破骨细胞完善体外类骨组织重建的探索性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来,越来越多的证据明确表明了破骨细胞的调节作用对于正常的骨形成是至关重要的。破骨细胞缺乏动物所表现出来的骨形成异常在目前的组织工程化骨中也都有所反映。因此,破骨细胞参与到骨体外重建策略中来不仅能洞察移植后骨重塑以及成骨细胞和破骨细胞相互作用,而且也能为完善组织工程化骨提供必要的解决办法。本研究主要探索既符合生理过程又实际有效的破骨细胞引入途径。目的:1)获取破骨细胞前体(融合前破骨细胞,pOCs)并描述其生物学特征;2)实验分析成骨细胞的分化程度与pOCs成熟的关系;3)建立创新的破骨细胞在组织工程化骨生成方法;4)观察破骨细胞的生成,功能表达,以及对支架类骨结构的影响。方法:2个月昆明鼠全骨髓细胞与新生鼠原代颅骨成骨细胞共同培养在含有1,25(OH)_2 D_3的培养液中6天。通过轻轻吹打新加的介质,打下黏附不紧密的细胞作为pOCs使用。当这种细胞悬液接种于培养板,半小时后经抗酒石酸酸性磷酸酶(TRAP)染色和碱性磷酸酶(ALP)染色,确定pOCs的存在和数目以及有无多核细胞和成骨细胞的混杂。TRAP荧光染色进一步对结果进行确认。通过融合试验来研究原代成骨细胞对pOCs融合的影响。为了研究成骨细胞分化程度与pOCs成熟的关系,成骨细胞系MC3T3-El细胞被接种到培养板,使用成骨介质培养到细胞汇聚(4d)、矿化开始(16d)和高度矿化(28d),矿化是通过茜素红染色来判定。这三种培养物分别代表骨形成过程中细胞增殖、基质沉积和成熟以及基质矿化。pOCs分别接种到三种培养物,在生长介质中共培养3d。然后进行TRAP染色确定类破骨细胞的形成;纤维肌动蛋白(F-actin)荧光染色判断其吸收活性。在建立破骨细胞符合生理过程引入实验中,MC3T3-El细胞首先接种于支架上,在成骨介质中培养5w和12w,接着pOCs分别接种到低矿化(5w)和高矿化(12w)支架结构上,在生长介质中培养3d和8d。支架的矿化程度通过支架上磷含量检测来判定。然后进行无任何处理的环境扫描电镜(ESEM)和一般电镜检测(SEM),观察类破骨细胞的形成和功能表达;支架切片F-actin荧光染色判断其吸收活性。结果:在pOCs制备物中,没发现多核细胞和ALP阳性的成骨细胞,TRAP阳性细胞约占接种细胞总数的60%。融合试验表明成骨细胞的存在对于pOCs融合是必不可少的。在分析成骨细胞分化与pOCs成熟关系实验中,在高度矿化培养物中,可见到大小不等的矿化结节。结节的矿化程度可用透光度来表示。这些结节,依其透光度,可分为带有黑色纹理的不充分矿化结节、除边缘以外全黑的相对充分矿化结节和全黑的充分矿化结节。TRAP染色后,在增殖期和刚矿化共培养物中,TRAP阳性细胞分散存在,没发现大于两个核的TRAP阳性细胞。在高度矿化共培养物中,可见到TRAP阳性细胞聚集在为数很少的大的不充分和相对充分矿化结节周围。约95%大于两个核TRAP阳性细胞在这样的细胞中存在。这表明pOCs的成熟不仅与基质的矿化有关也与矿化量有关。聚集在相对充分矿化结节周围的TRAP阳性细胞有向其集中的趋势。大的充分矿化结节周围无明显细胞聚集现象;但一些原本不透光的结节却有不同程度的TRAP染色。这种TRAP染色结节说明矿物有吸收;间接反映了所形成的类破骨细胞有骨吸收活性。细胞在大矿化结节周围分布的差异反映了在大小类似的情况下,结节矿化程度越高,对周围的TRAP阳性细胞的趋化能力越强。F-actin荧光染色显示了在大矿化节结上F-actin环的出现,这是破骨细胞具有吸收活性的特征标志,直接证明了所形成的类破骨细胞具有骨吸收活性。在研究破骨细胞生理引入实验中,通过ESEM和SEM观察到各种形态的类破骨细胞生成。在高度矿化支架结构上(12周),类破骨细胞更容易发现并且尺寸更大;这可能是类破骨细胞的形成与骨基质功能状态相适应的反映。而且使用ESEM观察到正在吸收的类破骨细胞,这个细胞展示了面向骨面的细胞膜特化结构—皱褶缘和封闭区及其足体,同时吸收坑也清晰可见。这无疑表明使用这一策略产生的类破骨细胞能够吸收由成骨细胞在体外产生的类骨基质。支架切片F-actin荧光染色显示了F-actin环的出现,进一步确认类破骨细胞的吸收活性。在原本总是被成骨细胞异常生长所形成的膜状或条索状结构占据的支架孔壁上,出现巨大的细胞融合体。在类破骨细胞出现的地方,观察不到明显的成骨细胞异常生长结构。这些现象表明类破骨细胞能以某种方式去除异常细胞结构。结论:1)通过机械分离从破骨细胞分化培养物中获取pOCs是一种简单、有效的获取破骨细胞来源细胞的方法。2)在模拟骨组织发育和形成过程中,pOCs的成熟需要骨基质的形成和累积。3)由pOCs在细胞矿化支架结构上生成破骨细胞是生理、有效、可行的破骨细胞引入方法。4)破骨细胞的引入可以起到改善组织工程化骨结构的作用。
There is ever-increasing evidence that regulatory effects of osteoclasts areessential for normal bone formation. The abnormalities of bone formation present inosteoclast-deficient animals are largely reflected in current tissue-engineered bones.Therefore, the involvement of osteoclasts in bone-like tissue reconstruction in vitronot only allows insight into remodeling post-implantation and interactions betweenosteoclasts and osteoblasts, but also provides a necessary means to improvetissue-engineered bone. This present study attempts to present a physiological feasiblestrategy for osteoclast introduction. Objective: 1) to harvest and biologicallycharacterize preosteoclasts (pOCs), the cells just before fusion to form multinucleatedcells (MNCs); 2) to experimentally analyze the relationship of pOC maturation todifferentiation levels of the osteoblast; 3) to establish a novel method forosteoclastogenesis on tissue-engineered bone; and 4) to observe the appearance andfunctional expression of osteoclast-like cells as well as their potential effect onbone-like structure. Methods: pOCs were obtained by gentle pipetting of 6-daycocultures of mouse bone marrow cells and primary mouse osteoblastic cells in thepresence of la, 25(OH)_2 D_3. After the plating of pOC preparations, the presence andpercentage of pOCs were determined by tartrate-resistant acid phosphatase (TRAP)histochemical or fluorescent staining and the contamination of osteoblasts was judgedby alkaline phosphatase staining. Effect of the presence or absence of primaryosteoblastic cells on pOC fusion was evaluated using fusion assay system. Toinvestigate roles of osteoblastic differentiation levels in pOC maturation, MC3T3-Elcells (El cells) were first cultured to confluence (4d), initial (16d) and heavy (28d)mineralization (judging by alizarin red S staining); respectively representingosteoblastic proliferation, deposition and maturation, and mineralization of matrixduring bone formation, pOCs were then added to these three cultures and coculturedin growth medium without any osteotropic hormon for 3 days. The formation ofmultinucleated osteoclast-like cells and their activities were determined by TRAPstaining and by F-actin fluorescent staining, respectively. To set up a physiologically relevant method for osteoclast introduction, pOCs were seeded into lowly (5w) andhighly (12w) mineralized scaffold constructs of El cells (judging by phosphate contentassay) and cocultured in growth medium for 3 or 8 days. The formation and functionalexpression of multinucleated osteoclast-like cells were demonstrated byEnvironmental scanning electron microscopy (ESEM) and Scanning electronmicroscopy (SEM) and their activities were confirmed by F-actin fluorescent stainingof cross-sections. Results: The population of pOCs was about 60% of the cellsenriched with pOCs isolated from the osteoclast differentiation cultures. When theisolated pOCs were seeded on a plate, neither TRAP(+) MNCs nor osteoblastic cellswere detected. Fusion assay showed the presence of osteoblasts is essential for pOCfusion. In the heavily mineralized cultures of El cells, mineralized modules greatlyvaried in size and were classified according to their degree of mineralizationrepresented by their ability to transmit light rays, that is, as not completed black butwith texture, relatively completely black but without sharp outlines, and completelyblack with sharp outlines. In the coculture of pOCs and differently differentiatedcultures of El cells, TRAP(+)MNCs (>2 nuclei) were only seen in highly mineralizedcultures. These MNCs (95%) were mostly found among TRAP(+) cells concentratedaround and on large not completely and relatively completely mineralized nodulesonly; even in the nodules covered with cells, nodule size affected cell concentration.This phenomenon suggests that pOC maturation is the formation and accumulation ofbone matrix. The relatively completely mineralized nodules had the tendency to focusthe surrounding cells on themselves. Some of the large black completely mineralizednodules locally became transparent and stained red for TRAP. This can provideindirect evidence that these osteoclast-like cells had bone-resorbing ability, as TRAPstaining of the black nodules—black because of their not transmitting lightrays—would not be visible under the inverted microscope unless the nodules wereresorbed by infiltrating TRAP(+) cells. F-actin fluorescent staining showedappearance of F-actin rings as characteristic of osteoclastic bone-resorbing activity onlarge mineralized nodules and directly confirmed resorbing activities of these cells.The difference in the surrounding cell distribution between large not completely and completely mineralized nodules might reflect their abilities to chemoattract. In thecoculture of pOCs and mineralized scaffold constructs of Elcells, variousmorphologies of osteoclast-like cells were visualized by MSEM and SEM.osteoclast-like cells were usually much large on the highly mineralized constructs (12weeks) in comparison with the low mineralized constructs (5 weeks), suggesting thatthe formation of osteoclast-like cells adapted to functional state of bone-like matrix.ESEM showed on one highly mineralized construct that partial displacement of oneosteoclast exposed specialized structures of the cellular membrane facing the bonesurface, namely, the ruffled border and podosomes of the sealing zone, as well as theresorption pit under the ruffled border, unequivocally indicating that osteoclast-likecells formed have the ability to resorb bone-like matrix produced by osteoblasts invitro. F-actin fluorescent staining of cross-sections showed appearance of F-actinrings and confirmed resorbing activities of these cells. Before the seeding of pOCs, itwas invariably observed by ESEM or SEM that El cells grew across the spacebetween pore-walls to form cords or film-shaped structures. After 8 days of coculture,ESEM showed that a great body of cells aggregated and fused to form hugecell-fusion bodies on the pore-walls of the highly mineralized constructs that wereotherwise occupied by abnormal cell growth structures. These abnormal structuresfailed to be visualized by ESEM or SEM in the places where osteoclast-like cellsappeared. These phenomena suggest that osteoclast-like cells can somehow eliminatethe abnormal cell structures. Conchusions: 1) mechanical isolation of pOCs from theosteoclast differentiation cultures is a simple effective method for harvest ofosteoclast-sourcing cells. 2) pOC maturation requires formation and accumulation ofbone matrix in the process of the mimicking of the development and formation ofnatural bone tissue. 3) osteoclastogenesis from preosteoclasts on tissue-engineeredbone is a physiological feasible method for osteoclast introduction. 4) osteoclastintroduction serves to improve the bone-like tissue structure by removing abnormalcell growth-related structures.
引文
1. Baron R 2003 General principles of bone biology. In: Favus MJ (ed.) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5th ed. American Society for Bone and Mineral Research, Washingon, DC, USA, pp. 1-8.
    2. Robey PG, Boskey AL 2003 Extracellular matrix and biomineralization of bone. In: Favus MJ (ed.) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5th ed. American Society for Bone and Mineral Research, Washington, DC, pp. 38-46.
    3. Bianco P, Rminucci M, Silvestrini G, Bonucci E, Termine J, Fisher L, Gehron Robey R Localization of bone sialoprotein (BSP) to golgi and post-golgi secretory structures in osteoblasts and to discrete sites in early bone matrix. J Histochem Cytochem 1993: 41:193-203.
    4. Bonucchi E. The locus of initial calcification in cartilage and bone. Clin Orthop 1971: 78:108-139.
    5. Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Letters 1986: 206:262-266.
    6. Chambers TJ, Darby JA, Fuller K. Mammalian collagenase predisposes bone surfaces to osteoclastic resorption. Cell Tissue Res. 1985: 241:671-675.
    7. Rodan GA, Harada S. The missing bone. Cell 1997; 89:677-680.
    8. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002: 108:17-29.
    9. van Bezooijen RL, Papapoulos SE, Lowik CW. Bone morphogenetic proteins and their antagonists: the sclerostin paradigm. J Endocrinol Invest. 2005:28(8 Suppl):15-7.
    10. Marotti G, Cane V, Palazzini S, Palumbo C Structure-function relationships in the osteocyte. Ital J Miner Electro Metab 1990: 4: 93-106.
    11. Nijweide PJ, Burger EH, Klein-Nulend J, van der Pluijm G 1996 The Osteocyte. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology. Academic Press, San Diego, CA, pp 115-126
    12. Marotti G The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embryol 1996: 101:25-79
    13. Aarden EM, Burger EH, Nijweide PJ Function of osteocytes in bone. J Cell Biochem 1994: 55:287-299
    14. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest 1998: 102: 274-282
    15. Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res 1998: 13:1243-1250
    16. Tomkinson A, Reeve J, Shaw RW, Noble BS The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 1997: 82:3128-3135
    17. Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 1994: 55:273-286
    18. Parfitt AM, Mundy GR, Roodman GD, Hughes DE, Boyce BF. A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res 1996:11:150-159
    19.文剑明,郑铭豪。破骨细胞的形成功能及细胞因子调节。中国骨质疏松杂志,1998:41:64—68。
    20. Vaananen HK, Horton M. The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J. Cell. Sci. 1995: 108:2729-2732.
    21. Schenk R, Spiro D, Wiener J. Cartilage resorption in the tibial epiphyseal plate of growing rats. J Cell Biol 1967: 34:275-291.
    22. Malkani K, Luxembourger M , Rebel A. Cytoplasmic modifications at the contact zone of osteoclasts and calcified tissue in the diaphyseal growing plate of foetal guinea-pig tibia. Calcif Tissue Res 1973:11:258-264.
    23. Gay CV, Mueller WJ. Carbonic anhydrase and osteoclasts: localization by labeled inhibitor autoradiography. Science 1974:183:432-434.
    24. Gay CV, Ito MB, Schraer H. Carbonic anhydrase activity in isolated osteoclasts. Metab. Bone Dis. Relat. Res. 1983:5:33-39.
    25. Vaananen HK, Parvinen EK. High active isoenzyme of carbonic anhydrase in rat calvaria osteoclasts. Immunohistochemical study. Histochemistry 1983: 78:481-485.
    26. Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Harming CR, Jones C, Kurdyla JT, McNulty DE, Drake FH, Gowen, M., et al. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J. Biol. Chem. 1996: 271:12517-12524.
    27. Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R., et al. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 1996: 271:12511-12516.
    28. Rantakokko, J., Aro, H.T., Savontaus, M., Vuorio, E. Mouse cathepsin K: cDNA cloning and predominant expression of the gene in osteoclasts, and in some hypertrophying chondrocytes during mouse development. FEBS Lett. 1996: 393:307-313.
    29. Blair, H.C., Teitelbaum, S.L., Ghiselli, R., Gluck, S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 1989: 245:855-857.
    30. Bekker, P.J. & Gay, C.V. Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J. Bone Miner. Res. 1990: 5:569-579.
    31. Vaananen, H.K., Karhukorpi, E.K., Sundquist, K., Wallmark, B., Roininen, I., Hentunen, T., Tuukkanen, J., Lakkakorpi, P. Evidence for the presence of a proton pump of the vacuolar H(+)-ATPase type in the ruffled borders of osteoclasts. J. Cell Biol. 1990: 111:1305-1311.
    32. Rifkin, B.R., Vernillo, A.T., Kleckner, A.P., Auszmann, J.M., Rosenberg, L.R., Zimmerman, M. Cathepsin B and L activities in isolated osteoclasts. Biochem. Biophys. Res. Commun. 1991: 179:63-69
    33. Goto, T., Kiyoshima, T., Moroi, R., Tsukuba, T., Nishimura, Y., Himeno, M., Yamamoto, K., Tanaka, T. Localization of cathepsins B, D, and L in the rat osteoclast by immuno- light and -electron microscopy. Histochemistry 1994: 101:33-40.
    34. Bromme, D., Okamoto, K., Wang, B.B., Biroc, S. Human cathepsin 02, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin 02 in Spodoptera frugiperda and characterization of the enzyme. J. Biol. Chem. 1996: 271:2126-2132.
    35. Gelb, B.D., Moissoglu, K., Zhang, J., Martignetti, J.A., Bromme, D., Desnick, R.J. Cathepsin K: isolation and characterization of the murine cDNA and genomic sequence, the homologue of the human pycnodysostosis gene. Biochem. Mol. Med. 1996: 59:200-206.
    36. Steven L , Teitelbaum M. O steoclast biology. In: Teitelbaum SL , TondraviMM , Ross FP (eds). Osteoporosis. Washington: Academic Press, 1996: 61-85.
    37. Ralston SH. Science, Medicine and the Future: Osteoporosis. Br Med J 1997: 315:469-472.
    38. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999: 397:315-323.
    39. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998: 139:1329-1337.
    40. Hughes DE, Boyce BF. Apoptosis in bone physiology and disease. Molecular Pathology 1997: 50:132-137.
    41. Rodan SB, Rodan GA. Integrin function in osteoclasts. J Endocrinol, 1997: 154: s47-s56.
    42. Roodman GD. Advance in bone biology: the osteoclast. Endocr Rev, 1996: 17: 308-329.
    43. Teitelbaum SL. Molecular mechanisms of bone resorption. J Cell Biochem, 1995: 59: 1-7.
    44. Horton MA. The AvB3 integrin"vitronectin receptor". Int J Biochem Cell Biol, 1997: 29: 721-725.
    45. Lakkakorpi, P., Tuukkanen, J., Hentunen, T., Jarvelin, K., Vaananen, K. Organization of osteoclast microfilaments during the attachment to bone surface in vitro. J. Bone Miner. Res. 1989: 4:817-82.
    46. Lakkakorpi, P.T. & Vaananen, H.K. Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J. Bone Miner. Res. 1991: 6:817-826.
    47. Laitala-Leinonen, T., Howell, M.L., Dean, G.E., Vaananen, H.K. Resorption-cycle-dependent polarization of mRNAs for different subunits of V-ATPase in bone-resorbing osteoclasts. Mol. Biol. Cell 1996: 7:129-142.
    48. Lakkakorpi, P.T. & Vaananen, H.K. Cytoskeletal changes in osteoclasts during the resorption cycle. Microsc. Res. Tech. 1996: 33:171-181.
    49. Marchisio, P.C., Cirillo, D., Naldini, L., Primavera, M.V., Teti, A., Zambonin-Zallone, A. Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J. Cell Biol. 1984: 99:1696-1705.
    50. Marchisio, P.C., Cirillo, D., Teti, A., Zambonin-Zallone, A., Tarone, G.. Rous sarcoma virus-transformed fibroblasts and cells of monocytic origin display a peculiar dot-like organization of cytoskeletal proteins involved in microfilament-membrane interactions. Exp. Cell Res. 1987: 169:202-214.
    51. Teti, A., Blair, H.C., Schlesinger, P., Grano, M., Zambonin-Zallone, A., Kahn, A.J., Teitelbaum, S.L., Hruska, K.A. Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures. J. Clin. Invest. 1989: 84:773-780.
    52. Kanehisa, J., Yamanaka, T., Doi, S., Turksen, K., Heersche, J.N., Aubin, J.E., Takeuchi, H. A band of F-actin containing podosomes is involved in bone resorption by osteoclasts. Bone 1990: 11:287-293.
    53. Teti, A., Marchisio, P.C., Zallone, A.Z. Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity. Am. J. Physiol. 1991: 261:C1-C7.
    54. Babb, S.G., Matsudaira, P., Sato, M., Correia, I., Lim, S.S. Fimbrin in podosomes of monocyte-derived osteoclasts. Cell Motil. Cytoskeleton 1997: 37:308-325.
    55. Blair, H.C., Teitelbaum, S.L., Ghiselli, R., Gluck, S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 1989: 245:855-857.
    56. Bekker, P.J. & Gay, C.V. Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J. Bone Miner. Res. 1990: 5:569-579.
    57. Sundquist, K., Lakkakorpi, P., Wallmark, B., Vaananen, K. Inhibition of osteoclast proton transport by bafilomycin Al abolishes bone resorption. Biochem. Biophys. Res. Commun. 1990: 168:309-313.
    58. Vaananen, H.K., Karhukorpi, E.K., Sundquist, K., Wallmark, B., Roininen, I., Hentunen, T., Tuukkanen, J., Lakkakorpi, P. Evidence for the presence of a proton pump of the vacuolar H(+)-ATPase type in the ruffled borders of osteoclasts. J. Cell Biol. 1990: 111:1305-1311.
    59. Chatterjee, D., Chakraborty, M., Leit, M., Neff, L., Jamsa-Kellokumpu, S., Fuchs, R., Bartkiewicz, M., Hernando, N., Baron, R. The osteoclast proton pump differs in its pharmacology and catalytic subunits from other vacuolar H(+)-ATPases. J. Exp. Biol. 1992: 172:193-204.
    60. Sundquist, K. Characterization of ATP-dependent proton transport in medullary bone- derived microsomes. Bone Miner. 1993:20:17-29.
    61. Baron, R., Neff, L., Brown, W., Courtoy, P.J., Louvard, D., Farquhar, M.G. Polarized secretion of lysosomal enzymes: co-distribution of cation- independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J. Cell Biol. 1988:106:1863-1872.
    62. Palokangas, H., Mulari, M., Vaananen, H.K. Endocytic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts. J. Cell Sci. 1997:110:1767-1780.
    63. Takagi, M., Yagasaki, H., Baba, T., Baba, H. Ultrastructural visualization of selective peanut agglutinin binding sites in rat osteoclasts. J. Histochem. Cytochem. 1988:36:95-101.
    64. Kanehisa, J. & Heersche, J.N. Osteoclastic bone resorption: in vitro analysis of the rate of resorption and migration of individual osteoclasts. Bone 1988:9:73-79.
    65. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-b. Nat Med 1998: 2:1132-1136
    
    66. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 1996:13:793-802
    
    67. Steller H. Mechanisms and genes of cellular suicide. Science 1995: 267:1445-1449
    
    68. Parfitt AM 1990 Bone-forming cells in clinical conditions. In: Hall BK (ed) Bone. The Osteoblast and Osteocyte. Telford Press and CRC Press, Boca Raton, FL, vol 1:351-429.
    69. Frost HM In vivo osteocyte death. J Bone Joint Surg [Am] 1960: 42:138-143.
    70. Bellido T, Borba VZ, Roberson P, Manolagas SC Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 1997:138:3666-3676
    71. Noble BS, Stevens H, Loveridge N, Reeve J. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone 1997:20:273-282
    72. Hughes DE, Boyce BF Apoptosis in bone physiology and disease. Mol Pathol 1997:50:132-137.
    73. Bellido T, O'Brien CA, Roberson PK, Manolagas SC Transcriptional activation of the p21WAFl,CIPl,SDIl gene by interleukin-6 type cytokines—a prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem 1998:273:21137-21144.
    74. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. II: Formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect. 1996:45:387-99.
    75. Mundy GR. Bone Remodelling and its disorders. 2 ed. London: Martin Dunitz, 1996.
    76. Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering. Nat Med 1995: 1: 1322-1324.
    77. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996: 17: 175-185.
    78. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989: 3: 192-195.
    79. Muschler GF, Huber B, Ullman T, Barth R, Easley K, Otis JO, Lane JM. Evaluation of bone-grafting materials in a new canine, segmental spine fusion model. J Orthop Res 1993: 11: 514-524.
    80. Fillies T, Werkmeister R, Castro J, Homann C, Meyer U, Joos U. Material fracture: a long-term complication of rigid mandibular bridging systems. Oral Oncol 2001: 7: 374-378.
    81. Nakaoka R, Tabata Y, Ikada Y. Production of interleukin 1 from macrophages incubated with poly(DL-lactic acid) granules containing ovalbumin. Biomaterials 1996: 17: 2253-2258.
    82. Kaban LB. Biomedical technology revolution: opportunities and challenges for oral and maxillofacial surgeons. Int J Oral Maxillofac Surg 2002: 31: 1-12.
    83. Lexer E. Die Verwendung der freien Knochenplastik nebst Versuchen über Gelenkversteifung und Gelenktransplantation. Arch Klin Chir 1908: 86: 939-954.
    84. Urist MR. Formation by autoinduction. Science 1965: 150: 893.
    85.Gatti AM, Zaffe D, Poll GP. Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects. Biomaterials 1990: 11: 513-517.
    86. Krukowski M, Shively RA, Osdoby P, Eppley BL. Stimulation of craniofacial and intramedullary bone formation by negatively charged beads. J Oral Maxillofac Surg 1990: 48: 468-475.
    87. Rozema FR, Bos RR, Pennings AJ, Jansen HW. Poly(L-lactide) implants in repair of defects of the orbital floor: an animal study. J Oral Maxillofac Surg 1990: 48: 305-309.
    88. Roux FX, Brasnu D, Loty B, George B, Guillemin G. Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg 1988: 69: 510-513.
    89. Thaller SR, Hoyt J, Borjeson K, Dast A, Tesluk H. Reconstruction of calvarial defects with anorganic bovine bone mineral (Bio-Oss) in a rabbit model. J Craniofac Surg 1993: 4: 79-84.
    90. Mulliken JB, Glowacki J. Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg 1980: 65: 553-560.
    91. Constantino PD, Friedman CD, Jones K, Chow LC, Sisson GA. Experimental hydroxyapatite cement cranioplasty. Plast Reconstr Surg 1992: 90: 174-191.
    92. Dahlin C, Alberius P, Linde A. Osteopromotion for cranioplasty: an experimental study in rats using a membrane technique. J Neurosurg 1991: 74: 487-491.
    93. Ferguson D, Davis WL, Urist MR, Hurt WC, Allen EP. Bovine bone morphogenic protein (bBMP) fractioninduced repair of craniotomy defects in the rhesus monkey (Macaca speciosa). Clin Orthop 1987: 219: 251-258.
    94. Schliephake H. Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg 2002: 31: 469-484.
    95. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick R, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 1988: 242: 1528-1534.
    96. Glowacki J, Mulliken JB. Demineralized bone implants. Clin Plast Surg 1985: 12: 233-241.
    97. Mulliken JB, Kaban LB, Glowacki J. Induced osteogenesis: the biological principle and clinical applications. J Surg Res 1984: 37: 487—496.
    98. Swennen G, Dempf R, Schliephake H. Cranio-facial distraction osteogenesis: a review of the literature. Part II. Experimental studies. Int J Oral Maxillofac Surg 2002: 31: 123-135.
    99. Ohgushi H, Goldberg VM, Caplan AI. Repair of bone defects with marrow cells and porous ceramic: experiments in rats. Acta Orthop Scand 1989: 60: 334-339.
    100. Chen F, Mao T, Tao K, Chen S, Ding G, Gu X. Injectable bone. Br J Oral Maxillofac Surg 2003:41:240-243.
    101. Mooney DJ, Mikos AG. Growing new organs. Sci Am 1999: 280: 60-65.
    102. Vacanti CA, Bonasser LJ. An overview of tissue engineered bone. Clin Orthop 1999: 367: 375-381.
    103. Wiesmann HP, Joos U, Meyer U. Biological and biophysical principles in extra corporal bone tissue engineering. Part II. Int J Oral Maxillofac Surg 2004: 33: 523- 530.
    104. Langer R, Vacanti JP. Tissue engineering. Science. 1993 May 14;260(5110): 920-926
    105. Kneser U, Schaefer DJ, Munder B, Klemt C , Andree C, Stark GB. Tissue engineering of bone. Minimally Invasive Therapy & Allied Technologies. 2002: 11: 107-116.
    106. Lysaght MJ, Reyes J. The growth of tissue engineering. Tissue Eng 2001: 7:485-493.
    107. Loty C, Sautier JM, Boulekbache H, Kokubo T, Kim HM, Forest N. In vitro bone formation on a bone-like apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. J Biomed Mater Res 2000: 49: 423-434.
    108. Meyer U, Joos U, Szuwart T, Wiesmann HP. Mineralized 3D bone tissue engineered by osteoblasts cultured in a collagen gel. Tissue Eng 2001: 7: 671.
    109. Schliephake H, Knebel JW, Aufderheide M, Tauscher M. Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: An experimental pilot study in sheep. Int J Oral Maxillofac Surg 2001: 30: 531-537.
    110. Meyer U, Meyer T, Vosshans J, Joos U. Decreased expression of osteocalcin and osteonection in relation to high strains and decreased mineralization in mandibular distraction osteogenesis. J Craniomaxillofac Surg 1999: 27: 222-227.
    111. Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad Sci 2002: 961: 83-95.
    112. Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop 1980: 32: 294-307.
    113. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stomal stem cells: Nature, biology, and potential applications. Stem Cells 2001: 19:180-192.
    114. Dahir GA, Cui Q, Anderson P, Simon C, Joyner C, Triffitt JT, Balian G. Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clin Orthop 2000: 379:134-145.
    115. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976: 47: 327-359.
    116. Meyer U, Szulczewski HD, Moller K, Heide H, Jones DB. Attachment kinetics and differentiation of osteoblasts on different biomaterials. Cells Mater 1993: 3: 129-140.
    117. NuttallME, Patton AJ, OliveraDL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: Implications for osteopenic disorders. J Bone Miner Res 1998: 13:371-382.
    118. TRIFFITT JT, OREFFO ROC. Osteoblast lineage. In: Zaidi M, ed.: Advances in Organ Biology. Molecular and Cellular Biology of Bone, Advances in Organ Biology Series. Connecticut: JAI Press, Inc. 1998: 5B: 429-451.
    119. Szulczewski DH, Meyer U, Moller K, Stratmann U, Doty SB, Jones DB. Characterisation of bovine osteoclasts on an ionomeric cement in vitro. Cells Mater 1993: 3: 83-92.
    120. Bahrami S, Stratmann U, Wiesmann HP, Mokrys K, Dierichs R, Bruckner P, Szuwart T. Periosteally derived osteoblast-like cells differentiate into chondrocytes in suspension culture in agarose. Anat Rec 2000: 259: 124-130.
    121. Nakahara H, Goldberg VM, Caplan AI. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop 1992: 276:291-298.
    122. Park SR, Oreffo RO, Triffitt JT. Interconversion potential of cloned human marrow adipocytes in vitro. Bone 1999: 24: 549-554.
    123. Schantz JT, Hutmacher DW, Chim H, Ng KW, Lim TC, Teoh SH. Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplant 2002: 11: 125-138.
    124. Meyer U DH, Szulczewski HD, Barckhaus RH, Atkinson M, Jones DB. Biological evaluation of an ionomeric bone cement by osteoblast cell culture methods. Biomaterials 1993: 14: 917-924.
    125. Gundle R, Joyner CJ, Triffitt JT. Human bone tissue formation in diffusion chamber culture in vivo by bonederived cells and marrow stromal fibroblastic cells. Bone 1995: 16: 597-601.
    126. Nakahara H, Bruder SP, Haynesworth SE, Holecek JJ, Baber MA, Goldberg VM, Caplan AI. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 1990: 11: 181- 188.
    127. Ohgushi H, Goldberg VM, Caplan AI. Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res 1989: 7: 568-578.
    128. Grundel RE, Chapmann MW, Yee T, Moore DC. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna. Gin Orthop 1991:266:244-258.
    129. Ohguschi H, Goldberg VM, Caplan A. Repair of bone defects with marrow cells and porous ceramics. Acta Orthop Scand 1989: 60: 334-339.
    130. Jackson IT, Scheker LR, Vandervord JG, McLennan IG. Bone marrow grafting in the secondary closure of alveolar-palatal defects in children. Br J Plast Surg 1981: 34: 422-425.
    131. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991: 78: 55-62.
    132. Stewart K, Walsh S, Screen J, Jefferiss CM, Chainey J, Jordan GR, Beresford JN. Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells. J Bone Miner Res 1999: 14: 1345-1356.
    133. Egrise D, Martin D, Vienne A, Neve P, Schouten A. The number of fibroblastic colonies formed from bone marrow is decreased and the in vitro proliferation rate of trabecular bone cells increased in aged rats. Bone 1992: 13: 355-361.
    134. Quarto R, Thomas D, Liang T. Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 1995: 56: 123-129.
    135. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997: 64: 278-294.
    136. Gundle R, Joyner CJ, Triffitt JT. Human bone tissue formation in diffusion chamber culture in vivo by bone derived cells and marrow stromal fibroblastic cells. Bone 1995: 16: 597-601.
    137. Pittinger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999: 284: 143-147.
    138. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stomal stem cells: Nature, biology, and potential applications. Stem Cells 2001: 19: 180-192.
    139. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997: 64: 278-294.
    140. Jaiswal N, Haynesworth SE, Caplan Al, Bruder SP. Osteogenic differentiation of purified, cultureexpanded human mesenchymal stem cells in vitro. J Cell Biochem 1997: 64: 295-312.
    141. Joyner CJ, Bennett A, Triffitt JT. Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies. Bone 1997: 21: 1-6.
    142. Meyer U, Meyer T, Jones DB. Attachment kinetics proliferation rates and vinculin assembly of bovine osteoblasts cultured on different pre-coated artificial substrates. J Mat Sci Mater Med 1998:9:301-307.
    143. Vacanti CA, Kim W, Upton J,Mooney D, Vacanti JP. The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repair of bone defects. Tissue Eng 1995: 1: 301-308.
    144. Bruder SP, Jaiswal N, HaynesworthSE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997: 64: 278-294.
    145. Nakahara H, Bruder SP, Goldberg VM, Caplan AI. In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop 1990: 259: 223-232.
    146. Pittinger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999: 284: 143-147.
    147. Perka C, Schultz O, Spitzer RS, Llndenhayn K, Burmester GR, Sittinger M. Segmental bone repair by tissue engineered periosteal cell transplants with bioresobable fleece and fibrin scaffolds in rabbits. Biomaterials 2000: 21: 1145-1153.
    148. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997: 64: 295-312.
    149. Plate U, Arnold S, Stratmann U, Wiesmann HP, Hohling HJ. General principle of ordered apatitic crystal formation in enamel and collagen rich hard tissues. Connect Tissue Res 1998: 38: 149-157.
    150. Bahrami S, Stratmann U, Wiesmann HP, Mokrys K, Dierichs R, Bruckner P, Szuwart T. Periosteally derived osteoblast-like cells differentiate into chondrocytes in suspension culture in agarose. Anat Rec 2000: 259: 124-130.
    151. VacantiCA, Kim W, Upton J,Mooney D, Vacanti JP. The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repair of bone defects. Tissue Eng 1995: 1: 301-308.
    152. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999: 85: 221-228.
    153. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Wltzenbichle B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997: 275: 964-967.
    154. AL-KHALDI A, ELIOPOULOS N, LACHAPELLE K, GALIPEAU J, EGF-dependent angiogenic response induced bx in situ cultured marrow stromal cells. Anaheim, Calif: American Heart Association Scientific Session Nov. 2001: 11-14.
    155. Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Ashahara T, Kalka C. Determination of bone marrow-derived endothelial progenitor cell significance to angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 2002: 30: 967-972.
    156. Chung S, Hazen A, Levine JP, Baux G, Olivier WA, Yee HT, Margiotta MS, Karp NS, Gurtner GC. Vascularized acellular dermal matrix island flaps for the repair of abdominal muscle defects. Plast Reconstr Surg 2003: 111: 225-232.
    157. Deutsch M, Meinhart J, Fischlein T, Preiss P, Zilla P. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: A 9-year experience. Surgery 1999: 126: 847-855.
    158. Jarrell BE, Williams SK, Stokes G, Hubbard FA, Carabasi RA, Koople E, Greener D, Pratt K, Moritz MJ, Radomski J. Use of freshly isolated capillary endothelial cells for the immediate establishment of a monolayer on a vascular graft at surgery. Surgery 1986: 100: 392-399.
    159. L'Heureux N, Paquet S, Labbe R, Germain L, Auger FAA. A completely biological tissue-engineered human blood vessel. FASEB J 1998: 12: 47-56.
    160. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986: 231: 397-400.
    161. Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Bischoff J, Mayer JE. Functional smalldiameter neovessels created using endothelial progenitor cells expanded in situ. Nat Med 2001: 7: 996-997.
    162. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J.Biomed. Mater. Res 2001: 55:141-150.
    163. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003: 24:2363-2378.
    164. Salgado AJ, Coutinho OP, Resi RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004 : 4: 743-765.
    165. Schliephake H. Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg 2002: 31: 469-484.
    166. Bostrom M, Lane JM, Tomin E, Browne M, Berberian W, Turek T, Smith J, Wozney J, Schildhauer T. Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop 1996: 327: 272-282.
    167. Gerhart TN, Kirker-Head CA, Kriz MJ, Holtrop ME, Hennig GE, Hipp J, Schelling SH, Wang E. Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop 1993: 293: 317-326.
    168. Radomsky ML, Thompson AY, Spiro RC, Poser JW. Potential role of fibroblast growth factor in enhancement of fracture healing. Clin Orthop 1998: 355: 283-293.
    169. Radomsky ML, Aufdemorte TB, Swain LD, Fox WC, Spiro RC, Poser JW. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J Orthop Res 1999: 17: 607-614.
    170. Yasko AW, Lane JM, Fellinger EJ, Rosen V, Wozney JM, Wang EA. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. J Bone Joint Surg Am 1992: 74: 659-670.
    171. Schliephake H. Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg 2002: 31: 469-484.
    172. Terheyden H, Warnke P, Dunsche A, Jepsen S, Brenner W, Palmie S, Toth C, Rueger DR. Mandibular reconstruction with prefabricated vascularized bone grafts using recombinant human osteogenic protein-1: an experimental study in miniature pigs. Part II. Transplantation. Int J Oral Maxillofac Surg 2001: 30: 469-478.
    173. Schmitt JM, Hwang K, Winn SR, Hollinger JO. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res 1999: 17: 269-278.
    174. Lieberman JR, Le LQ, WuL, Finerman GA, Berk A, Witte ON, Stevenson R. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic boneformation in rodents. J Orthop Res 1998:16: 330-339.
    175. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 1988:242: 1528— 1534.
    176.Hong L, Tabata Y, Yamamoto M, Miyamoto S, Yamada K, Hashimoto N, Ikada Y. Comparison of bone regeneration in a rabbit skull defect by recombinant human BMP-2 incorporated in biodegradable hydrogel and in solution. J Biomater Sci Polymer Ed 1998: 9: 1001-1014.
    177. Wheeler DL, Chamberland DL, Schmitt JM, Buck DC, Brekke JH, Hollinger JO, Joh SP, Suh KW. Radiomorphometry and biomechanical assessment of recombinant human bone morphogenetic protein 2 and polymer in rabbit radius osteotomy model. J Biomed Mater Res 1998: 43:365-373.
    178. Friesel RE, Maciag T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J 1995: 9: 919-925.
    179. Lind M. Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation. Acta Orthop Scand 1998: 283: 2-37.
    
    180. Harada H, Kettunn P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 1999:147: 105-120.
    181. Alden TD, Beres EJ, Laurent JS, Engh JA, Das S, London SD, Jane JA, Hudson B, Helm GA. The use of bone morphogenetic protein gene therapy in craniofacial bone repair. J Craniofac Surg 2000: 11:24-30.
    182. Chang SC, Chuang HL, Chen YR, Chen JK, Chung HY, Lu YL, Lin HY, Tai CL, Lon J. Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther 2003: 10: 2013-2019.
    183. Chang SC, Wei FC, Chuang H, Chen YR, Chen JK, Lee KC, Chen PK, Tai CL, Lon J. Ex vivo gene therapy in autologous critical-size craniofacial bone regeneration. Plast Reconstr Surg 2003:112: 1841-1850.
    184. Kubler NR, Wurzler K, Reuther JF, Faller G, Sieber E, Kirchner T, Sebald W. EHBMP-2. Initial BMP analog with osteoinductive properties. Mund Kiefer Gesichtschir 1999: 1:134-139.
    185. Bonadio J, Cunningham ML. Genetic approaches to craniofacial tissue repair. Ann NY Acad Sci 2002: 961: 48-57.
    186. Terheyden H, Warnke P, Dunsche A, Jepsen S, Brenner W, Palmie S, Toth C, Rueger DR. Mandibular reconstruction with prefabricated vascularized bone grafts using recombinant human osteogenic protein-1: an experimental study in miniature pigs. Part II. Transplantation. Int J Oral Maxillofac Surg 2001: 30: 469-478.
    187.李彬等.骨组织工程中的应力与生长.国外医学生物医学工程分册.2003:26(3):129-134.
    188. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004 :22(2):80-86.
    189. Sikavitasas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear force. Proc Natl Acad Sci USA. 2003:100: 14683-14688.
    190. Sikavitsas VI, Bancroft GN, Mikos AG. Formation of three-dimensional cell/polymer in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res.2002 : 62:136-148.
    191. Meyer U, Joos U, Wiesmann HP. Biological and biophysical principles in extracorporal bone tissue engineering. Part I. Int J Oral Maxillofac Surg, 2004:33: 325-332.
    192. Declercq H, Van den Vreken N, De Maeyer E, et al. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials, 2004:25: 757-768.
    193. Holy CE, Fialkov JA, Davies JE, et al. Use of a biomimetic strategy to engineer bone. J Biomed Mater Res A, 2003:65: 447-453.
    194. Dai XM, Zong XH, Akhter MP, et al. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res, 2004:19: 1441-1451.
    195. Sakagami N, Amizuka N, Li M, et al. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice. Micron. 2005: 36: 688-695.
    196. Irie K, Alpaslan C, Takahashi K, Kondo Y, Izumi N, Sakakura Y, Tsuruga E, Nakajima T, Ejiri S, Ozawa H, Yajima T. Osteoclast differentiation in ectopic bone formation induced by recombinant human bone morphogenetic protein 2 (rhBMP-2). J Bone Miner Metab. 2003:21:363-369.
    197. Takami M, Woo JT, Nagai K. Osteoblastic cells induce fusion and activation of osteoclasts through a mechanism independent of macrophage-colony-stimulating factor production. Cell Tissue Res. 1999 : 298: 327-334.
    1. Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy GR, Jones S J, Boyde A, Suda T. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology. 1988 :122:1373-1382.
    
    2. Takami M, Woo JT, Nagai K. Osteoblastic cells induce fusion and activation of osteoclasts through a mechanism independent of macrophage-colony-stimulating factor production. Cell Tissue Res. 1999 : 298: 327-334.
    3. Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev. 1996:17: 308-332.
    4. Burger EH, Van der Meer JWM, van de Gevel JS, Gribnau JC, Thesingh CW, van Furth R. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes. J Exp Med 1982:156:1604-1614.
    5. Testa NG, Allen TD, Lajtha LG, Onions D, Jarrets O. Generation of osteoclasts in vitro. J Cell Sci. 1981:44:127-137.
    6. Ibbotson KJ, Roodman GD, McManus LM, Mundy GR Identification and characterization of osteoclast-like cells and theirprogenitors in cultures of feline marrow mononuclear cells. J Cell Biol. 1984:94:471-480
    7. Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy GR, Jones SJ, Boyde A, Suda T Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology. 1988:122:1373-1382.
    8. Roodman GD, Ibbotson KJ, MacDonald BR, Kuehl TJ, Mundy GR 1,25-(OH), vitamin Ds causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci USA. 1985: 82:8213-8217
    9. MacDonald BR, Takahashi N, McManus LM, Holahan J, Mundy GR, Roodman GD. Formation of multinucleated cells that respond to osteotropic hormones in long-term human bone marrow cultures. Endocrinology. 1987:120:2326-2333
    10. Thavarajah M, Evans DB, Kanis JA. 1,25(OH),D, induces differentiation of osteoclast-like cells from human bone marrow cultures. Biochem Biophys Res Commun. 1991:176:1189-1195
    11. Kassem M, Mosekilde L, Rungby J, Mosekilde L, Melsen F, Eriksen EF. Formation of osteoclasts and osteoblast-like cells in long-term human bone marrow cultures. APMIS. 1991:99:262-268
    12. Udagawa N, Takahashi N, Akatsu T, Sasaki T, Yamaguchi A, Kodama H, Martin TJ, Suda T. The bone marrow derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology. 1989:125:1805-1813.
    
    13. Akatsu T, Tamura T, Takahashi N, Udagawa N, Tanaka S, Sasaki T, Yamaguchi A, Nagata N, Suda T. Preparation and characterization of a mouse osteoclast-like multinucleated cell population. J Bone Miner Res. 1992:7:1297-1306
    14. Tamura T, Takahashi N, Akatsu T, Sasaki T, Udagawa N, Tanaka S, Suda T. New resorption assay with mouse osteoclast-like multinucleated cells formed in vitro. J Bone Miner Res. 1993:8:953-960.
    15. Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation. Endocr Rev. 1992:13:66-80.
    16. Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N. Modulation of osteoclast differentiation by local factors. Bone. 1995:17:87S-91S.
    17. Osdoby P, Martini MC, Caplan AI. Isolated osteoclasts and their presumed progenitor cells, the monocyte, in culture. J ExpZool. 1982:224:331-334
    18. Zambonin-Zallone A, Teti A, Primavera MV. Isolated osteoclasts in primary culture: first observations on structure and survival in cultured media. Anat Embryol (Berl). 1982:165:405-413
    19. Chambers TJ, Thomson BM, Fuller K. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci. 1984:66:383-399
    20. Tezuka K, Sato T, Kamioka H, Nijweide PJ, Tanaka K, Matsuo T, Ohta M, Kurihara N, Hakeda Y, Kumegawa M. Identification of osteopontin in isolated rabbit osteoclasts. Biochem Biophys Res Commun. 1992:186:911 -917
    21. Tezuka K, Tezuka Y, Maejima A, Sato T, Nemoto K, Kamioka H, Hakeda Y, Kumegawa M. Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J Biol Chem. 1994:269:1106-1109
    1.王洪复(主编)2001骨细胞图谱与骨细胞体外培养技术。上海科学技术出版社。
    2. Frost HM 1963 Remodeling dynamics. In: Frost HM (ed) Bone Remodeling Biodynamics. Little Brown, Boston, pp 65-78.
    3. Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev. 1996:17: 308-332.
    4. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-EI cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 1992:7:683-692.
    5. Owen, T. A, Aronow, M., Shalhoub, V., Barone, L. M., Wilming, L., Tassinri, M. S., Kennedy, M. B., Pockwines, S., Lian J. B., and Stein, G. S. Progressive development of the rat osteoblast phenotype in vitro: Reciprocal relationship in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Physiol. 1990:143:420-430.
    6. Deyama Y, Takeyama S, Koshikawa M, Shirai Y, Yoshimura Y, Nishikata M, Suzuki K, Matsumoto A. Osteoblast maturation suppressed osteoclastogenesis in coculture with bone marrow cells. Biochem Biophys Res Commun. 2000:274:249-54.
    7. Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ. Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA. 1981:78:3204-3203.
    8. Bonewald LF, Mundy GR. Role of transforming growth factor-b in bone remodeling. Clin Orthop. 1990:250:261-276.
    9. Suda T, Nakamura I, Jimi E, Takahaschi N. Modulation of osteoclast differentiation. Endocr Rev. 1992:13:66-80.
    10. Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Mosely JM, Martin TJ, Suda T. Osteoblastic cells are involved in osteoclast formation. Endocrinology 1988:123:2600-2602.
    11. Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest. 1996:97:1732-1740.
    12. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G. A Cbfal-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 1999:13:1025-1036.
    13. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell. 1997:89:747-754.
    14. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Jishimoto T. Targeted disruption of cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997: 89:755-764.
    15. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997:89:765-771.
    16. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. The effect of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology. 1997:138:4013-4021.
    17. Lacey DL, Timms E, Tan HL, Kelley MJ. Dunstan CR, Burgess T, Elliot R, Colombero A, Elliot G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998: 93:165-176.
    18. Yasuda H, Shima N, Nagkagawa N, Yamaguchi K, Kinosaki M, Mochizuchi SI, Tomayasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastgenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998:95:3597-602.
    19. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennet L, Boone T, Shimamoto G, DeRose M, Eliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Huges TM, Hill D, Pattosion W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Amgen EST Program and Jboyle WJ. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997:89:309-319.
    20. Yasuda H, Shima N, Nakagawa N, Mochizuchi SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K. Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K. Identity of osteoclastogenesis factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998:39:1329-1337.
    21. Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, Moore G, Truneh A. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic cells. Gene.1997:204:35-46.
    22. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Hxu W, Lacey DL, Boyle WK, Simonet WS. Osteoprotegerindeficient mice develop early onset osteoporosis and arterial calcification. Gene Dev. 1998:12:1260-1268
    23. Mizuno A, Amizuka S, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun . 1998:247:610-615
    24. Burgess TL, Quian Y-X, Kaufman S, Ring BD, Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ, Dunstan CR, Hu S, Lacey DL. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 1999:145:527-538.
    25. Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, Morinaga T, Higashio K. RANK is the essential signaling receptor of osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998:253:395—400.
    
    26. Anderson MA, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997:390:175-179
    27. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan H-L, Elliot G, Kelley MJ, Sarosi I, Wang L, Xia X-Z, Elliot R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ. Tumor necrosis receptor family member RANK mediated osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA. 1999:96:3540-3545.
    28. Quinn JMW, Elliott J, Gilliespie MT, Martin TJ. A combination of osteoclast differentiation factor and macrophages-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology. 1998: 139:4424-4427.
    29. Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC & Khosla S. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999 140:4382-4389.
    30. Thomas GP, Baker SUK, Eisman JA, Gardiner EM. Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. Journal of Endocrinology. 2001: 170: 451-460.
    31. Martin TJ & Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. Journal of Cellular Biochemistry. 1994:56: 357-366.
    32. Nakagawa K, Abukawa H, Shin MY, Terai H, Troulis MJ, Vacanti JP. Osteoclastogenesis on tissue-engineered bone. Tissue Eng. 2004 :10:93-100.
    33. Gori F, Hofbauer LC, Dunstan CR, Spelsberg TC, Khosla S, Riggs BL. The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology. 2000:141:4768-4776.
    34. Lees RL, Heersche JN. Macrophage colony stimulating factor increases bone resorption in dispersed osteoclast cultures by increasing osteoclast size. J Bone Miner Res. 1999:14:937-945.
    35. Lees, R.L., Sabharwal, V.K., Heersche, J.N.M. Resorptive state and cell size influence intracellular PH regulation in rabbit osteoclasts cultured on collagen-hydroxyapatite films. Bone. 2001:28:187-194
    
    36. Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev 1996:17:308-32.
    
    37. Tsurukai T, Udagawa N, Matsuzaki K, Takahashi N, Suda T. Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab 2000:18:177-84.
    38. Kondo Y, Irie K, Ikegame M, Ejiri S, Hanada K, Ozawa H. Role of stromal cells in osteoclast differentiation in bone marrow. J Bone Miner Metab. 2001; 19(6):352-8.
    39. Nagata M, Ohashi Y, Ozawa H. A histochemical study of the development of premaxilla and maxilla during secondary palate formation in the mouse embryo. Arch Histol Cytol. 1991:54:267-278.
    40. Irie K, Alpaslan C, Takahashi K, Kondo Y, Izumi N, Sakakura Y, Tsuruga E, Nakajima T, Ejiri S, Ozawa H, Yajima T. Osteoclast differentiation in ectopic bone formation induced by recombinant human bone morphogenetic protein 2 (rhBMP-2). J Bone Miner Metab. 2003:21:363-369.
    41. Franceschi RT, Iyer BS. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res. 1992 :7:235-246.
    42. Marsh ME, Munne AM, Vogel JJ, Cui Y, Franceschi RT. Mineralization of bone-like extracellular matrix in the absence of functional osteoblasts. J Bone Miner Res. 1995:10:1635-1643.
    43. Chen TL, Bates RL, Dudley A, Hammonds RG Jr, Amento EP. Bone morphogenetic protein-2b stimulation of growth and osteogenic phenotypes in rat osteoblast-like cells: comparison with TGF-beta 1. J Bone Miner Res. 1991:6:1387-1393.
    44. Boden SD, McCuaig K, Hair G, Racine M, Titus L, Wozney JM, Nanes MS. Differential effects and glucocorticoid potentiation of bone morphogenetic protein action during rat osteoblast differentiation in vitro. Endocrinology. 1996 :137:3401-3407.
    45. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell. 1997 :30;89:747-754.
    46. Chang DJ, Ji C, Kim KK, Casinghino S, McCarthy TL, Centrella M. Reduction in transforming growth factor beta receptor I expression and transcription factor CBFal on bone cells by glucocorticoid. J Biol Chem. 1998:273:4892-4896.
    47. Xiao G, Cui Y, Ducy P, Karsenty G, Franceschi RT. Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol. 1997:11:1103-1113.
    48. Bianco P, Fisher LW, Young MF, Termine JD, Robey PG. Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int. 1991:49:421-426.
    49. Chen J, Shapiro HS, Sodek J. Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res. 1992:7:987-997.
    50. Boskey AL. Osteopontin and related phosphorylated sialoproteins: effects on mineralization. AnnNYAcad Sci. 1995:760:249-256.
    51. Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res. 1999:14:893-903.
    52. Grigoriadis AE, Petkovich PM, Ber R, Aubin JE, Heersche JN. Subclone heterogeneity in a clonally-derived osteoblast-like cell line. Bone. 1985:6:249-256.
    53. Liu F, Malaval L, Aubin JE. The mature osteoblast phenotype is characterized by extensive plasticity. Exp Cell Res. 1997:232:97-105.
    54. Malaval L, Liu F, Roche P, Aubin JE. Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J Cell Biochem. 1999:74:616-627.
    55. Tanaka Y, Maruo A, Fujii K, Nomi M, Nakamura T, Eto S, Minami Y. Intercellular adhesion molecule 1 discriminates functionally different populations of human osteoblasts: characteristic involvement of cell cycle regulators. J Bone Miner Res. 2000:15:1912-1923.
    56. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000:21:115-137.
    57. Malone JD, Teitelbaum SL, Griffin GL, Senior RM, Kahn AJ. Recruitment of osteoclast precursors by purified bone matrix constituents. J Cell Biol. 1982:92:227-230.
    58. Chenu C, Colucci S, Grano M, Zigrino P, Barattolo R, Zambonin G, Baldini N, Vergnaud P, Delmas PD, Zallone AZ. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J Cell Biol. 1994:127:1149-1158.
    59. Ishida M, Amano S. Osteocalcin fragment in bone matrix enhances osteoclast maturation at a late stage of osteoclast differentiation. J Bone Miner Metab. 2004:22:415-429
    
    60. Yovich S, Seydel U, Papadimitriou JM, Nicholson GC, Wood DJ, Zheng MH. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization. Histochem J. 1998:30:267-273.
    61. Irie K, Alpaslan C, Takahashi K, Kondo Y, Izumi N, Sakakura Y, Tsuruga E, Nakajima T, Ejiri S, Ozawa H, Yajima T. Osteoclast differentiation in ectopic bone formation induced by recombinant human bone morphogenetic protein 2 (rhBMP-2). J Bone Miner Metab. 2003:21:363-369.
    62. Takami M, Woo JT, Nagai K. Requirement of osteoblastic cells for the fusion of preosteoclasts. J. Bone Miner. Metab. 1998 16: 151-157.
    63. Wesolowski G, Duong LT, Lakkakorpi PT, Nagy RM, Tezuka K, Tanaka H, Rodan GA, Rodan SB. Isolation and characterization of highly enriched, prefusion mouse osteoclastic cells. Exp Cell Res. 1995:219:679-686.
    64. Lian J, Stewart C, Puchacz E, Mackowiak S, Shalhoub V, Collart D, Zambetti G, Stein G. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci U S A. 1989:86:1143-1147.
    65. Bellows CG, Reimers SM, Heersche JN. Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell Tissue Res. 1999:297:249-259.
    1. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski M J, Mikos AG. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res. 1997:36:17-28.
    2. Aaron W. Pederson, Jeffrey W. Ruberti, Phillip B. Messersmith. Thermal assembly of a biomimetic mineral/collagen composite. Biomaterials. 2003:24:4881-4890.
    3. Langer, R., and Vacanti, J.P. Tissue engineering. Science. 1993:260:920-926.
    4. Putnam, A.J., and Mooney, D.J. Tissue engineering using synthetic extracellular matrices. Nat Med. 1996:2:824-826.
    5. Wake, M.C., Patrick, C.W., Jr., and Mikos, A.G. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant. 1994:3:339-343.
    6. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 1983:96:191-198.
    7. Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res. 1994:9:843-854.
    8. Franceschi RT, Iyer BS. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res. 1992:7:235-246.
    9. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 1992:7:683-692.
    10. Stein GS, Lian JB, Owen TA. Relationship of cell growth to thefregulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 1990:4:3111-3123.
    11. Shea LD, Wang D, Franceschi RT, Mooney DJ. Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng. 2000:6:605-617.
    12. Bagambisa FB, Joos U, Schilli W. A scanning electron microscope study of the ultrastructural organization of bone mineral. Cells Mater 1993: 3: 93-102.
    13. Meyer U, Meyer T, Vosshans J, Joos U. Decreased expression of osteocalcin and osteonection in relation to high strains and decreased mineralization in mandibular distraction osteogenesis. J Craniomaxillofac Surg 1999: 27: 222-227.
    14. Meyer U, Joos U. Biological and biophysical principles in extracorporal bone tissue engineering Part I. Int. J. Oral Maxillofac. Surg. 2004: 33:325-332.
    15. Wu LN, Ishikawa Y, Sauer GR, Genge BR, Mwale F, Mishima H, Wuthier RE. Morphological and biochemical characterization of mineralizing primary cultures of avian growth plate chondrocytes: Evidence for cellular processing of Ca2(?) and Pi prior to matrix mineralization. J Cell Biochem 1995: 57: 218-237.
    16. Boyde A, Sela J. Scanning electron microscope study of separated calcospherites from the matrices of different mineralizing systems. Calcif Tissue Res 1978: 26: 47-49.
    17. Ornoy A, Langer Y. Scanning electron microscopy studies on the origin and structure of matrix vesicles in epiphyseal cartilage from young rats. Isr J Med Sci 1978: 14: 745-752.
    18. Wu LN, Yoshimori T, Genge BR, Sauer GR, Kirsch T, Ishikawa Y, Wuthier RE. Characterization of the nucleational core complex responsible for mineral induction by growth plate cartilage matrix vesicles. J Biol Chem 1993: 268: 25084-25094.
    19. Bellows CG, Aubin JE, Heershe JNM, Antosz ME. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell population. Calcif Tissue Int 1986: 38: 143-154.
    20. Benayahu D, Kletter Y, Zipori D, Wientroub S. Bone marrow-derived stromal cell line expressing oteoblastic phenotype in vitro and osteogenic capacity in vivo. J Cell Physol 1989: 140: 1-7.
    21. Plate U, Arnold S, Stratmann U, Wiesmann HP, Hohling HJ. General principle of ordered apatitic crystal formation in enamel and collagen rich hard tissues. Connect Tissue Res 1998: 38: 149-157.
    22. Wiesmann HP, Cm L, Stratmann U, Plate U, Fuchs H, Joos U, Hohling HJ. Sutural mineralization of rat calvaria characterized by atomic-force microscopy and transmission electron microscopy. Cell Tissue Res 1998: 294:93-97.
    23. Wiesmann HP, Tkotz T, Joos U, Zierold K, Stratmann U, Szuwart T,Plate U, Hohling HJ. Magnesium in newly formed dentin mineral of rat incisor. JBoneMiner Res 1997: 12: 380-383.
    24. Aubin JE. Osteoprogenitor cell frequency in rat bone marrow stromal populations: Role for heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem 1999: 72: 396-410.
    25. Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: Effect of asorbic acid beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 2000: 21: 1095-1102.
    26. Boskey AL. Matrix protein and mineralization: An overview. Connect Tissue Res 1996: 35: 357-363.
    27. Ahmad M, McCarthy MB, Gronowicz G. An in vitro model for mineralization of human osteoblast-like cells on implant materials. Biomaterials 1989: 20: 211-220.
    28. Meyer U, Wiesmann HP, Meyer T, Schulze-Osthoff D, Jasche J, Kruse-Losler B, Joos U. Microstructural investigations of strain-related collagen mineralization. Br J Oral Maxillofac Surg 2001:39:381-389.
    29. Declercq H, Van den Vreken N, De Maeyer E, Verbeeck R, Schacht E, De Ridder L, Cornelissen M. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials. 2004: 25:757-768.
    30. Huang W, Carlsen B, Wulur I, Rudkin G, Ishida K, Wu B, Yamaguchi DT, Miller TA. BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold. Exp Cell Res. 2004: 299:325-334.
    31. Holy CE, Fialkov JA, Davies JE, Shoichet MS. Use of a biomimetic strategy to engineer bone. J Biomed Mater Res A. 2003:65:447-453.
    32. Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004:32:148-159.
    33. Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun. 2002:292:1-7.
    34. Yaszemski MJ, Payne RG, Hayes WC, Langer R, et al. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials, 1996:17:175-185.
    35. Bruder, S.R, and Fox, B.S. Tissue engineering of bone: cell based strategies. Clin. Orthop. Relat. Res. 1999:367:S68-83.
    36. Caplan, A.I., and Goldberg, V.M. Principles of tissue engineered regeneration of skeletal tissues. Clin. Orthop. Relat. Res. 1999:367:S12-16.
    37. Caplan, A.I. Embryonic development and the principles of tissue engineering. Novartis Found Symp. 2003:249:17-25
    38. Salgado, A.J., Coutinho, O.P., Resi, R.L. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004:4:743-765.
    39. Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004: 32:148-159.
    40. Meyer U, Joos U, Wiesmann HP. Biological and biophysical principles in extracorporal bone tissue engineering. Part I. Int J Oral Maxillofac Surg. 2004:33:325-332.
    41. Phan TC, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol. 2004:19: 1325-1344.
    42. Oursler, M.J. Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. J. Bone Miner. Res. 1994:9:443-452.
    43. Quinn, J.M., Itoh, K., Udagawa, N., Hausler, K., Yasuda, H., Shima, N., Mizuno, A., Higashio, K., Takahashi, N., Suda, T., Martin, T.J., Gillespie, M.T. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J. Bone Miner. Res. 2001:16:1787-1794.
    44. Itoh, K., Udagawa, N., Katagiri, T., Iemura, S., Ueno, N., Yasuda, H., Higashio, K., Quinn, J.M., Gillespie, M.T., Martin, T.J., Suda, T., Takahashi, N. Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand. Endocrinology. 2001:142:3656-3662.
    45. Katagiri, T., Takahashi, N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis.2002:8:147-159.
    46. Falany, M.L., Thames, A.M. III, McDonald, J.M., Blair, H.C., McKenna, M.A., Moore, R.E., Young, M.K., Williams, J.P. Osteoclasts secrete the chemotactic cytokine mim-1. Biochem. Biophys. Res. Commun. 2001:281:180-185.
    47. Ponomareva, L.V., Wang, W., Koszewski, N.J., Williams, J.P. Mim-1, an osteoclast secreted chemokine, stimulates differentiation, matrix mineralization and increased Vitamin D receptor binding to the VDRE of osteoblastic precursor cells. JBMR. 200:217:S 155.
    48. Kubota, K., Sakikawa, C, Katsumata, M., Nakamura, T., Wakabayashi, K. Platelet-derived growth factor BB secreted from osteoclasts acts as an osteoblastogenesis inhibitory factor. J. Bone Miner. Res. 2002:17:257-265.
    49. Kiviranta, R., Morko, J., Uusitalo, H., Aro, H.T., Vuorio, E., Rantakokko, J. Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K. J. Bone Miner. Res. 2001:16:1444-1452.
    50. Troen BR. Molecular mechanisms underlying osteoclast formation and activation. Experimental Gerontology. 2003:38:605-614.
    51. Dai XM, Zong XH, Akhter MP, Stanley ER. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res. 2004:19: 1441-1451.
    52. Sakagami N, Amizuka N, Li M, Takeuchi K, Hoshino M, Nakamura M, Nozawa-Inoue K, Udagawa N, Maeda T. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice. Micron. 2005:36: 688-695.
    53.Ejiri S. The preosteoclast and its cytodifferentiation into the osteoclast: ultrastructural and histochemical studies of rat fetal parietal bone. Arch Histol Jpn. 1983:46: 533-557.
    54. Noble BS, Reeve J. Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol. 2000:159:7-13.
    55. Palumbo C, Ferretti M, Ardizzoni A, Zaffe D, Marotti G. Osteocyte-osteoclast morphological relationships and the putative role of osteocytes in bone remodeling. J Musculoskelet Neuronal Interact. 2001:1:327-332.
    56. Gu G, Mulari M, Peng Z, Hentunen TA, Vaananen HK. Death of osteocytes turns off the inhibition of osteoclasts and triggers local bone resorption. Biochem Biophys Res Commun. 2005:335:1095-1101.
    57. Lynch MP, Capparelli C, Stein JL, Stein GS, Lian JB. Apoptosis during bone-like tissue development. J Cell Biochem. 1998:68: 31-49.
    58. Malaval, L., Liu, R, Roche, R, Aubin, J.E. Kinetics of osteoprogenitor proliferation and osteoblast differentiation. J Cell Biochem. 1999:74:616-627.
    59. Vignery A. Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol. 2005:15:188-193.
    60. Lees RL, Heersche JN. Macrophage colony stimulating factor increases bone resorption in dispersed osteoclast cultures by increasing osteoclast size. J Bone Miner Res. 1999:14: 937-945.
    61. Lees RL, Sabharwal VK, Heersche, JNM. Resorptive state and cell size influence intracellular PH regulation in rabbit osteoclasts cultured on collagen-hydroxyapatite films. Bone. 2001:28:187-194.
    62. Gong L, Hoshi K, Ejiri S, Nakajima T, Shingaki S, Ozawa H. Bisphosphonate incadronate inhibits maturation of ectopic bone induced by recombinant human bone morphogenetic protein 2. J Bone Miner Metab. 2003:21: 5-11.
    63. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000:21: 115-137.
    1. Caplan Al, Goldberg V.M. Principles of tissue engineered regeneration of skeletal tissues. Clin Orthop Relat Res. 1999: 367: S12-16.
    2. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000: 21:115-137
    3. Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev. 1996: 17: 308-332.
    4. Yaszemski M J, Payne RG, Hayes WC, Langer R, et al. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996: 17: 175-185.
    5. Caplan AI. Embryonic development and the principles of tissue engineering. Novartis Found Symp. 2003:249: 17-25
    6. Meyer U, Joos U, Wiesmann HP. Biological and biophysical principles in extracorporal bone tissue engineering. Part I. Int J Oral Maxillofac Surg. 2004:33: 325-332.
    7. Declercq H, Van den Vreken N, De Maeyer E, et al. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials. 2004: 25: 757-768.
    8. Holy CE, Fialkov JA, Davies JE, et al. Use of a biomimetic strategy to engineer bone. J Biomed Mater Res A. 2003: 65: 447-453
    9. Phan TC, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol. 2004: 19: 1325-1344.
    10. Dai XM, Zong XH, Akhter MP, et al. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res, 2004, 19: 1441-1451.
    11. Sakagami N, Amizuka N, Li M, et al. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice. Micron. 2005:36: 688-695.
    12. Tsurukai T, Udagawa N, Matsuzaki K, et al. Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab. 2000: 18: 177-184.
    13. Chenu C, Colucci S, Grano M, et al. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium- mediated intracellular signaling in human osteoclast-like cells. J Cell Biol. 1994: 127:1149-1158.
    14. Gerstenfeld LC. Osteopontin in skeletal tissue homeostasis: an emerging picture of the autocrine/paracrine functions of the extracellular matrix. J Bone Miner Res. 1999: 14: 850-855.
    15. Yovich S, Seydel U, Papadimitriou JM, et al. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polari- zation. Histochem J. 1998: 30: 267-273.
    16. Kondo Y, Irie K, Ikegame M, et al. Role of stromal cells in osteoclast differentiation in bone marrow. J Bone Miner Metab. 2001: 19: 352-358.
    17. Nagata M, Ohashi Y, Ozawa H. A histochemical study of the development of premaxilla and maxilla during secondary palate formation in the mouse embryo. Arch Histol Cytol. 1991: 54: 267-278.
    18. Irie K, Alpaslan C, Takahashi K, et al. Osteoclast differentiation in ectopic bone formation induced by recombinant human bone morphogenetic protein 2 (rhBMP-2). J Bone Miner Metab. 2003:21:363-369.
    19. akami M, Woo JT, Nagai K. Requirement of osteoblastic cells for the fusion of preosteoclasts. J. Bone Miner. Metab. 1998: 16: 151-157.
    20. Nakagawa K, Abukawa H, Shin MY, et al. Osteoclastogenesis on tissue-engineered bone. Tissue Eng. 2004: 10: 93-100.
    21. Deyama Y, Takeyama S, Koshikawa M, et al. Osteoblast maturation suppressed osteoclastogenesis in coculture with bone marrow cells. Biochem Biophys Res Commun. 2000: 274: 249-254.
    22. Lees, RL, Sabharwal, VK, Heersche, JNM. Resorptive state and cell size influence intracellular PH regulation in rabbit osteoclasts cultured on collagen-hydroxyapatite films. Bone. 2001:28:187-194.
    23. Ejiri S. The preosteoclast and its cytodifferentiation into the osteoclast: ultrastructural and histochemical studies of rat fetal parietal bone. Arch Histol Jpn. 1983: 46: 533-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700