘肽-S-转移酶(GSTs)类基因,命名为MwGSTs,该基因具有GSTs超基因家族保守结构域(C-terminal alpha helical domain)。二级结构和亲疏水性分析表明,MwGSTs基因具有结合疏水底物的H位点和较强的疏水特性。
     6.本研究克隆的4个基因均与小麦同类基因高度同源,从遗传进化方面阐明了蒙古冰草进化程度与小麦接近。从理论上支持了蒙古冰草是小麦野生近缘种这一观点,从而确定蒙古冰草为小麦抗性改良基因资源的理想物种。
Mongolian wheatgrass is an important genetic resource for improving forge grass and crops resistances which is excellent forage grass with many superior characteristics, such as Drought Resistance, Cold Resistance, Disease and Insect Resistance, Tolerance to Saline and Barren in Desert Grassland and Typical Grassland of China. Meanwhile, it is a precious diploid species with genetic and feeding value, ecological value and breeding value in Agropyron Gaertn. There are abundant germplasm resources of Mongolian wheatgrass in China. Discovering and cloning genes related to stress-tolerance are the foundation for improving the stress tolerance in crops with genetic modification, which also plays a crucial role in protecting, innovating germplasm resources and understanding the genetic mechanism of drought tolerance in Mongolian wheatgrass. In this research, Mongolian wheatgrass were used as experimental materials to clone genes related to drought resistance and study mechanism of stress tolerance. The main results are as follows:
     1. A group 4 of LEA gene, named as MwLEA, was cloned from Mongolian wheatgrass by PCR and 3’and 5’RACE amplification and sequencing, the full length gene of LEA-4 superfamily N-terminal conserved domains was 961 bp, which encodes 171 amino acids. C-terminal of this gene is not conservative.α-helix structure plays a dominant role in the secondary structure ,its expression induced by drought stresses,and it has stronger hydrophilicity of pre-140 amino acids and tail-end decreased.
     2. A group 3 of LEA gene, named as MwLEA3, was cloned from Mongolia wheatgrass by RT-PCR amplification and sequencing, the full length gene of 8 copies 11-amino acid sequence motif was 1004 bp, including of 3 introns and 3 exons regions ,which encodes 189 amino acids. Ala, Lys and Thr are about 50% of amino acids composition, and no Cys and Trp.α-helix structure plays a dominant role in the secondary structure and has stronger hydrophilicity. This gene is in the form of gene-family in genome by Southern analysis.
     3. Analysis on expression pattern of MwLEA3 was by RT-PCR. The results revealed that its mRNA level was positively related to the drought tolerance. The gene was also induced by high salt and exogenous ABA treatments. Substantially, the expression of MwLEA3 was higher in roots and stem than that in leaves and their expression patterns were different under different stresses. RNAi expression vector harboring the partial MwLEA3 gene were constructed to study on function of the MwLEA3 gene.
     4. A partial Actin gene of Mongolian wheatgrass, named as MwACT, was cloned by RT-PCR amplification. MwACT of constitutive expression is housekeeping gene without change with outside factors, which can be used as internal standard when study other genes’expression and regulation in Mongo1ian wheatgrass.
     5. A partial GSTs gene of Mongolian wheatgrass, named as MwGSTs, was cloned by RT-PCR amplification. The partial gene of GSTs superfamily C-terminal conserved domains. Analysis on the secondary structure and hydrophilicity revealed that it had substrate binding pocket (H- site ) and stronger hydrophobicity.
     6. 4 genes of Mongo1ian wheatgrass isolated in the research have high homology with wheat, and further illustrate evolution extent of Mongo1ia wheatgrass close to wheat. In theory, support to the View of Mongo1ian wheatgrass being wild relatives of wheat, and it is the optimal species for improving stress-tolerance in wheat was further confirmed.
引文
1 Boyer J S. Plant productivity and environment[J]. Science,1982,218:443-448
    2 Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants[J]. Mol Gen Genet,1993,236:331-340
    3 Bray E A. Plant responses to water deficit[J].Trends plant SCI,1997, Vol. 2(1):48-54
    4廖显辉.话说“节水农业”[J].农业考古,2002,(1):44-47
    5汤章城.植物的抗逆性和节水栽培[J].植物生理学通讯,1997,6:473-474
    6张彤,齐麟.植物抗旱机理研究进展[J].湖北农业科学,2005,04:107-110
    7 Xiong L M, Schumaker K S, Zhu JK. Cell signaling during cold, drought, and salt stress[J].The Plant Cell. 2002,14 Suppl:S165-S183
    8 Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J]. Curr Opinion Plant Biol,2000,3:217-223
    9 Yamaguchi-Shinozaki K., Kasuga M., Liu Q. Biological mechanisms of drought stress response[R]. JIRCAS Working Report, 2002:1-8
    10 Shinozaki K., Dennis E. Cell signaling and gene regulation global analyses of signal transduction and gene expression profiles[J]. Curr Opinion Plant Biol,2003.6:405-409
    11 Verslues P E., Zhu JK. Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress[J]. Biochemical Society Transactions.2005,33:375-379
    12 Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms[J].Annu Rev Plant Physiol Plant Mol Biol,1999,50:571-599
    13 Hasegawa P M, Bressan R A. Plant cellular and molecular responsive to high salinity[J].Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499
    14 Xiong LM, Zhu JK. Regulation of Abscisic Acid Biosynthesis[J].Plant Physiol,2003,133:29-36
    15 Liu Q,Kasuga M,Sakuma Y. Two transcription factors, DREBI and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signalling pathways in draught-and low temperature responsive gene expression, respectively in Arabidopsis[J]. Plant Cell 1998,10:1391-1406
    16 Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors[J]. Curr Opin Plant Biol,2004,7:465-471
    17 Kasukabe Y,He L.,Nada K. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana[J]. Plant Cell Physiol,2004,45:712-722
    18 Chinnusamy V, Jagendorf A. Understanding and Improving Salt Tolerance in Plants[J]. Crop Sci,2005,45:437-448
    19 Yeo E T, Kwon H B. Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae[J]. Mol Cells,2000,Vol.10(3):263-268
    20戴秀玉,吴大鹏.大肠杆菌海藻糖合成酶基因的克隆和表达[J].遗传学报,Vol.27(2): 158-164
    21 McDougall J,Kaasen I,Strom A R. FEMS Microbiol Lett ,1993, Vol.107(1):25-30
    22张树珍,王自章.植物耐旱的分子基础及植物耐旱基因工程的研究进展[J].生命科学研究,2001, Vol.5(3):134-140
    23张秀梅,黄丛林.植物抗旱基因工程研究进展[J].生物技术通报,2001,04:21-25
    24郭卫东,沈向.植物抗旱分子机理[J].西北农业大学学报,1999, Vol.27(4):102-107
    25 Basia Vinocur, Arie Altman. Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations[J]. Current Opinion in Biotechnology,2005,16:123-132
    26 Zhu JK. Genetic Analysis of Plant Salt Tolerance Using Arabidopsis[J]. Plant Physiol,2000,124:941-948
    27 Cardinale F, Jonak C. Differential activation of four specific MAPK pathways bydistinct elicitors[J]. J Biol Chem,2000,275:36734-36740
    28 Link V L., Hofmann MG. Biochemical evidence for the activation of distinct subsets of mitogen-activated protein kinases by voltage and defense-related stimuli[J]. Plant Physiol,2002,128:271-281
    29 MAPK Group:Mitogen-activated protein kinase cascades in plants: a new nomenclature[J]. Trends Plant Sci,2002,7:301-308
    30 Chang C. Ethylene signaling: the MAPK module has finally landed[J]. Trends Plant Sci,2003,8:365-368
    31 Guo H W., Ecker J. The ethylene signaling pathway: new insights[J]. Curr Opinion Plant Biol,2004,7:40-49
    32 Morris P C., Gauerroer D., Leung L. et al. Cloning and characterization of MEK1, An Arabidopsis gene encoding a Homogue of MAP kinase kinase[J]. Plant Bio,1997,35:1057-1064
    33 Hackett R M.,Oh S A. A tomato MAP kinase kinase gene differentially regulated during fruit development leaf senscence and wounding[J]. Plant Physiol,1998,117:1526-1531
    34 Zhang S Q,Daniel Flessig. MAPK cascades in plant defense signaling[J]. Trends in Plant sci,2001, Vol.6(11):520-527
    35 Mizoguchi T, Ichimura K.Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants[J].FEES Letters,1998,437:56-60
    36 Davies W J, Zhang J. Root signals and signal transduction in water-stress response[J]. Plant Physiol,1977,115:327-334
    37 Shinozaki K,Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress[J]. Curr Opin Biotechnol,1996,7:161-167
    38 Abe H.,Shinozaki K,Urao T. et al. Role of Arabidopsis MYC and MYB homlogs in drought- and abscisic acid regulated gene expression[J]. Plant Cell,1997, Vol.9 (10):1859-1868
    39 Urao T.,Katagiri T. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conderved MYB recognition sequence[J]. Plant Cell,1993,5:1529-1539
    40 Chinnusamy V., Schumaker K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress singnalling in plants[J]. J Exp Bot,2004,55:225-236
    41 Ingram J.,Bartels D. The molecular basis of dehydration tolerance in plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403.
    42 Menkes A E, Schindler U, Cashmore AR. The G-box: a ubiquitous regulatory DNA element in plants bound by GBF family of bZIP proteins[J]. Trends Biochem Sci,1995,20:506-510
    43 Shen Q., Ho THD. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA responsive complexes each containing a G-box and a novel cis-acting element [J].Plant Cell,1995,7:295-307
    44 McCariy D R. Genetic control and integration of maturation and germination pathwaysin seed development[J]. Annu Rev Plant Physiol Plant Mol Biol,1995,46:71-93
    45 Shinozaki K, Yamaguchi-Shinozaki K., Gene expression and signal transduction in water-stress response[J]. Plant Physiol,1997,25:327-334
    46 Giraudat T, Parcy F, Bertandre N. et al. Current advances in abscisic acid action and signaling [J].Plant Mol. Biol,1994,26:1557-1577
    47 Shinozaki K,Thomashow M F. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance[M]. In: Arabidopsis, E. Meyerowitz and C. Somerville, eds (Cold Spring Harber, NY:Cold Spring Harber Laboratory Press),1994,807-834
    48 Yamaguchi-Shinozaki K., Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature,or high-salt stress [J].Plant Cell,1994,6:251-264
    49 Stockinger E J.,Gilmour S J. Arabidopsis thaliana CBFl encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/D1tE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA,1997,94:1035-1040
    50 Nakashima K., Kiyosue T. A nuclear gene erdI encoding a chloroplast-targeted Clp protease regulatory subunit homologs is not only induced by water-stress but also developmentally up-regulated during senescence in Arabidopsis thaliana [J].Plant J,1997, Vol.12(4):851-861
    51 Yancey P H. Living with water stress evolution of osmoly to system [J]. Science,1982, 217:1214-1222
    52 Davis T.,Yamada M.,Elgort M. Nucleotide sequence of the mannitol (mtl) oneron in Escherichia coli[J].Molecular Microbiol,1998, Vol.2(3):14960-14965
    53 Tarczynsfi M C.,Jensen R G. Stress pretection of transgenic tobacco by production of the osmolyte annitol [J].Science,1993,259:508-510
    54 Karakas B, Ozias - Akins P. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Envir,1997,20(5):609-616
    55 Shen B, Jensen R G. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts Plant Physiol,1997,113(4):1177-1183
    56 Delauney A Y, Verma DPS. Proline biosynthesis and osmoregulation in plants[J].Plant J.1993,4:215-223,129
    57 Yancey P H., Clark ME., Hand S C. et al. Living with water stress: evolution of osmolyte systems[J].Science,1982,217:1214-1222
    58 Rhodes D, Handa S, Bressan R A. Metabolic changes associlated with adaption of plant cells to water stress[J]. Plant Physiol.1986,82:890-903
    59 Whatmore A M., Chudek J A. The effects of osmotic upshock on the extracellular solute pools of Bacillus subtilis[J].J Gen Miaobiol.1990,136:2527-2535.
    60 Kavi Kishor P B,Hong Z. Overexpression of delta 1-pyrroline-5-carboxylate synthetase increases praline production and confers osmotolerance in transgenic plants[J]. Plant Physiol,1995,vol.108(4):1387-1394
    61 Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,2002,53:247-73
    62 Liu J,Zhu JK. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis[J]. Plant Physiol.1997, Vol.114(2):591-596
    63 Roosens NHCT,Thu T T, Iskandar J M. et al. Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana[J].Plant Physiol.1998,117:263-271
    64 Iyer S, Caplan A. Products of proline latabolism can induce osmotically regulatedgenes in rice[J]. Plant Physiol.1998,116:203-211
    65 Saneoka H, Nagasaka C., Hahn D T. et a1. Salt tolerance of glycinebetaine deficient and containing maize lines[J]. Plant Physiol.1995,107:631-638
    66 Allard F, Houde M. Betaine improves freezing tolerance in wheat[J].Plant Cell Physiol.1998,39:1194-1202
    67 Hayashi H H, Sakamoto A. Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene(codA) for choline oxidase[J].J Plant Res. 1998,111:357-362
    68 Rhodes D,Hanson A D. Quaternary ammonium and tertiary sulonium compounds in higher plants[J].Annu Rev Plant Physiol and Plant Mol Biol,1993,44:357-384
    69许雯,孙梅好.甘氨酸甜菜碱增强青菜抗盐的作用[J].植物学报,2001, Vol.43(8):809-8l4
    70衣艳君,刘家尧.转BADH基因烟草的光系统II和呼吸酶活性的变化[J].植物学报,1999, Vol.41(9):993-996
    71张士功,高吉寅.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J].植物学通报,1999, Vol.16(4):429-43
    72孙文越,王辉.外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响[J].西北植物学报,2001,Vol.21(3):487-491
    73 Lilius Q,Holmberg N. Enhanced NaCl stress choline dehydrogenase[J]. Biotechnoloy.1996,14:177-180
    74 Alia,Hayashi H. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Envir,1998, Vol.21(2):232-239
    75 Hayashi H A, Mustardy L. Transformation of Arabidopsis thaliana with the coda gene for choline oxidase: accumulation of gylycine betaine and enhanced tolerance to salt and cold stress[J].Plant J,1997,12:133-142
    76 Deshnium P, Los D A.Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress[J]. Plant Mol Biol,1995,29(5):897-907
    77 Sakamoto,A. Alia. Murata,N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold[J]. Plant Mol Biol,1998, Vol.38(6):1011-1019
    78 Romero C,Belles J M. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance[J]. Planta, 1997, Vol.201(3):293-297
    79 Pilon Smits E A H , Terry N. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress[J].J Plant Physiol, 1998, vol. 152(4-5): 525-532
    80 Pilon-Smits EAH., Ebskamp MJM. Improved performance of transgenic fructan accumulating tobacco under drought stress[J]. Plant Physiology,1995,107:125-130
    81 Sheveleva E, Chmara W. Increased salt and drought tolerance by d-ononitol production in transgenic Nicotiana Tabacuml L.[J]. Plant Physiol, 1997, vol. 115(3): 1211-1219
    82 Galston A W, Kaur - Sawhney R , Altabella T , et al. Bot Acta ,1997 , 110 : 197-207
    83 Besford R T,Richardson. Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves[J]. Planta,1993, Vol.189(2):201-206
    84 Minocha S C , Sun D Y. Plant Physiol Suppl , 1997 , 297 ?
    85 Capell T , Escobar C. Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants[J]. Theor Appl Genet,1998, Vol.97(1-2):246-254
    86 Xu D, Duan X. Expression of a late embryogenesis abundant protein gene, HVA1,frombarley confers tolerance to water deficit and salt stress in transgenic rice[J].Plant Physiol,1996,110:249-257
    87 Ohno R., Takumi S. Kinetics of transcript and protein accumulation of a low molecular-weight wheat LEA D-11 dehydrin in response to low temperature[J].Plant Physiol,2003,160:193-200
    88 Sakamoto A., Alia M., Murata N. Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold[J]. Plant Mol Boil,1998,38:1011-1019
    89 Torii K U. Receptor kinase activation and signal transduction in plants: An emerging picture[J]. Curr Opin Plant Biol,2000,3:361-367
    90 Ramanjulu S, Bartels D. Drought- and desiccation-induced modulation of gene expression in plant[J].Plant cell and environment,2002,25:141-151
    91卢萍,卢青. LEA基因及Lea蛋白的研究进展[J].内蒙古师大学报自然科学(汉文)版,1999, Vol.28(2):138-142
    92 Close T J.Dehydrins: A emernence of a biochemical role of a family of plant dehydration proteins[J].Plant Physiol,1996,97:795-803
    93 Baker J, Steele C, Dure L.III. Sequence and Characterization of 6 Lea proteins and their genes from cotton[J]. Plant Mol Biol.,1988,11:277-281
    94 Dure L.Ⅲ. Developmental biochemistry of cotton seed embryogenesis and germination: changingmRNA populations as shown in vitro and in vivo protein synthesis[J].Biochemistry. 1981,20:4162-4168
    95 Baker .Sequence and characterization of 6 LEA proteins and their genes from cotton Plant Mol.Biol.I998,11:277-291
    96 DureL III. A repeating 11-mers amino acid motif and plant desiccation[J]. Plant. J.1993,363-369
    97宋松泉,陈玲.种子脱水耐性与LEA蛋白[J].植物生理学通讯,1999, Vol.35(5) :424-431
    98 Espeland M, Saboe-Larssenb,Hugbes DW, et al. Late embryogenesis abuants genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress[J]. Plant 1992,2:241-252
    99 Hollung K,Espelund M,JakobsenKS. Another LEA B19 gene (Groupl LEA) from barley containing a single 20 amino acid hydrophilic motif[J]. Plant Molelular. Biology,1994, Vol.25(3):559-564
    100 Stacy RAP, Espelund M. Saeboe Larssen S. Plant Mol,Biol,1995,28:1039-1054
    101 Co1se T J. Dehydrins:aconmonalty in the response of plants to dehydration and low temperature[J]. PhysiolPlant,1997,100:291-296
    102唐先兵,赵恢武,林忠平.植物耐旱基因工程研究进展[J].首都师范大学学报(自然科学版),2003, Vol.23(3):47-51
    103 DureLIII. Common amino acid sequence domains among the LEA proteins of higher plants [J].Plant Mol. Biol.,1998,12:475-486
    104 Hsing, Y IC,Z YChen. Unusual sequences of group3 Lea mRNA inducible by maturation or drying in soybean seeds[J]. P1ant,Mol.Biol.1995,29:863-868
    105 Morris C F, R J Anderberg. Molecular cloning and expression of abscisic--acid responsive genes in embryos of dormant wheat seeds[J].Plant Physiol,1991,95:814-821
    106 Straub P F. Structure and promoter analysis of an ABA and stress regulated barley gene HVA1[J]. Plant Mol.Biol.,1994,26:617-630
    107 Franz G. Molecular and genetic analysis of an embryonic Dc8 from Daucus carota L.[J]. Mol Gen Genet.,1989,218:143-151
    108 Durel. III. Structural motifs in LEA protein[J] .See Ref.1993,(18):91-103
    109 Bray E A. Molecular responses to water deficit[J].Plant Physiol,1993,103:1035-1040
    110 Maitra N,Gushman J C. Isolation and characterizeation of a drought inducedsoybeancDNA encoding a D95 family late-embryogenesis-abundant protein..Plant Physiology.1994,Vol.106(2):805-806
    111 Chandler P M,Robertson. Metal.Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev Plant physiol plant Mol.Biol.,1994,4:113-141
    112 Shen Q. Hormone response complex of a novel abscisic acid and cycloheximide inducible barley gene J. Biol. Chem.1993. 268:23652-23660
    113 Deping-Xu. Expression of a late embryogenesis abundant protein gene,Hval,from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. plant physiol,1996,110: 249-257
    114陈新建,陈占宽,刘国顺,刘鸿先.植物对水分胁迫响应的分子机制与抗逆基因工程的研究进展[J].热带亚热带植物学报,2000, Vol.8(1) :81-90
    115何军贤,傅家瑞.种子LEA蛋白的研究进展.植物生理学通讯,1996,32 (4): 241-246
    116 Lane BG.cellular desiccation and germination of seed embryos[J]. FASEB J. 1991,5:2893
    117 Striver K,Mundy J. Gene expression in response to abscisicacid and osmotic stress[J]. plant Cell,1990,2:503
    118王忠华,李旭晨,夏英武.作物抗旱的作用机制及其基因工程改良研究进展[J].生物技术通报,2002:16-19
    119 Mundy J,chug N H. Abscisic acid-responsive cDNA clones isolated from the desiccation一tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes[J]. Plant Physiol,1990,94:1682
    120 Danyluk J,Perron A,Houde M. accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat[J]. Plant cell,1988,10:623-638
    121 QIU Quansheng,WANG Zezhou. Changes of UHN1 expression and subcelluar distributeon in A. delicisoa cells under osmotic stress[J].Science in China, Vol.45(1)2002,2:1-10
    122 Baker j c.Sequence and characterization of 6 LEA protein and their genes from cotton[J]. Plant Mol.Biol,1989,12:475-486
    123 Franz G. Molecular and genetic analysis of an embryonic,DC8 from Daucus carota L[J]. Plant Mol Gen Genet,1989,218:143-151
    124刘强,张勇.植物转录因子的结构与调控作用[J].科学通报, 2000, 45(6): 561-566
    125 Jack K,Brian Caster. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proc Natl Acad Sci USA,1997, 94:7076-7081
    126 Mark D.,Kazuhiko Yamasaki. A novel mode of DNA recognition by a-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA[J]. EMBO J,1998,17:5484-5496
    127 Sakuma Y., Liu Q. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible geneexpression [J]. Biochemical and Biophysical Research Communications,2002, 290:998-1009
    128 Kagaya M., Ohmiya K. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J].Nucleic Acids Res,1999,27:470-478
    129 Zhou J., Tang X., Martin GB. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogeneses-related genes[J]. EMBO J,1997,16:3207-3218
    130 Ohme-Tagagi M., Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsiive element[J]. Plant Cell,1995,7:173-182
    131 Riechmann J L., Meyerowitz EM. The AP2/EREBP family of plant transcription factors[J]. Biol Chem,1998,379:633-646
    132 Chinnusamy V., Ohta M. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development, 2003, 17: 1043-1054
    133 Xiong L M., Zhu J K. Molecular and genetic aspects of plant responses to osmotic stress[J]. Plant Cell Environ,2002,25:131-139
    134 Shin R., Park J. Ectopic expression of Tsi 1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens[J]. Mol Plant Microbe Interact, 2002,15:983-989
    135 Kim Y J., Lin N C., Martin GB. Identification of G-box sequence as an essential element for methyl jasmonate response of potato proteinase inhibitor promoter[J]. Plant Physiol,1992,99:627-631
    136 Menkens A E., Schindler U.,Cashmor A.R.The G-box: A ubiquitous regulatory DNA element inplants bound by the GBF family of bZIP proteins[J]. Trends Biochem Sci,1995,20:506-510
    137 Meissner R C, Jin H. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes[J]. Plant Cell ,1999,25: 1827-1840
    138 Kranz H D. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidoposis thaliana[J].Plant J,1998,16:263-276
    139 Martin C., Paz-Ares J. MYB transcriptome of Arabidopsis thaliana during systemic acquired resistance[J]. Nat Genet,1997,13:67-73.
    140 Abe H, Urao T. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell, 2003, 15:63-78
    141 Shinozaki K., Yamaguchi-Shinozaki K.,Seki M. Regulatory network of gene expression in the drought and cold stress responses[J]. Curr Opinion Plant Biol, 2003,6: 410-417
    142 Yamaguchi-Shinozaki K., Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J]. Trends Plant Sci. 2005, Vol.10(2):88-94
    143 Kasuga M., Liu Q. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor[J]. Nature biotechnology,1999,17:287-291
    144 Price A M., Atherton NM., Hendry GAF. Plants under drought-stress generate activated oxygen[J].Free Rad Res Commun,1989, 8:61-66
    145 Moran J F, Becana M. Drought induces oxidative stress in pea plants[J].Planta,1994,194:346-352.
    146 Mittler R . Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci,2002, 7:405-410
    147 Ishizaki Nishizawa. Low-temperature resistance of higher plant is significantly enchanted by a nonspecific cyanobacterial dessaturase[J]. Nat Biotechnol, 1996, 14:1003-1009
    148 Bowler C, Van Montagu M. Superoxide dismutases and stress tolerance[J]. Annu Rev Plant Physiol Plant Mol Biol,1992,43:83-116
    149 Noctor G., Foyer C. Ascorbate and glutathione: keeping active oxygen under control[J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279
    150 Van Rensburg L, Kruger G H J. J Plant Physiol,1994,143 :730-737
    151 Tepperman J M , Dunsmuir P. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity[J]. Plant Mol Biol,1990, Vol.14(4):501-511
    152 Gupta A S, Heinen J L. Increased resistance to oxidation stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase[J]. Proc Natl Acad Sci USA,1993, Vol.90(4):1629-1633
    153 Bowler C, Slooten L. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants[J].EMBO Journal,1991, Vol.10(7):1723-1732
    154 Camp W Van, Capiau K. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts[J]. Plant Physiol,1996,vol.112(4):1703-1714
    155 McKersie B D , Bowley S R. Winter survival of transgenic alfalfa overexpressing superoxide dismutase[J]. Plant Physiology,1999, Vol.119(3):839-847
    156 McKersie B D, Chen Y, Debens M. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.) [J]. Plant Physiology, 1993,Vol.103(4):1155-1163
    157 McKersie B D , Bowley S R. Water-deficit tolerance and field performance of transgenic alfalfa overexpression superoxide dismutase[J]. Plant Physiology, 1996, Vol.111(4):1177-1181
    158 Roxas V P, Smith R K Jr. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress[J]. Nature Biotechnol,1997, Vol.15(10):988-991
    159 Deak M, Horvath G V. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens[J]. Nature Biotechnol, 1999, Vol.17(2):192-196
    160钟军,李询,官春云.基因克隆技术的研究进展[J].生命科学研究,2002,6(4):148-152
    161 Sower E, Q uattrocchio F. A general methed to isolate genes tagged by a high copy number transposable element. The Plant Journal,1995, Vol.7(4): 667-685
    162刘耀光.对发展克隆技术的伦理学思考[J].湖南医科大学学报(社会科学版), 1999(01):40-45
    163 Fray M, Stettner C, Gierl A. A general method for gene isolation in tagging approaches:amplipcation of insertion mutagenised sites(AIMS) [J].The Plant Journal. 1998,13(5):712-717
    164 Tanksley S.D., Ganal M.W. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes[J].Trends Genet.,1995, Vol.11(2):63-68
    165 Sarma R N ,Fish L ,Gill B S. Physical characterization of the homologous groups chromosome of wheat in terms of rice linkage blocks , and physical mapping of some important genes[J]. Gemone,2000,43:191-198
    166王石平.用同源序列的染色体定位寻找水稻抗病基因DNA片段[J].植物学报,1998,40(1) :42-45
    167黄烈健.玉米抗病相关侯选基因DNA片段克隆[J].中国农业科学,2000,23(增刊):141-146
    168 Lamar H R.Y-encoded,species-specific DNA in the mice :envidence that the Vchormosme exists in two polymorphic forms in hy2brid strains[J]. Cell,1984,37:171-177
    169 Liang P , Paradee A B. Differential display of eukaryotic messrnger RNA by means of the polymerase chain reaction[J]. Science,1992,257:967-970
    170 Sang J, Thompson N J. An efficient procedure for obtaining long cDNA clones fromphage library screening[J]. Biotechnique,1994,17:447-451
    171 Lisitsyn N , Wigler M. Cloning the difference between two complex genomes[J]. Science,1993,259:946-951
    172 Straus D, Ausubel F M. Genomic subtraction for cloning DNA corresponding to deletion mutations[J]. Proc Natl Acad Sci USA,1990,87:1889-1893
    173 Kangd C, France R L. Reciprocal subtraction differential RNA display : an efficient rapid procedure for isolation differential expressed gene sequences [J]. Proc Natl Acad Sci USA,1998,95(23):13788-13793
    174 Okano M, Xie S P. Cloning and characterization of family of novel mammalianDNA(cytosine25) methytransferases[J]. Nature Genetics,1998, Vol.19(3):219-220
    175田芳.运用生物信息发快速获得与肿瘤基因同源的EST及其新基因克隆的策略[J].生命科学,2000,12(2):72-75
    176 Dymock C N. A higher plant seven transmemberance receptor that influences sensitivity to cytokines[J]. Current Biology,1998, Vol.8(16):315-324
    177郭本兆.中国植物志[M].北京:科技出版社,1987, Vol.9(3):7-119
    178李立会,董玉琛.冰草属研究进展[J].遗传,1993, Vol.15(1):45-48
    179郑殿升.中国农业生物多样性保护与可持续利用现状调研报告[R].北京:气象出版社,2000
    180张众,师文贵,逯晓萍.蒙古冰草研究概况[J].草业科学2004,07:459-465
    181云锦凤,米福贵.冰草属牧草的种类与分布[J].中国草地,1989(3):14-17
    182高卫华,云锦凤等.冰草属牧草营养器官解剖学研究[J].内蒙古草业,1990(4):19-22
    183于卓,SAIGASuguru.小麦族10种禾草叶片可消化性及矿物质含量的差异[J].草地学报,2002(1):1-6
    184戚秋慧.内蒙古典型草原禾本科牧草生态适应综合评价[J].草地学报,1998(2):133-138
    185云锦凤,米福贵.冰草种子的萌发、生长发育及其开花生物学[J].中国草地,1989(4):16-21
    186云锦凤,米福贵.干旱地区一种优良禾草—蒙古冰草[J].内蒙古草业,1990(2):70-71
    187章中,王晓江,赵文义等.荒漠草原草牧场防护林营造及提高草场生产力的研究[J].内蒙古林业科技,1994(3):1-9
    188安渊,王育清.沙地草场补播技术及其渗透效益研究[J].草地学报,1997(1):33-41
    189海棠,云锦凤等.干旱地区优良牧草引种种植试验的研究[J].内蒙古农业大学学报(自然科学版),2001,vol.22(2):41-43
    190刘文清,王国贤.沙化草地旱作条件下混播人工草地的试验研究[J].中国草地,2003(2):69-71
    191云锦凤,李瑞芬.冰草的远缘杂交及杂种分析[J].草地学报,1997, Vol.5(4):1-17
    192云锦凤,于卓,郭立华.蒙古冰草染色体加倍的研究[J].《中国农学通讯增刊——二十世纪草业科学展望》,2001年,P315-316
    193云锦凤,斯琴高娃.蒙古冰草B染色体的研究[J].内蒙古农业大学学报(自然科学版),1996 ( 1 ) :14-17
    194解新明,云锦凤.蒙古冰草遗传多样性的RAPD分析(英文)[J].西北植物学报,2002(1):56-62
    195解新明,云锦凤等.蒙古冰草遗传多样性的等位酶分析[J].草业科学,2001(6):6-11
    196李景欣,云锦凤.冰草的遗传多样性研究[J].中国草地,2004, Vol.26(6):12-15
    197王荣华.渗透胁迫对蒙古冰草幼苗保护酶系统的影响[J].植物学通报,2003, Vol.20(3):33-335
    198全国牧草品种审定委员会编.中国牧草登记品种集(修订版) [M].中国农业大学出版社,1999: 3-4
    199包金刚.蒙农1号蒙古冰草生物学特性及生产性能的研究[D].内蒙古农业大学硕士学位论文,2006
    200 Yue一ie C,Hsing,Zuei一ying C, et al. Unusual sequence of groups 3 Lea mRNA inducible by maturation or drying in soybean seeds[J]. Plant Mol. Biol, 1999, 29:863-868.
    201马媛媛.抗旱基因LEA的克隆及其序列解析[D].东北林业大学硕士论文,2003,1-41
    202赖钟雄,张妙霞,李冬梅.植物LEA蛋白与Lea基因表达.福建农林大学学报(自然科学版)2002,31(4):463-466.
    203 Ried JL, Walker-Simmons MK. Group 3 late embryogenesis abundant proteins indesiccation-tolerant seedlings of wheat (Triticum aestivum L.),Plant Physiol, a) 1993,102:125-131
    204 Hong B, Barg R, Ho T-HD. Developmental and organ-specific expression of an a) ABA-and stress-induced protein in barley. Plant Mol. Biol., 1992,18:663-674
    205 Guo S, Kempheus K J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asym-metrically distributed [J]. Cell,1995,81:611-620
    206 Fire A, Xu S. Potent and specific genetic in-terference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391: 806-811
    207 Lipardi C, Wei Q. RNAi as random degradative PCR. siRNA primers convert mRNA intodsRNA that are degraded to generate new siRNAs[J].Cell,2001,107:297-307
    208 Dzitoyeva S, Dimitrijevic N, Manev H. Intra-abdominalinjection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system[J]. Mol Psychiatry,2001, Vol.6(6): 665-670
    209 Ketting R F, Haverkamp T H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helcase and RNase D[J].Cell,1999,99:133-141
    210 Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans [J]. Science, 2001, Vol.293 (5538):2269-2271
    211 Grishok A, Pasquinelli AE. Genes and mechanisms related to RNA interference regulate expres-sion of the small temporal RNAs that control C. elegans developmental timing[J].Cell,2001,106:23-34
    212 Hammond S M, Bernstein E.An RNA-directednuclease mediates post-transcriptional gene silencing in Drosophi-la cells[J].Nature,2000,404:4985-4990.
    213 Wesley S V, Helliwell C A. Construct design for efficient, effective and high-throughput gene silencing in plants[J]. The Plant Journal, 2001, Vol.27(6): 581-590
    214 Sheterline P, Sharrow J C. Actin. New York: Academic Press.1994,Protein Profile
    215 Staiger C J, Schliwa M. Actin localization and function in higher plants[J]. Protoplasma,1987,141:1-12
    216 Firtel R. Multigene family encoding actin and tubulin[J].Cell,1981,24: 6-7
    217 Mange A,Prudhomme J C.Comparison of Bombyx mori and Helicoverpa armigera cytoplasmic actin genes provides clues to the evolution of actin genes in insects[J].Mol Biol Evol,1999, Vol.16(2): 165-172
    218李园莉,江元清.谷子肌动蛋白基因的克隆及序列分析[J].植物学通报,2002, Vol.19(3):310-316
    219周海飞,赵武玲,阎隆飞.玉兰肌动蛋白基因的克隆与序列分析[J].农业生物技术学报,2001, Vol.9(3):274-278
    220杨丽霞,李玲.花生肌动蛋白基因的克隆及序列分析[J],花生学报,2006, Vol.35(4):6-9.
    221伍国强,席杰军,包爱科,等.多浆旱生植物霸王Actin基因片段的克隆及序列分析[J].生物技术通报,2008, Vol.28(2):101-104
    222陈颖,王刚,赵俊霞.高等植物体内的肌动蛋白[J].生物学报,2003, Vol.38(1):13-15
    223戚元成,张慧.植物谷胱甘肽转移酶和盐胁迫[J].山东师范大学学报(自然科学版),2002,02:
    224刘明坤,刘关君.西伯利亚蓼Tau类谷胱甘肽转移酶基因的克隆与表达分析[J].农业生物技术学报,2009,vol.17(1):98-106
    225 Marrs K A.The Functions and Regulation of Glutathione-S-Transferases in Plants[J].Annu Rev Plant Phys Plant Mol Biol,1996,(47):127-158
    226 Cummins I.Purification of Mutiple Glutathione Transferases Involved in Herbicide Detoxification from Wheat Treated With the safener Fenchlo-razole-Ethy [J].Pestic Biochem Physio,1997,(59):35-45
    227 Hayes J D,Mclellan L I.Glutathione and Glutathione-Dependent Enzymes Represent a Co-Ordinately Regulated Defence Against Oxidative Stress[J].Free Radic Res,1999,31(4):273-300
    228 Cummins I.A Role for Glutathione Transferases Functioning As Glutathione Peroxidases in Resistance To Multiple Herbicides in Black-Grass [J].Plant J,1999,(18):285-292
    229 Moons A. Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress induced and differentially salt stress-responsive in rice root [J]. FEBS Letters, 2003, 553: 427-432
    230 Dixon D P, Cummins L, Cole D J and Edwards R. Glutathione-mediated detoxification systems in plants [J]. Current Opinion in Plant Biology, 1998, 1: 258-266
    231 Wilce M C J and Parker M W. Review: Structure and function of glutathione S-transferases [J]. Biochimicaet Biophysica Acta, 1994, 1205: 1-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700