先简支后连续梁桥湿接缝处纤维混凝土韧性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市的发展和建设,对桥梁建设的速度提出了更高的要求,出现了各种形式的桥面连续简支梁桥。采用湿接缝设计的先简支后连续桥梁,产生两种结构形式:第一种是桥面连续或桥面板连续,其结构形式仍然是简支梁。第二种是结构连续或用预应力使结构连续,其结构形式是连续梁。虽然减少了桥面伸缩缝的数量,也一定程度的有利于改变支座处的桥面开裂现象。但并不能从根本上解决永久支座处负弯矩而导致的桥面裂缝。采用高强混杂纤维增强混凝土作为接缝材料,利用纤维高性能混凝土高抗弯拉、高韧性、高抗渗与高耐久性等特性,改善湿接缝处的受力性能,预防病害的发生。应用于先简支后连续结构体系,可以改善桥梁耐久性,减少后期维护费用,增加桥梁使用寿命。并可为国内其他地区同类城市桥梁建设提供实践经验和技术保证。
     本文在分析单一纤维混凝土的优缺点、混杂纤维混凝土已初步显出的优势、尚需进一步探索、解决的问题以及前人研究的基础上,做了以下工作:
     (1)对先简支后连续桥梁结构体系进行了详细分析。介绍了先简支后连续桥梁的型式、做法,先简支后连续桥梁湿接缝的设计。
     (2)通过对素混凝土、钢纤维混凝土、钢-聚丙烯混杂纤维混凝土进行立方体抗压强度试验和弯曲韧性试验,联系现有文献的试验资料,对比研究了钢纤维与钢-聚丙烯纤维对混凝土的力学性能不同的影响。讨论了不同种类纤维的掺入对混凝土的抗压强度和增韧性能的提高。发现聚丙烯纤维的加入对混凝土的力学性能的改变不明显,略有提高。
     (3)对采用高强钢纤维混凝土为湿接缝材料与采用普通混凝土材料两跨连续梁进行有限元分析。通过有限元模拟,认为采用高强钢纤维混凝土作为接缝处材料,可以提高连续梁的韧性,增加构件承载能力。与钢纤维对混凝土的增强增韧试验结果基本相符合。说明采用高强钢纤维混凝土作为湿接缝材料,能够改善湿接缝处的受力性能,改善桥梁耐久性,减少后期维护费用,增加桥梁使用寿命。
Along with the urban development and the construction,it asked a higher request to the bridge construction's speed,and presented many forms of continuous bridge erected as simple-supported beam.After using the wet joint design the continuous bridge erected as simple-supported beam,has caused two kind of structural styles:The first kind is the bridge floor continuously or the floorboard is continual,its structural style was still a simple beam.The second kind is the structure continuously or causes the structure with the pre-stressed to be continual; its structural style is continuous beam.It not only reduced the bridge floor expansion joint quantity,but also changed support's place bridge floor dehiscence phenomenon in certain extent.But it cannot fundamentally solve the bridge floor crack which is caused by the permanent support place hogging moment.Using the high strength fiber reinforced concrete for the joint material,which is high bending,high tensile, high toughness,high anti-permeability and high durability could improve the stress performance of the wet connecting point,and prevent plant disease's occurrence. When it applies in the continuous bridge erected as simple-supported beam structure system,may improve the bridge durability,reduces later period the maintenance cost, increases the bridge service life.And it could provide the experience and the technical guarantee for other local similar city bridge construction in domestic.
     After analyzed the sole fiber concrete's good and bad points,the combination fiber concretes the superiority which appears initially.It is needed to further explore in the foundation,and solute questions.This article in predecessor's foundation has done the following work:
     (1) The continuous bridge erected as simple-supported beam has carried on the multi analysis.Introduce the continuous bridge erected as simple-supported beam bridge's pattern,makes the law,and the continuous bridge erected as simple-supported beam bridge's wet joint design.
     (2) Through the plain concrete,the steel fiber concretes and the steel polypropylene promiscuous fiber concretes carries on the cube compressive strength test and the curving toughness test,relate the existing literature the experimental material,the contrast has studied the steel fiber and the steel - polypropylene fiber to the concretes mechanical properties different influence.Discusses the different fibers blend to the concretes compressive strength and the plasticizing performance enhancement.Discover that the polypropylene fiber joined is not obvious to the concretes mechanical properties' change.
     (3) Carries on the finite element analysis to the continuous beam,which uses different material in the wet joint,like high strength steel fiber reinforced concrete (HSFC) and common concrete.By the finite element simulation,using HSFC for wet joint material could enhance continuous beam's toughness,and increase the component bearing capacity.The conclusion basically same as the result of the steel fiber to reinforce and toughen of concrete experiment.As a result,using HSFC for wet joint material could improve the wet point the stress performance,the bridge durability,reduce later period the maintenance cost and increases the bridge service life.
引文
[1]曹俊伟.八尺门特大桥先简支后连续梁施工技术,山西建筑,2001年4月,第27卷第2期,P:72-73
    [2]陈强.先简支后连续结构体系研究.浙江大学博士学位论文,2002年12月
    [3]陈强,黄志义.先简支后连续结构体系的概念及发展.铁道建筑,2005年04期,P:1-3
    [4]Sritharan S.,Priestley M.J.N.,Sieble F.,enhancing seismic performance of bridge cap beam-to-column joints using prestressing,PC1.7ournal,Yol.44 No.1,July August 1999,P:74-91
    [5]Byung Hwan Oh,Sung Tae Chae,structural behaviour of tendon coupling joints in prestressed concrete bridge girders.ACI Structural Journal,January-Februry 2001,P:87-95
    [6]Mazurek D.F.,Dewolf J.T.,experimental study of bridge monitoring technique
    [7]盛兴旺,周相华.先简支后连续梁桥结构的疲劳性能与抗裂性能.中南大学学报(自然科学版),2005年第36卷03期,P:511-516
    [8]陈忠坚.先简支后连续梁桥湿接缝的设计与施工.公路与汽车,2004年05期,P:81-82
    [9]林辉源.先简支后连续桥梁湿接缝的设计与施工.华东公路,2002年03期,P:24-27
    [10]赵旭.先简支后连续桥梁湿接缝的施工方法.交通科技.2003年04期
    [11]王黎明等.聚丙烯纤维混凝土在桥面连续及伸缩缝中的应用.东北林业大学学报,2003年01期,P:49-50
    [12]朱江.聚丙烯纤维混凝土在路面工程中的应用研究.混凝土,2000年12期,P:8-10
    [13]谷章昭,邓咏梅.合成纤维混凝土的性能及其工程应用.建筑技术,2000年第31卷第01期,P30-31
    [14]王新定,赵佳军等.桥面铺装层混凝土掺用聚丙烯纤维的探讨.华东公路,2005年03期
    [15]姚武.钢纤维高强混凝土的力学性能研究.建筑石膏与胶凝材料.1999,10,P:18-19
    [16]高丹盈,汤寄予,朱海堂.钢纤维高强混凝土的配合比及基本性能研究.郑州大学学报(工学版),2004,25(3),P:46-51
    [17]焦楚杰,孙伟,高培正等.钢纤维高强混凝土力学性能研究.混凝土与水泥制品,2005,3,P:35-38
    [18]张晓峰.钢纤维高强硅和普通高强硅力学性能实验研究.贵州工学院学报,1996,25(3),P:54-59
    [19]赵大达,李方元,周益云.高强混凝土和高强钢纤维混凝土的配制及其性能研究.混凝土与水泥制品,2001.5P:41-42
    [20]高丹盈,汤寄予,赵军.纤维高强混凝土弹性模量的试验研究.工业建筑,2004,34(10),P:47-49
    [21]林小松,杨果林.钢纤维高强与超高强混凝土.北京:科学出版社,2002
    [22]张启明,赵广田,汤寄予等.钢纤维高强混凝土设计与施工技术.河南科学,2002,20(6),P:727-729
    [23]赵国藩,彭少民,黄承遗.钢纤维混凝土结构.北京:中国建筑工业出版社,1999
    [24]Faella D A,Naaman A E.Stress-strain properties of fiber reinforced mortar in compression.ACI Journal,1985,82(4),P:475-483
    [25]Mansur M A,Chin M S,Wee T H.Stress-strain relationship of high-strength fiber concrete in compression.Journal of Materials in Civil Engineering,1999,11(1),P:21-28
    [26]严少华,钱七虎,孙伟等.钢纤维高强混凝土单轴压缩下应力应变关系.东南大学学报(自然科学版),2001,31(2),P:77-80
    [27]焦楚杰,孙伟,秦鸿根等.钢纤维高强混凝土单轴受压本构方程.东南大学学报(自然科学版),2004,34(3),P:366-369
    [28]田稳荃,李子祥.钢纤维膨胀混凝土轴压应力应变全曲线研究.河北工业大学学报,2000,29(5),P:1-5
    [29]高丹盈.重复荷载下钢纤维混凝土轴压全曲线的研究.水力发电,1994,5,P:18-22
    [30]Marar K,Eren O,Elik T C.Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete.Materials Letters,2001,47(2),P:297-304
    [31]邱凯.粉煤灰高强度钢纤维混凝土的试验研究.贵州水力发电,2002,16(4),P:85-88
    [32]朱海堂,汤寄予,赵军.钢纤维高强混凝土抗拉强度试验研究.河南科学,2002,20(6),P:653-655
    [33]Tjiptobroto P,Hansen W.Mechanism for tensile strain hardening in high performance cement-based fiber reinforced composites.Cement and Concrete Composites,1991,13,P:265-273
    [34]高丹盈,徐磊,李趁趁.钢纤维混凝土轴拉初裂强度的计算方法,郑州大学学报(工学版),2002,23(1),P:31-33
    [35]许国平,张启明,高丹盈.钢纤维间距理论在混凝土轴拉初裂强度计算中的应用.河南科学,2002,20(6),P:685-687
    [36]Murakami H,Zeng J Y.Experimental and analytical study of SIMCON tension members.Mechanics of Materials,1998,28,P:181-195
    [37]Maalej M.Tensile properties of short fiber composites with fiber strength distribution.Journal of Materials Science,2001 36,P:2203-2212
    [38]Maalej M,Li V C,Hashida T.Effect of fiber rupture on tensile properties of short fiber composites.Journal of Engineering Mechanics,1995,121(8),P:903-913.7
    [39]Li F M,Li Z J.Continuum damage mechanics based modeling of fiber reinforced concrete in tension.International Journal of Solids and Structures,2001,38,P:777-793
    [40]Lennart,David A,Salah A etc.Tensile basic creep of early-age concrete under constant load.Cement and Concrete Research,2001,31,P:1895-1899
    [41]Tjiptobroto P,Hansen W.Tensile strain hardening and multiple cracking in high-performance cement based composites.ACI Materials Journal,1993,90(1),P:16-25
    [42]董振英.纤维混凝土细观机理及应用研究:(博士学位论文).北京:清华大学,2003
    [43]Naaman A E.Characterization of high performance fiber reinforced cement composites.The 2nd International workshop of High Performance Fiber Reinforced Cement Composites,London,1995
    [44]卢哲安,陈波等.上下层布钢纤维混凝土抗折强度及增强机理研究.武汉理工大学学报.2001,23(1),P:55-59
    [45]陈景涛.层布式混杂纤维路面混凝土试验研究.武汉理工大学硕士论文.2002
    [46]黄达.层布式钢纤维混凝土路面试验研究.武汉理工大学硕士论文.2002
    [47]张全林.层布式钢纤维路面混凝土弯曲疲劳性能试验研究.武汉理工大学硕士论文.2002
    [48]陈应波,黄达,卢哲安.层布式钢纤维混凝土疲劳强度计算机模拟.武汉理工大学学报.2002,9,P34-36
    [49]陈应波,卢哲安,黄达.层布式钢纤维混凝土疲劳寿命的概率分布拟合.武汉理工大学学报.2002,12,P:33-36+48
    [50]陈应波,卢哲安,张全林.层布式钢纤维混凝土路面板弯曲疲劳性能研究.武汉大学学报(工学版).2004,4,P:40-44
    [51]袁海庆,陈景涛,朱继东.层布式钢纤维-聚丙烯腈纤维混凝土力学性能试验研究.武汉理工大学学报.2003,4,P:31-34
    [52]袁海庆,朱继东,陈景涛.层布式混杂纤维对混凝土抗弯性能的改善及其在路面设计中的应用.混凝土与水泥制品.2003,4,P:41-43
    [53]杨志刚.层布式混杂纤维混凝土抗折疲劳性能试验研究.武汉理工大学硕士论文.2003
    [54]陈瑜,杨志刚,卢哲安.上下层布式钢纤维混凝土的抗折疲劳方程.武汉理工大学学报.2004,.3,P:57-58+62
    [55]陈应波,胡继洪,卢哲安.层布式混杂纤维混凝土渗透性及孔隙率试验研究.混凝土与水泥制品.2004,4,P:34-35
    [56]赵景海,徐鹏,樊承谋.钢纤维混凝土韧性及压缩韧性指标的研究.建筑结构学报,1991,8,P:44-51
    [57]B Barr,R Gettu,S K A AI-Qraimi.Toughness Measurement--Need to Think Again.Cement and Concrete Composites.1996,18,P:284-297
    [58]万家寨水电站钢纤维喷射混凝土韧度等级测试方法.P:7-17
    [59]P Balaguru,Ramesh Narahari,and Mahendra Patel.Flexural Toughness of Steel Fibet Reinforced Concrete.ACI Materials Journal.Nove-Dec 1992,89(6),P:541-546
    [60]Vellore S Gopalaratnam.On the Characterization of Flexural Toughness in FRC.Cement and Concrete Conposites.1995,1(7),P:239-254
    [61]秦鸿根,陆春林,孙伟.钢纤维混凝土抗弯初裂点确定方法及抗弯性能的研究.混凝土及水泥制品.1991,2,P:4-28
    [62]曹诚.钢纤维混凝土韧性的评价及改善研究.天津市政工程,1999,11(1),P:1-7
    [63]王健.断裂力学(上册).哈尔滨:哈尔滨工业出版社.1989
    [64]杨煜全,黄政学,万良芬.混凝土断裂力学-材料特性与试验.湖南大学出版社.1988.11
    [65]丁建彤,郭玉顺等.结构轻质混凝土在桥梁工程中的应用概况.混凝土,2001,1
    [66]蒋友谅.非有限元分析.北京工业学院出版社,1998,P:21-147
    [67]王助成,邵敏.有限元基本原理及数值分析方法.清华大学出版社,1997,P:3
    [68]谷倩.钢纤维混凝土桩基承台的试验研究和非线性分析.武汉:武汉理工大学,2001
    [69]王国强.实用工程数值分析模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700