基于DSP的气动伺服控制器软件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动技术与电子技术的有机结合,使得气动伺服技术产生了实质性的飞跃。数字信号处理器即DSP以其性价比高、体积小、运算速度快等优点,很大程度上拓展了数字信号处理技术在自动控制领域的应用。目前,基于DSP的气动伺服技术大多局限于实验阶段,很少应用于工业化自动化生产中。
     针对气动伺服系统的非线性强、固有频率低、刚度低、阻尼小等特点,提出了气动伺服控制器软件的设计要求。以合众达公司的DPS2812M开发板为硬件基础,完成了A/D、D/A、以太网、EEPROM、液晶显示器、键盘、FLASH、控制算法等模块的程序设计。
     提出了用于气动伺服系统的上下位机和控制器独立控制两种控制模式,完成了相应控制器软件的开发。在上下位机模式中,上下位机间通过以太网进行通信。使用LABVIEW编写了上位机程序,实现了在上位机设置系统参数和观察系统运行情况的功能;采用C语言开发了下位机程序,实现控制器对系统的参数设置、自动控制和手动控制等功能。在控制器独立控制模式中,采用C语言开发了控制器程序,实现了键盘控制和LCD显示功能,使控制器直接通过键盘操作就可以完成控制功能。
     搭建了气动伺服控制器测试实验台,运用数字PID算法,分别以阶跃、斜坡和正弦为输入信号对两种模式下的控制器性能进行了实验研究,实验结果表明设计的两套控制器软件均实现了较完备的控制功能,并达到了良好的控制效果。两套控制器软件在运行时间上尚有较大剩余,可以通过函数接口添加复杂的控制算法。
The organic integration pneumatic technology and electronic technology, motivates the pneumatic servo technology to develop greatly. Digital signal processor, DSP for short, expands the DSP’s application in the automatic controlling area greatly by its cost-effectiveness, small size and fast operation. At present, many of these studies limited to the experimental stage, and also rarely used in the production of industrial automation.
     The requirement for designing the pneumatic servo processor is brought forward in allusion to its non-linearity, low inherent frequency, low stiffness and small damp. This paper designs a DSP-based pneumatic-servo controller software which take DPS2812M developing board as the hardware foundation. (DPS2812M developing board is produced by HeZhongDa Company) This design fulfills the procedure design of modes of the A/D, D/A, Ethernet, EEPROM, LCD monitors, keyboards, FLASH, controlling arithmetic, etc.
     This paper brings forward two kinds of controlling modes which will be applied to the upper-subordinate computer and the controller separately and independently, meanwhile, it fulfills the development of the correspondent controller software. In the upper-subordinate computer mode, their communication is carried through by the Ethernet. It compiles the upper computer program by LABVIEW, and enables the systematic parameters to be set on the upper computer and to observe the system’s running conditions. It compiles the subordinate computer by C language, and enables the controller to set up the parameters of the system, and to make the automatic control and manual control come true. For the controller, we adopt C language to develop the controller program, and make the function of keyboard-control and LCD display come true. In that case, the controller can carry out the controlling function directly only by operating the keyboard.
     The experiment platform is set up for pneumatic servo processor tests. Exert the digital PID arithmetic, taking the phase step, slope and sine as the input signals to do the experiment research on the two patterns of controller. The result of the experiments shows that the controller softwares, both of which have realized more complete controlling function, and obtained excellent controlling effect. There is surplus for the operating time of the two controlling softwares, so we can add the complicated arithmetic by customer control routing.
引文
1唐国义.基于DSP的气动伺服控制系统的设计与研究.重庆大学硕士学位论文. 2008:1~2
    2罗明鹏.基于TMS320F2812的气动伺服控制器的研制.哈尔滨工业大学硕士学位论文. 2006:1~3
    3周璇,王志明.气动执行器位置伺服控制研究.现代机械. 2009,(2):63~65
    4李明.电气机械手的电气-气压伺服系统设计.山西冶金. 2008,31(6):50~52
    5柏艳红,李小宁.一种气动位置伺服系统的辨识建模方法.南京理工大学学报. 2007,31(6):711~714
    6 Qing hai Yang, Yukio Kawakami, Sunao Kawai. Position Control of a Pneumatic Cylinder with Friction Compensation. Journal of the Japan Hydraulics & Pneumatics Society. 1997,28(2):112~115
    7 Wang J.et al. Modelling Study Analysis and Robust Servo Control of Pneumatic Cylinder Actuator System. IEE Proceedings on Control Theroy and Applications, 2001,148(1):34~41
    8 Suyan He, Hongwu Zhang and Xingsi Li. Solving frictional contact problems by two aggregate-function-based algorithms. Acta Mechanica Sinica. 2005,21(5):467~471
    9周洪.气动伺服定位技术及其应用.液压与气动. 1999,(1):18~20
    10孔晓武.高速开光阀动态性能试验装置及其应用研究.机电工程. 2005,22(8):38~39
    11 Jia Guangzheng, Ha Mingda, Wang Xueli, Wang Xuanyin. The Fifth International Symposium on Fluid Power Transmission and Control, Qinhuangdao, 2007, Beidaihe:273~276
    12蔡茂林.现代气动技术理论与实践.液压气动与密封. 2008,(2):50~53
    13张锦,张怀明. DSP伺服控制系统软件设计.电脑知识与技术. 2006,(14):84-86
    14 J.L.Shearer. Nonlinear Analog Study of High Pressure Pneumatic Servo Mechanism. American Society of Mechanical Engineer. 1957,(3):143-148.
    15王鲁单.六自由度气动机器人前馈控制的研究.哈尔滨工业大学硕士学位论文. 2003:2~7
    16赵妍.基于高压驱动的电-气比例调压阀的电路设计.山东大学硕士学位论文. 2006:10~11
    17谢朝夕.气动伺服定位系统的理论研究与应用.重庆大学硕士学位论文. 2005:7~10
    18张伟,岳继光.小型气动自动化仓库中气动系统二自由度的实现.液压与气动. 2009,(1):36~38
    19王燕波,杨庆俊,李军,包钢.基于DSP的气动伺服定位控制器的设计及试验研究.液压与气动. 2005,(10):38~40
    20孙明健,曲延滨,张扬.气动位置系统多变量状态反馈DSP控制器的设计与实验研究.液压与气动. 2008,(3):17~19
    21周洪,路甬祥.电-气比例/伺服控制系统的最优状态反馈控制研究.航空学报. 1990,11(10):432~436
    22 Yoshihiro Kuroki. A small Biped Entertainment Robot. Proceeds of the IEEE RAS International Conference on Humanoid Robots. 2001,15(3):181~186
    23 Carl R. Knospe, Stephen J. Fedigan, R. Winston Hope, Ronald D. Williams. A Multitasking DSP Implementation of Adaptive Magnetic Bearing Control. IEEE Transactions on Control System Technology. 1997,5(2):230~238
    24李江. DSP嵌入式应用系统软件设计的研究与实践.江南大学硕士学位论文. 2008:2
    25支义长,程志平,陈书立等. DSP原理及开发应用.北京航空航天大学出版社. 2006:2~6
    26 Gebotys C.H., Gebotys.R.J. Designing for low power in complex embedded DSP systems. System Sciences. 1999:8~12
    27 Analog Devices. Inc.AD7658/AD7657/AD7656. ADI Documents. 2005:1~2
    28 Texas Instrument. Interfacing the ADS8345 to TMS320C5416. Texas Instrument. 2002:16~19
    29苏奎峰,吕强,耿庆峰,等. TMS3202812原理与开发.电子工业出版社. 2006:131~135
    30朱维钧,周有庆,王优优. AD7656及其在电力系统测控中的应用.电工材料. 2007,(2):47~48
    31 Analog Devices. DAC7744. ADI Documents. 2005:1~3
    32 Analog Devices. Next Generation OP07 Ultra low Offset Voltage Operational Amplifier. ADI Documents. 2000:9~12
    33王典洪,李东峰,刘兵. EEPROM与DSP的接口技术.微处理机. 2008,(2):30
    34 Texas Instrument. TMS320x281x, 280x DSP Peripheral Reference Guide. TexasInstrument. 2004:5
    35 Texas Instrument. TMS320F28x Serial Peripheral Interface (SPI) Reference Cuide. Texas Instrument. 2005:2~10
    36 Texas Instrument. 256K SPI Bus Serial EEPROM. Texas Instrument. 2005:13
    37 Dolle.M, Jhand.S., Lehner.W., Muller.O., Schlett.M. A 32-b RISC/DSP microprocessor with reduced complexity, Solid-State Circuits. IEEE Journal. 1997,32(7):1056~1066
    38陆爱明.单片机和图形LCD接口应用技术.光学器件. 2001,(11):75~77
    39张培宁,房玉东.单片机系统的键盘及液晶显示器的研发.研发与交流2002,(8):25-26
    40 Texas Instrument. Implementation of PID and Deadbeat controllers with the TMS320 Family. Texas Instrument. 1997:102~103
    41 G.Franklin.et al. Digital Control of Dynamic Systems. Addison-Wesley. 1990:20~21
    42 Deva Bodas. CS8900A Ethernet controller technical reference manual. Cirrus Logic. 2001:8~9
    43姚金.基于DSP的数据采集系统以太网接入的研究.贵州大学硕士学位论文. 2007:18~21
    44卢虎.基于DSP的以太网技术及其实现.西北工业大学硕士学位论文. 2004:3~4
    45 Texas Instrument. TMS320C6000 Code Composer Studio Getting Started Guide. Texas Instrument. 2003:17~18
    46 Texas Instrument. TMS320C28x Assembly Language Tool’s User’s Guide. Texas Instrument. 2001:22~23
    47 Texas Instrument. TMS320C28x Optimizing C/C++ Compiler User’s Guide. Texas Instrument. 2005:5
    48 Texas Instrument. TMS320 Fixed-point DSP Assembly Language Tool’s for User’s Guide. Texas Instrument. 1991:6~8
    49尹勇,欧光军,关荣锋. DSP集成开发环境CCS开发指南.北京航空航天大学出版社. 2003:1~5
    50 James D. Broesch. DSP System General Model. Digital Signal Processing. 2009:27~36
    51 Texas Instrument. TMS320x281x DSP Event Manager (EV) Reference Guide. Texas Instrument. 2004:9~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700