沈阳李官堡水源地地下水资源合理开发利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
李官堡水源地位于沈阳市区西南部,浑河北岸,属于傍河型水源地。近年来,随着工业需水量的不断加大,原设计20万m3/d的供水能力已不能代表水源地的实际可开采能力,为了查明该水源地地下水的实际可开采量,制定合理的开采利用方案,避免在地下水开发利用中引发环境地质问题,有必要对已运行约45年的水源地进行重新评价。本文以李官堡水源地为研究区,在收集整理已有的研究成果和资料基础上,系统分析研究区地质、水文地质条件,应用GMS软件实现李官堡水源地的水文地质结构三维可视化,从而更清楚、明了地展现含水层的空间分布情况。对研究区的边界条件、含水层内部结构及水力特征等进行概化,建立地下水流数值模型,应用Visual MODFLOW软件对模型进行求解、识别及验证。为了检验数值模拟的结果的准确性,运用水量均衡法再次对数值模拟的计算结果进行验证,利用已验证的数值模型预报不同方案下研究区地下水流场及地下水位的变化情况,并结合地下水开采现状分析地下水资源可开采潜力,从而制定合理的地下水资源合理开发利用方案。
Built in 1958, Liguanpu water source, located on the north shore of Hun River floodplain in the southwest of Shenyang City, is one of the main water supply sources of Shenyang. With an area of 37.88km2, it is a typical water source near river, which design supply capability is 20×104m3/d. Before the year 2000, as the exploitation quantity was kept between 15.4m3/d and 22.2m3/d, 3 three local depression cone of groundwater formed. However, as the exploitation quantity decreased sharply to 6.79×104m3/d after 2000, groundwater picked up gradually. At present, due to the increasing of the industrial water requirement, the groundwater exploitation can be increased in the waterworks, the former 20×104m3/d can not represent its real exploitable ability, so it is necessary to reevaluate the waterworks which has run for 45 years. The paper takes the topic of“The research on the rational development and utilization of groundwater resources in the Li Guanbao waterworks in Shen Yang”, it calculated the groundwater exploitable quantity by the numerical model on the base of the present groundwater development analysis, and also worked on the groundwater exploitation potential, finally came up with the scheme of the rational development and protection of groundwater resources. The research no only supplies the scientific reference to the city and life water demands and management, but is also important to the the field social and economic sustainable development.
     Quaternary groundwater that contain phreatic aquifers and confined aquifers in Liguanpu water source are the object of water resources assessment. Based on the datum including weather, hydrology, geology and hydrogeology, the thesis analyses the hydrogeologic structure features of aquifers and the recharge, runoff, discharge and dynamic characters of groundwater. According to 48 borehole data and geologic and hydrogeologic data in study area, the 3D visual model of hydrogeologic structure in Liguanpu water source is established by GMS software, and the distribution of aquifers in study area is displayed directly. The aquifers in study area are the sandy gravel alluvium and diluvium phreatic aquifers, Quanternary Holocene, the sandy gravel alluvium and diluvium weak confined pore aquifers, upper Pleistocene and the sandy gravel glaciofluvial deposited diluvium confined aquifers, lower Pleistocene. The total thickness of aquifers is about 80m, and the aquifer is homogeneous and gently.
     On the basis of completely understanding the geological and hydrogeological conditions, the hydrogeological model is established, and groundwater in study area is generalized as heterogeneous isotropic two-dimensional unsteady flow of phreatic water. The math equation is established, which is calculated by Visual MODFLOW software. In the following, the established model is identified and validated by the water level observation data and groundwater field from Feb 15, 2002 to Sep 15, 2003. The results indicate: the established model describes the groundwater system characters actually, and it meets precision requirement. Then the recharge and discharge rate are calculated. The total recharge amount of groundwater in study area is 5031.2×104m3/a, the river leakage amount and lateral groundwater recharge amount are 68.2 and 19 percent of the total groundwater recharge amount respectively. The total discharge amount is 4503.2×104m3/a, artificial yield of water is 91.2 percent. The budget is 528×104m3/a. For certificating the reliability of this model, budget analysis method is applied, the result indicate: budget result is the same as the numeric model result, and the model can be used to predict.
     To understand the operating state of water source in different conditions and make rational exploitation of groundwater resources, 4 different prediction programs is made, that are suspending the present distribution of groundwater and present exploitation quantity(6.79×104m3/d) , the model forecast 1 year by precipitation of different guarantee rate 20, 50, 75, 90 percent respectively. The precipitation amount after 2005 are forecasted by historical period method and frequency analysis method, the exploitation program are suspending the present distribution and present exploitation quantity(6.79×104m3/d), the model forecast 10 years; suspending the present distribution and changing the exploitation quantity, the model forecast 10 years; changing the distribution and exploitation quantity, the model forecast 10 years respectively. The forecasting indicates:①under the present exploitation(which is equal to 6.79×104m3/d), the groundwater is in the state of positive equilibrium in all years of different precipitation guarantee rates. Besides, with the time goes on, the groundwater level can recover gradually. When the groundwater exploitation is enlarged to 21.94×104m3/d, the groundwater level falls rapidly, and will lead to the combination of the two cones of depression in the first waterworks and the sanded factory, which exists in the whole zone, besides, another small cone of depression in the southeast by north, at this time, the groundwater exploitation exceeds the groundwater exploitable ability, the sustaining exploitation will cause the dewatering of the aquifers and other environmental geological problems. When the groundwater exploitation decrease to 10.03×104m3/d in 2009, the groundwater level restores, the cone of depression decreases, that is, this quantity is reasonable to the sustain the groundwater level, it’s the reasonable exploitation.②the main factors effect the groundwater level changing are the groundwater exploitation and the seepage from the rivers, then is the precipitation seepage, the groundwater resources change little with the plentiful and scanty seasons.③after the exploitation layout is adjusted, the groundwater level restores, it is because that the groundwater captures more Hunhe and the lateral runoff in the east, so the forth exploitation layout scheme is suggested to the groundwater exploitation, the rational exploitation is 10.03×104m3/d.
     Finally, the rational utilization and protection of the groundwater resources is put forward by the technique, economy, and education propaganda with different view points.
引文
[1]曹剑锋,迟宝明,王文科等.专门水文地质学[M].北京:科学出版社,2006.
    [2]薛禹群等.地下水动力学[M].北京地质出版社,1997.
    [3]中国地质调查局.全国地下水资源及其环境问题调查评价[R].2003.8.
    [4] Bear J Hydraulics of Groundwater [M].New York:McGraw Hill,1979.
    [5] Tang-Chang yuan,Kendo-Akihiko.Regional groundwater model with GIS[C].The International Geological Congress,Beijing,China:Abstracts-Congress Geologique International. Resumes,1996.
    [6]宫辉力.博士后出站报告[M].北京大学,1999.
    [7]翟公敏,魏宪昌.地下水资源评价方法研究[J].水文,1995(6):38-41.
    [8]王文科,李俊亭.地下水流数值模拟的发展与展望[J].西北地质,1995,16(4):52~56.
    [9]薛禹群,谢春红.承压含水层中井附近地下水流的对数插值法[M].水文地质工程地质论丛(2).北京:地质出版社,1987.
    [10]王文科,李俊亭.地下水非稳定流的LTFAM算法[J].西安地质学院学报,1993,15(4).
    [11]王文科,李俊亭.承压稳定井流的有限分析方程[J].西安地质学院学报,1994,16(3).
    [12]王文科,地下水有限分析数值模拟的理论与方法[M].西安:陕西科学技术出版社,1996.
    [13]张蔚榛.区域性大面积地下水资源评价的多年均衡法[J].水文地质与工程地质,1979.4.
    [14]张春志,刘继朝,孟庆伟.浅议均衡法在地下水资源评价中的应用[J].西部探矿工程, 2005.7:78-79.
    [15]董淑乾,蒋海云,许模.应用泉水均衡法分析四川省兴文县新坝水库岩溶渗漏问题[J].地质灾害与环境保护,2006,17(1):69-73.
    [16]吴浩东,胡建平,莫莉萍.水均衡法在水资源评价论证中的应用[J].广西师范学院学报(自然科学版),2006,23:27-30.
    [17]Bridget R Scanlon,Healy R W,Cook P G. Choosing appropriate techniques for quantifyinggroundwater recharge[J].Hydrogeology Journa1,2002,10(1):18-39.
    [18]Glenn A Harrington,Glen R Walker,Andrew J Love. A compartmental mixing-cell approach for thequantitative evaluation of groundwater dynamics in the Otway Basin, South Australia[J]. Journal ofHydroogy, 1999,21(4):49-63.
    [19] Frans R P, Kalf D R, Woolley. Applicability and methodology of determining sustainable yield in groundwater systems[J]. Hydrogeology Journal, 2005,13(2):295-312.
    [20]张瑞,吴林高.地下水资源评价与管理[M],上海:同济大学出版社,1995.
    [21]张蔚榛等.地下水非稳定流计算和地下水资源评价[M].北京:科学出版社,1983.
    [22]赵秀云,刘琦,刘铁银等.相关分析在地下水资源评价中的应用[J].黑龙江水专学报,2000, 27(1):39-41.
    [23]水利电力部水文局.中国水资源评价[M].水利电力出版社,1987.12.
    [24]王东启,戴树声.水资源评价指标体系研究[J].水科学进展,1996.4.
    [25]陈梦熊.中国水文地质工程地质事业的发展与成就[M].北京:地震出版社,2003.
    [26]董军.地下水污染的广义差分法数值模拟[J].昆明理工大学学报,2000 3.
    [27]李开泰等.有限元方法及其应用[M].西安交通大学出版社,1992.
    [28]赵书明.有限元数学模型在水资源评价中的应用[J].电力勘测,2000.2.
    [29]Barlow,Paul M,Harbaugh,AW, et al.. USGS directions in MODFLOW development[J]. Ground Water,2006,44(6):771-774.
    [30]Product overview.Waterloo hydrogeologic[P].2005.http://www.visualmodflow.com/.
    [31]Product overview.Waterloo hydrogeologic[P].2005.http://www.feflow.com/.
    [32]Groundwater modeling system tutorials.The Environmental ModelingResearch Laboratory of Brigham Young University[R].2002.
    [33]谢轶,苏小四,高淑琴.基于GMS支持下的大庆地下水库区水文地质结构可视化模型[J].吉林大学学报(地球科学版),2006,36:51-54.
    [34]祝晓彬.地下水模拟系统(GMS)软件[J].水文地质工程地质,2003,30(5).
    [35]段青梅.西辽河平原三维地质建模及地下水数值模拟研究[D].中国地质大学,2006.
    [36]丁继红,周德亮,马生忠.国外地下水模拟软件的发展现状与趋势[J].勘察科学技术,2002, 1:37-42.
    [37]吕永龙.国外可持续发展研究概况[P].中国可持续发展研究——从概念到行动,1995: 9-12.
    [38]钟甫宁.永恒的追求——可持续发展[M].南京:江苏科技出版社,1996.
    [39]Herman E. Daly. Beyond Growth: The Economics of Sustainable Development[M]. Boston, U.S., Beacon Press, 1996.
    [40]国家环境保护局译.21世纪议程[M].北京:中国环境科学出版社,1993.
    [41]UNDR Statements and Recommendations from Major International Meetings on Resources [M].New York:Water Supply and Sanitation,1994.
    [42]Baccini,P&Brunner,P.Metabolism of the Anthroposphere [M].New York:Springer,1991.
    [43]Baccini,P&Badar,H.P.Regionaler Stoffhaushalt,Erfassung,Bewertung and Steuerung[M]. Heidelberg:Spektrum Akademischer Verlag,1996.
    [44]冯尚友.水资源持续利用与管理导论[M].北京科学出版社.2000.
    [45]王先甲,胡振鹏.水资源持续利用的支持条件与实践[J].自然资源学报.2001,(16):85-89.
    [46]刘求实,沈红.区域可持续发展评价指标体系与评价方法研究[J].中国人口、资源与环境, 1999,7(4):60-64.
    [47]Loucks,D.P. Sustainable water resources management[J]. Water International,2000,25(1): 3-10.
    [48]孙才志.动态层次分析法在确定模糊优化管理模型效益系数中的应用[J].勘察科学技术,2000,(2):3-6.
    [49]闵庆文,余卫东,张建新.区域水资源承载力的模糊综合评价分析方法及应用[J].水土保持研究,2004,11(3):14-16,129.
    [50]金菊良,丁晶,魏一鸣等.区域水资源可持续利用系统评价的插值模型[J].自然资源学报, 2002,17(5): 611-615.
    [51]Huang G H,J Xia.Barriers to sustainable water quality management[J].Journal of Environmental Management,2001,61(1):1-23.
    [52]Plate E J.Sustainable development of water resoueces:a challenge to science and engineering[J].Water Inernational,1993,18(2):84-93.
    [53]C.Binder,R.Schertenleib,J.Diaz.Regional water balance as a tool for water management in development countries[J].Water Resources Development,1997,13(1): 5-20.
    [54]周念清,朱蓉,朱学愚.MODFLOW在宿迁市地下水资源评价中的应用[J].水文地质与工程地质,2000,(6):9-13.
    [55]周忠一.区域水资源评价[M].北京:中国水利水电出版社,1996.
    [56]肖长来.吉林西部地下水资源评价与水资源可持续开发利用研究[D].吉林大学,2001,6:6-13.
    [57]刘光亚.水文地质数值模拟的拟合问题[J].水文地质工程地质,1992,19(4):2-4.
    [58]滕凯.关于地下水位动态预测模型的进一步研究[J].中国农村水利水电,2004,4:27-29.
    [59]钱家忠,朱学愚,吴剑锋.地下水资源评价中降水量的时间序列-马尔列夫模型[J].地理科学,2001.21(4):350-353.
    [60]陈崇希等.新疆渭干河流域地下水三维流数值模拟[J].地质科技情报,2005,(1):74-76.
    [61]陈崇希等.广西北山岩溶管道—裂隙—孔隙地下水流数值模拟[J].水文地质工程地质1998,(4):50-52.
    [62]章光新,邓伟等.基于生态用水的地下水系统三位模拟与优化管理模型[J].2002,57 (5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700