用于波分复用系统中具有平顶陡边响应的光探测器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波分复用(WDM)技术能充分利用光纤的带宽,解决通信网络传输能力不足的问题,具有广阔的发展前景。另外,WDM对网络的扩容升级,实现超高速通信等均具有十分重要的意义。光探测器是WDM解复用接收的关键器件,具有平顶陡边响应的光探测器可以降低WDM波长信道间的串扰,提高对信道光检测的快速性和准确性。本论文的工作就是围绕具有平顶陡边响应的光探测器开展的,取得以下研究成果:
     1、对可变滤波腔长RCE型光探测器进行了研究,研究表明将RCE型光探测器的滤波腔分成两种厚度,选择合适的厚度参数可实现平顶陡边的滤波特性。对双吸收层RCE型光探测器的原理及器件结构进行了分析,与传统的单吸收层RCE探测器相比,具有双吸收层结构的RCE型光探测器量子效率明显提高。
     2、设计了一种具有可变滤波腔长和双吸收层结合的平顶陡边RCE型光探测器。器件结构是采用通过两种厚度的滤波腔,同时结合双吸收层的结构实现了具有高量子效率谱的“平顶陡边”光谱响应,对器件的量子效率进行了仿真和分析,研究了器件的性能受关键参数的影响。理论仿真结果得到,该器件结构的量子效率能达到68%,平顶部分量子效率的平顶起伏度约为0.38%。0.5dB、3dB、20dB带宽分别为0.1nm、0.14nm和1.13nm。该器件具有高量子效率,同时其光谱响应具有良好的平顶陡边特性。
     3、研究了一种电路控制法实现光探测器的平顶陡边光谱响应。此电路由放大器、比较器和与逻辑门组成。具有波长选择特性的光探测器结合此电路可得到光探测器的平顶陡边光谱响应。对电路控制法的工作原理进行了详细分析,并完成电路的设计和制作。
     4、对电路控制法进行了实验验证,一组实验得到的平顶陡边响应范围为1546nm-1549.3nm,0.5dB、3dB、20dB带宽分别为2.76nm、3.29nm和4.58nm;另一组实验得到的平顶陡边响应范围为1554.8nm-1557.6nm,0.5dB、3dB、20dB带宽分别为3.19nm、2.89nm和3.06nm。实验结果验证了该电路控制法可以实现光探测器较好的平顶陡边光谱响应。
Wavelength-division multiplexing which makes full use of fiber bandwidth can solve the transmitting deficiency problem of communication networks, and has wide promising prospect. Besides, in the aspects of network expanding, upgrading and the realization of ultra-high speed communications, WDM also has significant meanings. Photodetector is the key device of wavelength demultiplexing and receiving technology in WDM system. Photodetector with flat-top and steep-edge response can reduce the crosstalk between wavelengths and improve the rapidity and accuracy of channel optical detection. The key content of the paper is on photodetector with flat-top and steep-edge response. The research findings are as follows:
     1、Research on variable filter cavity length (RCE) photodetector indicates that the flat-top and steep-edge response can be realized by the filter cavity with two kinds of lengths and selection of appropriate lenghs. The principle and structure of dual-absorption (RCE) photodetector are discussed. Compared with conventional (RCE) photodetector,dual-absorption (RCE) photodetector has higher quantum efficiency.
     2、A RCE photodetector with flat-top and steep-edge response based on variable filter cavity and dual-absorption structure is designed. The flat-top and steep-edge response with high quantum efficiency is obtained by variable filter cavity with two different lengths and dual-absorption structure. The quantum efficiency and the effection of the critical parameters are analyzed. Simulation results show that the quantum efficiency value in bandpass are about 68%, the extent of flat top is about 0.38%; 0.5dB,3dB, and 20dB bandwidth are 0.1 nm,0.14nm, and 1.13nm respectively. The photodetector has high quantum efficiency, and good flat-top and steep-edge response.
     3、A circuit control method achieving the flat-top steep-edge response of photodetectors is researched. The response is realized using three wavelength selective photodetectors and the circuit which consists of amplifiers、comparators and a AND gate. The work principle of the circuit control method is detailedly analyzed and the design of the circuit is completed.
     4、Experimental verification of the circuit control method is carried out. In group 1, the flat-top steep-edge response is from 1546nm to 1549.3nm and 0.5dB,3dB,20dB bandwidths are 2.76nm,3.29nm, 4.58nm respectively. In group 2, the flat-top steep-edge response is from 1554.8nm to 1557.6nm and 0.5dB,3dB,20dB bandwidths are 3.19nm, 2.89nm,3.06nm respectively. The results of experiments show that the desirable flat-top steep-edge response can be gained.
引文
[1]M. S. Unlii, S. Strite, "Resonant Cavity Enhance Photonic Device", J. Appl. Phys., Vol.78,1995, pp.607-639.
    [2]王兴妍,“长波长可调谐WDM解复用光接收集成器件及其关键制备工艺的研究”[博士学位论文],北京邮电大学,2006
    [3]H. Huang, R. Zhang, Q. Wang, et al., "Wavelength-selective photodetector with integrated vertical taper structure," OFC 2002, Anaheim, USA:OSA,2002, Th GG73.
    [4]P. Kaminow, C. R. Doerr, C. Dragone, et al, "A Wideband All-Optical WDM Network", IEEE Journal on Selected Areas in Communications, 1996,14(5):780-799.
    [5]S.Kawanishi, H. Takara, K. Uchiyama et al, "Tbit/s (160Gb/s 19ch) OTDM /WDM transmission experiment", in OFC 99, paper光探测器1-1.
    [6]韦乐平,“光纤通信系统技术的发展与展望”,电信网技术,2006,11:1-6.
    [7]Kai Liu, Yongqing Huang, Xiaomin Ren, "Theory and experiments of a three-cavity wavelength-selective photodetector" Applied Optics, vol.39, no.24, pp.4263-4269, August 2000
    [8]任晓敏,国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要结构工艺创新与基础研究”申请书,2003
    [9]Y. Zhong, Z. Pan, and L. Li, "A novel Resonant cavity enhanced (RCE) Photodetector with flat-top and steep-edge response," Chinese Journal of Lasers, 2002,4:347-350.
    [10]C. Huang, H. Huang, and W. Wang, "Design of a tunable InP-based long wavelength photodetector with flat-top and steep-edge response," Semiconductor Optical Electronics,2005,2:100-104.
    [11]X. Ren, and J. C. Campbell, "Theory and simulations of tunable two-mirror and three-mirror resonant-cavity photodetectors with a built-in liquid-crystal layer," IEEE Quantum Electron., November 1996,32:1903-1915.
    [12]X. Ren, and J. C. Campbell, "A novel structure:one-mirror-inclined three-mirror-cavity high performance photodetectors," Technical Proceedings: International Topic Meeting on Photoelectronics (ITMPE'97), Beijing:OSC, 1997, pp.81-84.
    [13]Hui Huang, Yongqing Huang, Xingyan Wang, et al. "Long Wavelength Resonant Cavity Photodetector Based on InP/Air-Gap Bragg Reflectors". IEEE PHOTONICS TECHNOLOGY LETTERS,2004,16(1):245-247
    [14]Jing Di, Yongqing Huang, Hui Huang, Xiaomin Ren, Qi Wang. A Variable Cavity-Length Resonant Cavity Enhanced (RCE) Photodetector with Flat-Top and Steep-Edge Response.8th ICOCN, Sep.2009
    [1]Mukherjee B. "WDM optical communication networks:progress and challenges", IEEE Journal on Selected Areas in Communications,,2000,18(10):1810-1824
    [2]www.c114.net
    [3]韦乐平.光纤通信系统技术的发展与展望.电信网技术,2006,(11):1-6
    [4]黄辉,《WDM光接收机核心器件前沿技术研究》[博士学位论文],北京邮电大学,2001.
    [5]UnluM. S. and Strite S., "Resonant cavity enhanced photonic devices", Journal of Applied Physics, vol.78, No.2,1995, pp.607-639.
    [6]M. Born and E. Wolf, "Principles of Optics",7th ed., Cambridge University Press, New York,1999.
    [7]J. Stone and L. W. Stulz, "Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium and small free spectral ranges", Electron. Lett., Vol.23,1987, pp.781-783.
    [8]Pei Luo, Shanguo Huang, Bin Li, et al, "Adaptive routing and wavelength assignment algorithms for hierarchical architecture in ASON", IEEE International Conference on Network Infrastructure and Digital Content,2009, Nov.2009, pp. 461-465.
    [9]N. E. J. Hunt, E. F. Schubert, and G. J. Zydzik, "Resonant-cavity pin Photodetector utilizing an electron-beam evaporated Si/SiO2 microcavity", Appl. Phys. Lett.,1993,63(3):391.
    [10]J. V. Hryniewicz, P. P. Absil, B. E. Little, et.al, "Higher order filter response in coupled microring resonators" IEEE Photonics Technology Letters, vol.12,2000, pp.320-322.
    [11]C. Huang, H. Huang, and W. Wang, "Design of a tunable InP-based long wavelength photodetector with flat-top and steep-edge response," Semiconductor Optical Electronics,2005,2:100-104.
    [12]Y. Zhong, Z. Pan, and L. Li, "A novel Resonant cavity enhanced (RCE) Photodetector with flat-top and steep-edge response," Chinese Journal of Lasers, 2002,4:347-350.
    [13]B. M. Onat, M. Gokkavas, E Ozbay, et al., "100-GHz Resonant Cavity Enhanced Schottky Photodiodes", IEEE Photonics Technol. Lett.,1998,10(5):707.
    [14]E. Ozbay, M. S Islam, B Onat, et al., "Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes", IEEE Photonics Technol. Lett.,1997, 9(5):672.
    [15]M. Gokkavas, B. M. Onat, etal., "Ultrafast Resonant Cavity Enhanced Schottky Photodiodes", Proc. IEEE Lasers and Electroptics Soc.,1997 annu.Meet., San Fransisco Ca,1997,1:160-161
    [16]Xiaomin Ren, Joe C. Campbell, "Theory and Simulations of Tunable Two-Mirror and Three-Mirror Resonant-Cavity Photodetectors with a Built-In Liquid-Crystal Layer", IEEE J Quantum Elect.,1996,32(11):1903-1915
    [17]王兴妍,黄辉,王琦等,“新型光电探测器的研究”,通信学报,2004,25(12):124-128
    [18]Yuanfang Qin, yongqing Huang, "Parallel-cascaded Micro-ring Resonators Waveguide Photodetector with Flat-Top and Steep-Edge Respons", SPIE/COS Photonics Asia,2010.
    [19]Yuanfang Qin, yongqing Huang, "Flat-top and Steep-edge Photodetector with Cascaded Micro-ring Resonators", International Nano-Optoelectronic Workshop, 2010.
    [20]Jing Di, Yongqing Huang, Xiaofeng Duan, Hailan Song, Xiaomin Ren, Hui Huang, Qi Wang. A Novel Resonant Cavity Enhanced (RCE) Photodetector with Flat-top and Steep-edge Response. Optoelectronics Letters.
    [21]Xu Zhang, "Flat-top steep-edge photodetector with cascaded grating structure," APPLIED OPTICS,48,6760-6764 (2009).
    [22]Frank tong, "Multiwavelength Recievers for WDM Systems", IEEE Communications Magazine, vol.36, no.12, pp.42-49,1998
    [23]Michael, S.Borella, Jason P.Jue, "Optical Components for WDM Lightwave Networks", Proceedings of the IEEE, vol.85, no.8, pp.1274-1307,1998
    [24]Sergio Tsuda., Valeria L., da Silva, "Transmission of 80x10 Gbit/s WDM channels with 50 GHz spacing over 500 km of LEAF fiber" OFC.TuJ6-1.2000
    [25]C.A.Brackett, A.S.Acampora, et al, "Scalable Multiwavelength Multihop Optical Network:A proposal for All-Optical Networks", Journal of Lightwave Technology, vol.11,1993, pp736-752
    [26]Krishna, M.Sivalingam, et al, "Lightweight Media Access Protocol for a WDM-Based Distributed Shared Memory System", INFOCOM'96, Fifteenth Annual Joint Conference, vol.3, pp.946-953
    [27]徐玉峰,黄永清,黄辉等,‘'1.3μmInGaNAs/GaAs多量子阱“一镜斜置三镜 腔”光探测器”,通信学报,2009年1月,pp.12-15.
    [28]武鹏,黄辉,黄永清,任晓敏,“新型的波长选择波导光电探测器的研究”,光电子·激光[J],第16卷,第2期,2002年2月,pp.129-134.
    [29]陈海波,黄辉,黄永清,“基于微型谐振腔的环形光探测器设计”,光电子·激光,第19卷,第3期,2008年3月,pp.312-314.
    [30]M.Selim Unlu,Samuei Strite. Resonant cavity enhanced photonic devices. J.Appl. Phys. July 1995,78(2).
    [31]Kai Liu, Yongqing Huang, Xiaomin Ren, "Exact numerical analysis of Resonant-Cavity-Enhanced-Photodetectors with matrix simulation", SPIE's International Symposium on Photonics East'98,1-6 Nov.1998 at Boston, MA USA, Vol.3532, pp.197-202.
    [32]X. Ren, and J. C. Campbell, "A novel structure:one-mirror-inclined three-mirror-cavity high performance photodetectors," Technical Proceedings: International Topic Meeting on Photoelectronics (ITMPE'97), Beijing:OSC, 1997, pp.81-84.
    [33]H. Huang, R. Zhang, Q. Wang, et al., "Wavelength-selective photodetector with integrated vertical taper structure," OFC 2002, Anaheim, USA:OSA,2002, Th GG73.
    [34]Kazutoshi Kato. Ultra-Band/High-Frequency Photodetectors. IEEE Tranctions On Microwave Theory and Techniques. July 1999, Vol.47.
    [35]Dentai A G, Kuchibhotla R, Campbell J C, et al. "High quantum efficiency,. long wavelength InP/InGaAs microcavity Photodiode", Electron. Lett, Vol.27, No.23, 1991, pp.2125-2127.
    [36]Hunt N E J, Schubert E F, Zydzik G J, "Resonant-cavity pin photodetector utilizing an electron-beam evaporated Si/SiO2 microcavity", Appl. Phys. Lett., Vol.63, No.3,1993, pp.391-393.
    [37]Gokkavas M, Onat B M, "Design and optimization of high-speed RCE Schottky photodiodes", IEEE Journal of Quantum Electronics, Vol.35, No.2,1999, pp. 208-215.
    [38]王兴妍,黄辉,王琦.“基于InP/空气隙DBR的长波长RCE光探测器的实验研究”,光通信技术2003年12期。
    [39]周震,杨晓红,韩勤," GaAs/Ga InNAs多量子阱谐振腔增强型长波长光探测器”,电子·激光,2005年02期。
    [40]黄辉,王琦,雷蕾,黄永清,任晓敏,“长波长、高灵敏度的InP/InGaAs谐振 腔光电探测器”,光电子·激光,2002年,03期。
    [41]孙览江,黄辉,吕吉贺,蔡世伟,“单片集成GaAs基长波长谐振腔光探测器”半导体技术,2009年,05期。
    [42]徐玉峰,《基于若干新型功能微结构的解复用接收器件的理论与实验研究》,[博士学位论文],北京邮电大学,2008.
    [43]王琦,黄辉,王兴妍,任爱光,武鹏,黄成,黄永清,任晓敏.InP基一镜斜置三镜腔型光电探测器理论分析及实验研究[J].中国激光,2005,32(8):1045-1049
    [44]徐玉峰,黄辉,黄永清,“基于InGaNAs/GaAs多量子阱结构的GaAs基“一镜斜置三镜腔”光探测器”,光电子·激光,2009年,01期。
    [45]邸菁,《用于WDM系统的新型平顶陡边光探测器的研究》,硕士学位论文,北京邮电大学,2010.
    [1]X. Cai, Y. Zuo, and Q. Wang, "Fabry-Perot thermo-optical tunable filter of flat-top response," Optoelectron. Laser, vol.10, pp.1144-1148,2004.
    [2]Y. Zuo, X. Cai, and R. Mao, "A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry-Perot cavity structure," Chinese Journal of Semiconductors, vol.11, pp.2218-2222,2005.
    [3]Jing Di, Yongqing Huang, Hui Huang, Xiaomin Ren, Qi Wang. A Variable Cavity-Length Resonant Cavity Enhanced (RCE) Photodetector with Flat-Top and Steep-Edge Response.8th ICOCN, Sep.2009.
    [4]任晓敏,黄永清,刘凯,“一种新型高性能光电探测器结构的研究”,光电子器件,1998年8月
    [5]Kishino K, Unlii M.S, Chyi J, et al., "Resonant cavity-enhanced (RCE) photodetectors",Quantum Electron, Volume 27, Issue 8, Aug.1991 Page(s): 2025-2034
    [6]傅英,陆卫.半导体量子器件物理.北京:科学出版社,2005,230-232
    [7]M.S. Unlii and S.Strite, "Resonant cavity enhanced photonic devices", Appl.Phys., vol.78,1995:607-639
    [8]Rajkumar Sankaralingam and Patrick Fay. "Drift-Enhanced Dual-Absorption PIN Photodiodes".IEEE Photonics Thchnology Letter, Vol.17,N0.7, July 2005:1513-1515
    [9]Rajkumar Sankaralingam and Patrick Fay.High "Bandwidth-Efficiency Long Wavelength PIN Photodiodes".2005 International Conference on Indium Phosphide and Related Materials.
    [10]P. Bhattacharya, Semiconductor Optoelectronic Devices,2nd ed:Pearson Education,1997.
    [11]K. Brennan, "Theory of the steady-state hole drift velocity in InGaAs", Appl. Phys. Lett., vol.51, no.13, pp.995-997,1987.
    [12]T. H.Windhorn, L.W. Cook, M. A. Haase, and G. E. Stillman, "Electrontransport in InP at high electric-fields," Appl. Phys. Lett., vol.42, no.8,pp.725-727,1983.
    [13]M.Casalino, L.Sirleto, L.Moretti, et al. "Silicon resonant cavity enhanced photodetectors based on internal photoemission effect". Proc.of SPIE,2007, Vol.6619,311-314
    [14]任晓敏,刘正义,黄永清等,“谐振器增强型光探测器:沿革与现状”,高技术通讯,2000年3月
    [15]F.J. Effenberger and A.M. Joshi, "Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector", Lightw. Technol., vol.14, no,8, pp.1859-1864, Aug.1996
    [16]Peng Fu, Yongqing Huang, Xiaofeng Duan, Xiaomin Ren, Hui Huang, Qi Wang. "A novel dual-absorption resonant cavity enhanced photodetectors", ACP2009, 7613-18
    [17]魏光辉.矩阵光学.第四版.兵器工业出版社.1995:210-244.
    [18]JOHN S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys Rev Lett,1987,58 (23):486-489.
    [19]陈慰宗,付灵丽.单层掺杂的一维光子晶体光子杂质模的特性.西北大学学报(自然科学网络版).卷2.第11期.2004年11月:1-5.
    [20]沈小明,王旭东.准周期结构一维光子晶体的透射谱.江苏工业学院学报.卷17.第1期.2005年3月:8-11.
    [21]郦炬烽,袁一方.用于光纤通信系统的F-P可调谐滤波器.激光与光电子学进展.卷43.第2期.2006年2月:22-26.
    [22]Franz J H,Jain V K. Optical communications components and systems. New Delhi:Narosa Publishing House.2000.
    [23]Jing Di, Yongqing Huang, Hui Huang, Xiaomin Ren, Qi Wang. A Variable Cavity-Length Resonant Cavity Enhanced (RCE) Photodetector with Flat-Top and Steep-Edge Response.8th ICOCN, Sep.2009.
    [24]谢三先,黄永清,刘庆,段小峰,王伟,黄辉,任晓敏.新型双吸收层光探测器量子效率的理论分析.激光与光电子学进展,2010,48:020402-1-020402-3
    [25]Kai Liu, Yongqing Huang, Xiaomin Ren, "Exact numerical analysis of Resonant-Cavity-Enhanced-Photodetectors with matrix simula-tion", SPIE's International Symposium on Photonics East'98,1-6 Nov.1998 at Boston, MA USA, Vol.3532, pp.197-202.
    [26]刘凯,黄永清,任晓敏,“考虑不同层材料折射率差时谐振腔增强型光电探测器分析”,光电子*激光,Vo1.9,No.5,Oct.1998,pp.360-363。
    [27]付鹏,《高性能谐振腔增强型光探测器及具有波长解复用功能的光探测器阵列的研究》”[硕士学位论文],北京邮电大学,2010.
    [28]邸菁,《用于WDM系统的新型平顶陡边光探测器的研究》[硕士学位论文],北京邮电大学.2010.
    [1]X. Cai, Y. Zuo, and Q. Wang, "Fabry-Perot thermo-optical tunable filter of flat-top response," Optoelectron. Laser, vol.10, pp.1144-1148,2004.
    [2]Y. Zuo, X. Cai, and R. Mao, "A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry-Perot cavity structure," Chinese Journal of Semiconductors, vol.11, pp.2218-2222,2005.
    [3]M. Born, E. Wolf. Principles of Optics[M]. Oxford:Pergamon Press,1991. 790-582.
    [4]Yan Jixiang, Wei Guanghui, Ha Liuzhu etal. Matrix Optics[M]. Ordnance Industry Press, Beijing:1995:210-244.
    [5]Y. Zhong, Z. Pan, and L. Li, "A novel Resonant cavity enhanced (RCE) Photodetector with flat-top and steep-edge response," Chinese Journal of Lasers, vol.4, pp.347-350,2002.
    [6]C. Huang, H. Huang, and W. Wang, "Design of a tunable InP-based long wavelength photodetector with flat-top and steep-edge response," Semiconductor Optical Electronics, vol.2, pp.100-104,2005.
    [7]bacA.Chin and T.Y.Chang, "Multilayer Reflector by Molecular Beam Epitaxy for Resonant Enhanced Absorption in Thin High-speed Detector", Vac.Sct.Technol., Vol.8.1990:339-342
    [8]S.S.Murtaza, H.Nie,J.C.Campell, and J.C.Bean, et al, "Short-wavelength, High speed Si-based resonant-cavity photodetectors", IEEE Photon,Technol, Lett., Vol.8,1966:927-929.
    [9]Rajkumar Sankaralingam and Patrick Fay, "Drift-Enhanced Dual-Absorption PIN Photodiodes",IEEE Photonics Thchnology Letter, Vol.17,N0.7, July 2005:1513-1515
    [10]Rajkumar Sankaralingam and Patrick Fay, "High Bandwidth-Efficiency Long Wavelength PIN Photodiodes",2005 International Conference on Indium Phosphide and Related Materials,152-155.
    [11]F.J.Effenberger and A.M.Joshi. Ultrafast, "Dual-depletion Region,InGaAs/InP p-i-n detector", Lightw.Technol.,Vol.14,No.8,Aug.1996:1859-1864
    [12]黄永清,黄辉,任晓敏,“谐振腔增强型光探测器的高速响应特性研究”,中国激光,2004年11月
    [13]Jing Di, Yongqing Huang, Hui Huang, Xiaomin Ren, Qi Wang. A Variable Cavity-Length Resonant Cavity Enhanced (RCE) Photodetector with Flat-Top and Steep-Edge Response.8th ICOCN, Sep.2009.
    [14]M.S.Unlu,K.Kishino,H.J.Liaw,and H.morkos, "A theoretical study of cavity-enhanced photodetectors with Ge and Si active regions", Appl.Phys., Vol.71,No.8,1992:4049-4058
    [15]Joseph A. Jervase and Yousef zebda, " Characteristic Analysis of Resonant Cavity Enhanced (RCE) Photodetectors", IEEE Journal of Quantum Electronics. Vol.34. No.7,July 1998:1129-1134
    [16]Hsin-Han Tung and Chi en-Ping Lee, "Design of a Resonant-Cavity-Enhanced Photodetector for High-speed Applications", IEEE Journal of Quantum Electronics.Vol.33,No.5,May 1997:753-760
    [17]黄永清,黄辉,任晓敏,“谐振腔增强型光探测器的高速响应特性研究”,中国激光,2004年11月
    [18]谢三先,黄永清,刘庆,段小峰,王伟,黄辉,任晓敏.新型双吸收层光探测器量子效率的理论分析.激光与光电子学进展,2010,48:020402-1-020402-3
    [19]Kai Liu, Yongqing Huang, Xiaomin Ren, "Exact numerical analysis of Resonant-Cavity-Enhanced-Photodetectors with matrix simula-tion", SPIE's International Symposium on Photonics East'98,1-6 Nov.1998 at Boston, MA USA, Vol.3532, pp.197-202.
    [20]刘凯,黄永清,任晓敏,“考虑不同层材料折射率差时谐振腔增强型光电探测器分析”,光电子*激光,Vol.9,No.5,Oct.1998,pp.360-363。
    [1]www.51mculab.com
    [2]John F.Wakerly.数字设计原理与实践机械工业出版社.2010.
    [3]Ren Xiaomin, Campbell J C., "A novel structure:one-mirror-inclined three-mirror-cavity high performance photodetectors," Technical Proceedings: International Topic Meeting on Photoelectronics (ITMPE'97), Beijing:OSC, 81-84(1997).
    [4]H. Huang, R. Zhang, Q. Wang, et al., "Wavelength-selective photodetector with integrated vertical taper structure," OFC,Anaheim, USA:OSA, (2002).
    [5]Y. Zhong, Z. Pan, and L. Li, "A novel Resonant cavity enhanced (RCE) Photodetector with flat-top and steep-edge response," Chinese Journal of Lasers,4,347-350(2002).
    [6]H. Cheng, H. Hui, W. Wenjuan, and H. Yongqing, "Design of a tunable InP-based long wavelength photodetectorwith flattop and steep-edge response," Semiconductor Opt.26,100-104(2005).
    [7]Jing Di, Yongqing Huang, Xiaofeng Duan, Hailan Song, Xiaomin Ren, Hui Huang, Qi Wang. A Novel Resonant Cavity Enhanced (RCE) Photodetector with Flat-top and Steep-edge Response. Optoelectronics Letters.
    [8]Xu Zhang, "Flat-top steep-edge photodetector with cascaded grating structure," APPLIED OPTICS,48,6760-6764 (2009).
    [9]Jing Di, Yongqing Huang, Hui Huang, Xiaomin Ren, Qi Wang. A Variable Cavity-Length Resonant Cavity Enhanced (RCE) Photodetector with Flat-Top and Steep-Edge Response.8th ICOCN, Sep.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700