纤维/树脂复合材料多尺度结构对力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强树脂基复合材料具有较高的比强度和比模量、较强的可设计性、良好的抗疲劳性和耐腐蚀性以及便于整体成型等优点,已广泛用于航空航天、建筑、汽车、舰船、体育器材等领域。特别是在航空结构中,已成为主要材料之一。纤维复合材料具有内部结构多尺度化、组分材料高异质化的显著特征,导致力学性能与结构具有高度的关联性。因此,针对国家中长期科技发展规划中确立的大飞机重大专项,开展纤维复合材料的结构-力学性能相关性研究,实现高性能、低缺陷、低成本目标,具有重要的科学意义以及广阔的工程应用背景。
     纺织结构复合材料和层合结构复合材料是航空工业中应用较广泛的两种工程结构件。纺织结构复合材料由于内部增强体交织构造的存在,其应力场高度非均匀化,在某些区域存在严重的应力集中,应力集中的位置与纺织构造和外载荷类型高度相关。层合结构复合材料在面内方向能够提供足够的承载能力,但由于层间区域界面性能较弱,对面外冲击高度敏感,容易造成层间分层,严重降低层合结构复合材料后继服役过程中的力学性能,形成潜在的安全隐患。解决上述问题的有效方法之一是开展纤维增强树脂基复合材料结构-性能相关性的数值分析,研究复合材料在各种载荷下的力学行为、损伤机理与内部结构之间的关联规律,为结构的优化设计提供理论基础与技术支持,使复合材料制品满足性能要求和尺寸要求,预测和避免潜在安全隐患的产生。尽管国内外已经开展了大量研究,但相对于复杂的物理过程,数值分析所建模型仍旧比较简化,同时缺乏不同材料结构之间的对比研究。针对这些不足之处,结合课题背景和项目来源,本文以纺织结构复合材料和层合结构复合材料为研究对象,采用数值分析的方法研究了材料结构对材料微观应力分布以及宏观力学响应的影响规律,同时在多尺度层次下对纤维复合材料结构-力学性能相关性开展了系统深入的研究。
     本文的主要工作以及结论如下:
     首先,针对复合材料多尺度结构中的微观尺度-纤维尺度,开展了单向复合材料力学性能的数值分析,并以此作为后续章节中纤维复合材料结构-性能相关性分析的基础。本文选取了更接近于横观各向同性的纤维六边形布排方式,建立了周期性代表单胞模型。在代表单胞的相对表面上施加了周期性边界条件,实现了材料受载变形之后其单胞对应边界上不仅位移连续而且应力连续,保证了结构的周期性和力学性能预测的准确性。针对纤维复合材料中存在的增强相、基体相以及界面相三种组分,分别采用横观各向同性(或者各向同性)、各向同性、内聚力模型等材料本构关系建立了相应的力学模型。数值模拟了单胞模型在多种载荷情况下的微观应力分布。同时,利用复合材料细观力学中的均质化方法分析了单向复合材料的等效弹性模量。在微观应力场分析的基础上,运用渐进损伤的方法,进一步针对单向复合材料的失效强度进行了有限元模拟,重点讨论了界面强度对单向复合材料整体失效的影响。结果表明:在纵向加载下,材料的失效强度由纤维主控,界面强度对纵向载荷下单向复合材料的失效行为影响较小;而在横向载荷下,基体损伤与界面失效交互出现,界面性能对材料整体失效有着重要影响,特别是在横向剪切载荷下,界面粘结强度的提高能够显著提高材料抵抗剪切失效的性能。
     其次,在单向复合材料分析的基础上,针对更大结构尺度-纤维束尺度,数值分析了编织复合材料内部结构-力学性能相关性。以具有代表性的二轴编织复合材料(1×1编织和2×2编织)为研究对象,针对结构复杂、应力场分析困难、研究较少的非正交编织,本文摒弃了传统的矩形单胞选取方式,采用了更适于进行应力场分析的平行四边形周期性代表单胞;同时,考虑了非正交编织中纤维束变化的横截面,构建了更接近真实构造的有限元模型,在此基础上分析了不同纺织构造对复合材料弹性性能的影响以及在不同载荷情况下结构内部的非均匀应力分布规律,并进一步统计分析了材料内部的应力集中情况。研究发现:纺织结构复合材料内部的应力分布与纱线的交织构造具有高度的关联性;编织角对材料整体的等效性能具有重要影响;1×1与2×2这两个不同的编织构造之间的差异性同样会引起材料力学性能的不同。
     然后,以单向纤维复合材料力学性能分析结论为基础,在宏观尺度上对层合结构复合材料的力学性能进行了数值分析。根据渐进损伤原理,针对层合结构复合材料在准静压下出现的各种损伤,确立了相应的失效判据和材料性能退化准则,构建了预测复合材料层合板准静压损伤的有限元模型,深入分析了在准静压载荷下层合板内部各种损伤的演化规律以及层合结构对准静压损伤的影响规律。研究结果表明:在冲击载荷下降之前,基体损伤以及分层破坏的扩展速度相对比较平缓,伴随材料宏观力学性能退化的出现,损伤开始快速扩展;在层合板总厚度不变的情况下,纤维铺层厚度的增加会加大层合板的基体开裂损伤以及分层损伤,同时抑制纤维断裂的发生。
     最后,在复合材料层合板准静压损伤分析的基础上,进一步对层合结构复合材料在低速冲击下的力学响应进行了动态有限元分析。采用连续损伤力学构建了纤维铺层内的材料模型,运用内聚力模型构造了层间区域模型,将两者相结合建立了层合结构复合材料在低速冲击下的损伤有限元模型。深入分析了在低速冲击载荷下层合板整体的力学响应、分层损伤的演化过程、冲击能量转换耗散过程以及损伤区域分布规律,还讨论了层间界面性能以及纤维铺层角度对复合材料层合板低速冲击损伤的影响。通过分析损伤演化历程发现:冲击载荷首次下降与初始分层损伤的发生具有一致性;分层演化基本遵循先急后缓的规律;相对于法向分层,切向分层是层合结构复合材料受冲击过程中的主要分层模式;层间韧性的提高可以有效地减少低速冲击下的分层损伤面积;同时,在层合板内部设置更多的铺设角度会显著改进冲击损伤阻抗。
Fiber reinforced resin matrix composites have varieties of applications in aerospace, automobile, architecture and sports equipment industries because of their great performances, such as high specific strength and modulus, easy to design, good fatigue resistance and good corrosion resistance. Especially in aeronautical structures, composites have become one of the most important materials. Fiber composite material has an internal structure of multi-scaled and high heterogeneity of component materials, this results in that the mechanical properties of the fiber-reinforced composite material have a high degree of correlation with its structure. Aimed at the large aircraft development projects established by country mid-long-term scientific and technological development plan, research on the correlation between structure and property of fiber composite, to achieve high performance, low-defect, low-cost objectives, is of great practical significance.
     Textile structural composites and laminated structural composites have been widely applied in the aerospace industry engineering structural components. Due to the textile structure of reinforcements in textile structural composites, the material internal stress field is highly non-homogenized and severe stress concentration exists in some regions. The position of the stress concentration is highly relevant to the type of textile structure and external load. The laminated structure composite materials can provide enough carrying capacity in the plane direction, but are highly sensitive to the out-plane load due to the weaker performance of the interface region between layers. Delamination is likely caused under the impact load seriously degrade the mechanical properties of laminated structural composites in the successor service process, forming a potential safety hazard. One of the effective ways to solve the above problems is to carry out the fiber reinforced resin matrix composite structure performance numerical analysis and study the correlation among the mechanical behavior, damage mechanism and the internal structure of the composite. This work is helpful for optimizing the structure design and can provide the theoretical basis and technical support for composite products which meet the performance requirements and size requirements, and predicting and avoiding potential safety hazards. Despite the large number of studies which have been carried out at home and abroad, compared with the complex physical processes, numerical analysis is still relatively simplified and lacks a comparative study between the different material structures. Against these deficiencies, combined with the subject background and project sources, this paper focused on textile structural composites and laminated composite. A numerical analysis method was used to study the effect of material organization structure on the material microscopic stress distribution as well as macro-mechanical response. At the same time, in the different structure levels, the correlation of structure and mechanical properties for fiber composite was further studied systematically. The main work and conclusions of this article are as follows:
     Firstly, for the smallest structural scale in the multi-scale structure composite, fiber scale, the numerical analysis of the mechanical properties of unidirectional composites was carried out, which is the basis of the subsequent analysis on the bigger structural scale. A hexagonal array of fiber was adopted, which is closer to the transversely isotropic. A periodical representative unit cell model was presented with the periodic boundary conditions imposed on it, which ensures not only displacement continuity but also stress continuity in the corresponding boundary of unit cell. The enhanced phase, matrix phase and interface phase in composite were modeled through material constitutive of transversely isotropic(or isotropic), isotropic and cohesive zone model respectively. The microscopic stress distribution in composite under different loads was simulated through finite element model. The equivalent elastic modulus of unidirectional composites was analyzed through homogenization method of composite micromechanics. Based on the analysis of microscopic stress field, the failure strength of the unidirectional composite was predicted by the progressive damage method. The effect of the interface strength on the overall failure of unidirectional composite was discussed. It is shown that the property of fiber dominates the failure strength of the material under the longitudinal load, and the influence of interface strength can be ignored. Under transverse load, matrix damage and interface failure interactively appear, and interfacial properties have an important impact on the whole failure of the material, especially in the transverse shear loads. The improvement of the interfacial bond strength can significantly improve the performance of the material to resist shear failure.
     Secondly, on the basis of analysis of unidirectional composites, for greater structural scale-fiber bundles scale, the correlation analysis on structure-properties of textile composites was carried out. This paper selected typical two-axis braided composites,1×1braid and2×2braid as the research object. Compared with the orthogonally braided composites, non-orthogonally braid composites have an irregular geometry configuration of fiber bundle, and the internal stress distribution analysis is more difficult. For non-orthogonally braided composites:the traditional rectangular unit cell was abandoned; a periodical parallelogram cell, more suitable for the analysis of the stress field, was adopted; and then the periodic boundary conditions were imposed. Taking into account the change in cross-sectional of the actual non-orthogonally braided fiber bundles, the finite element model, closer to the real configuration, was constructed. On this basis, the effect of textile structure on the elastic properties was discussed, as well as the stress distribution in the materials under different loads. Furthermore, statistical analysis of the stress concentration in the materials was carried out. It is found that the microscopic mechanical analysis is highly sensitive to the geometric architecture; the effect of braid angle on the mechanical properties is significant. The differences between1×1and2×2in effective elastic properties and stress distribution are caused by the structural differences:2×2has greater in-plane Young's modulus than1×1, the situation of the out-plane Young's modulus is on the contrary.
     Thirdly, on the basis of conclusion of unidirectional fiber composites mechanics analysis, in the single ply scale, the mechanical properties of laminated composites were carried out. Starting from the indentation damage mechanics, the damage criterion and material performance degradation, corresponding to different damage in the composites under indentation load, were proposed. And a numerical model of laminated composites subjected to quasi-static indentation was established on the basis of progressive damage mechanics. The evolution of various damages within laminated structure under the quasi-static indentation was analyzed, as well as the effect of laminated structure on damage. It is found that the matrix damage and delamination propagate slowly before the first reduction of load, and then propagate quickly. Furthermore, under the condition of same laminates thickness, the effect of single ply thickness on the indentation damage was discussed. It is shown that the increase of single ply thickness can enlarge the matrix damage and the delamination degree, whereas it can restrain the development of fiber fracture.
     Finally, on the basis of quasi-indention static analysis, the dynamic mechanical response of laminated composite under the low-speed impact was analyzed. The intra-ply damage including matrix crack and fiber fracture was represented by the continuum damage mechanics (CDM) which takes into account the physical progressive failure behavior in the ply, using the damage variable to describe the intra-ply damage state. The delamination at the interface between two plies was characterized by the cohesive zone model (CZM) which takes into account the normal crack and the tangent slip, using a specific correlation between traction and separation displacement to describe the initiation and development of delamination. A numerical method for the evaluation of composite laminates damage under the low-velocity impact was proposed by CDM and CZM. The correlation between the mesoscale structure and the macroscopic response under impact was constructed effectively by the finite element analysis. The effect of the interlaminar toughness on the impact damage was investigated, which is as yet seldom discussed in detail. The results reveal that as the fracture toughness enhances, the delamination area and the dissipated energy caused by delamination decrease. The contribution of different types of delamination is evaluated and the tangential slip is the dominant delamination during the impact process. Furthermore, the effect of ply orientation on the impact resistance was discussed. It is inferred that more orientation of fiber can make the impact resistance larger.
引文
[1]罗延龄.现代科学技术与材料科学[J].中国科技纵横,2010,(22):4-5.
    [2]鲁云,朱世杰,马鸣图,潘复生.先进复合材料[M].北京:机械工业出版社,2004.
    [3]曾庆敦.复合材料的细观破坏机制与强度[M].北京:科学出版社,2002.
    [4]宋焕成,赵时熙.聚合物基复合材料[M].北京:国防工业出版社,1986.
    [5]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [6]杨佳,敖大新,张志勇,姚学锋.编织结构复合材料制作、工艺及工业实践[M].北京:科学出版社,1999.
    [7]益小苏,杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2009.
    [8]郝元凯,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004.
    [9]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
    [10]马晓光,刘越.先进复合材料用高性能纤维发展概述[J].合成纤维,2001,30(2):21-25.
    [11]高启源.高性能芳纶纤维的国内外发展现状[J].化纤与纺织技术,2007,(3):31-36.
    [12]陶肖明,冼杏娟,高冠勋.纺织结构复合材料[M].北京:科学出版社,2001:1-10.
    [13]朱波,余同希,陶肖明.机织复合材料的本构关系与成形性研究[J].力学进展,2004,34(3):327-340.
    [14]王立朋,燕瑛.编织复合材料弹性性能的细观分析及试验研究[J].复合材料学报,2004,21(4):152-156.
    [15]Deepak Goyal. Analysis of 2×2 Braided Composites[D]. Texas:Texas A&M University,2003.
    [16]刘新东,刘伟.复合材料力学基础[M].西安:西北工业大学出版社,2010.
    [17]C. Schuecker, H.E. Pettermann. Fiber reinforced laminates:progressive damage modeling based on failure mechanisms[J]. Archives of Computational Methods in Engineering,2008,15:163-184.
    [18]王新峰.机织复合材料多尺度渐进损伤研究[D].南京:南京航空航天大学,2007.
    [19]牛国良.单向纤维复合材料横向弹性常数的统一型经验公式[J].玻璃钢/复合材料,1998,1:5-8.
    [20]王人杰.纤维增强复合材料横向弹性常数[J].复合材料学报,1996,13(2):98-104.
    [21]Zhang L, Ernst L J, Brouwer H R. Transverse behavior of a unidirectional composite (glass fiber reinforced unsaturated polyester). Part Ⅰ. Influence of fiber packing geometry[J]. Mechanics of Materials,1998,27(1):13-36.
    [22]Zhang L, Ernst L J, Brouwer H R. Transverse behavior of a unidirectional composite (glass fiber reinforced unsaturated polyester). Part Ⅱ. Influence of shrinkage strains[J]. Mechanics of Materials,1998,27(1):37-61.
    [23]Xu S,Weitsman Y.Three-dimensional effects in fiber-reinforced composites under compression[J]. Composites Science and Technology,1996,56(10):1113-1118.
    [24]Huang Z M. Micromechanical strength formulae of unidirectional composites[J]. Materials Letters,1999,40(4):134-169.
    [25]Huang Z M. Micromechanical prediction of ultimate strength of transversely isotropic fibrous composite[J]. International Journal of Solids and Structure, 2001,38(23):4147-4172.
    [26]Landis C M, Beyerlein I J, McMeeking R M. Micromechanical simulation of the failure of fiber reinforced composites [J]. Journal of Mechanics and Physics of Solids,2000,48(3):621-648.
    [27]Zhang Y F, Xia Z H, Ellyin F. Nonlinear viscoelastic micromechanical analysis of fibre-reinforced polymer laminates with damage evolution[J]. International Journal of Solids and Structure,2005,42(2):591-604.
    [28]孙丽莉.玻璃纤维增强树脂基复合材料的细观破坏研究[D].济南:山东大学,2009.
    [29]Hongzhou Li; Yuxi Jia; Geni Mamtimin; Wei Jiang; Lijia An. Computer simulation of the damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects[J]. Journal of Applied Polymer Science,2007, 103(1):64-71.
    [30]Hongzhou Li, Yuxi Jia, Shifang Luan, Qian Xiang, Han, C.C., Mamtimin, G., Yanchun Han, Lijia An. Explanation for micromorphologies around broken fibers in fiber-reinforced composites[J]. Polymer Composites,2008,29(6): 649-654.
    [31]Lili Sun, Yuxi Jia, Fengde Ma, Sheng Sun, Jiang Zhao, Han, C.C. Combined effects of loading rate and fiber-breakpoint initialization on fracture of composites[J]. Journal of Reinforced Plastics and Composites,2010,29(8), 1224-1229.
    [32]Lili Sun, Yuxi Jia, Fengde Ma, Sheng Sun, Han, C.C. Mechanical behavior and failure mode of unidirectional fiber composites at low strain rate level[J]. Journal of Composite Materials,2009,43(22):2623-2637.
    [33]Lili Sun, Yuxi Jia, Fengde Ma, Jiang Zhao, Charles C. Han. Influence of interfacial properties on crack propagation in fiber-reinforced polymer matrix composites [J]. Macromolecular Materials and Engineering,2008; 293:194-205.
    [34]孙立莉:贾玉玺,孙胜,马凤德.界面强度对纤维复合材料破坏及力学性能的影响[J].山东大学学报(工学版),2009,39(2):101-103.
    [35]Bohm HJ. Mechanics of microstructured materials[M]. CISM courses and lectures, vol.464. Springer, New York,2004.
    [36]Tan P, Tong L and Steven GP. Modelling for predicting the mechanical properties of textile composites-a review[J]. Composites Part A 1997; 28A(11):903-922.
    [37]Bystrom J, Jekabsons N and Varna J. An evaluation of different models for prediction of elastic properties of woven composites [J]. Composites Part B 2000; 31B(1):7-20.
    [38]Choi J and Tamma KK. Woven fabric composites-part Ⅰ:predictions of homogenized elastic properties and micromechanical damage analysis[J]. International Journal for Numerical Methods in Engineering 2001; 50(10): 2285-2298.
    [39]Lomov SV, Ivanov DS, Verpoest I, Zako M, Kurashiki T, Nakai H, et al. Meso-FE modelling of textile composites:road map, data flow and algorithms[J]. Composites Science and Technology 2007; 67(9):1870-1891.
    [40]Ayranci C and Carey J.2D braided composites:a review for stiffness critical applications[J]. Composite Structures 2008; 85(1):43-58.
    [41]Ishikawa T and Chou TW. Stiffness and strength behavior of woven fabric composites[J]. Journal of Materials Science 1982; 17(11):3211-3220.
    [42]Ishikawa T and Chou TW. In-plane thermal expansion and thermal bending coefficients of fabric composites[J]. Journal of Composite Materials 1983; 17(2): 92-104.
    [43]Ishikawa T and Chou TW. One-dimensional micromechanical analysis of woven fabric composites [J]. American Institute of Aeronautics and Astronautics Journal 1983; 21(12):1714-1721.
    [44]Whitcomb JD and Tang X. Effective moduli of woven composites[J]. Journal of Composite Materials 2001; 35(23):2127-2144.
    [45]Naik RA, Ifju PG and Masters JE. Effect of fiber architecture parameters on deformation fields and elastic moduli of 2-D braided compo sites [J]. Journal of Composite Materials 1994; 28(7):656-681.
    [46]Aggarwal A, Ramakrishna S and Ganesh VK. Predicting the in-plane elastic constants of diamond braided composites[J]. Journal of Composite Materials, 2001,35(8):665-688.
    [47]Aggarwal A and Ramakrishna S. Predicting the strength of diamond braided composites[J]. Journal of Composite Materials,2002,36(5):625-643.
    [48]Quek SC, Waas AM, Shahwan KW and Agaram V.Analysis of 2D triaxial flat braided textile composites[J]. International Journal of Mechanical Sciences, 2003,45(6-7):1077-1096.
    [49]Huang ZM and Ramakrishna S. Towards automatic designing of 2D biaxial woven and braided fabric reinforced composites[J]. Journal of Composite Materials,2002,36(13):1541-1579.
    [50]Ayranci C and Carey JP. Predicting the longitudinal elastic modulus of braided tubular composites using a curved unit-cell geometry[J]. Composites Part B, 2010,41B(3):229-235.
    [51]D'Amato E. Finite element modeling of textile composites[J]. Composite Structures,2001,54(4):467-475.
    [52]Goyal D, Tang XD, Whitcomb JD and Kelkar AD. Effect of various parameters on effective engineering properties of 2×2 braided composites[J]. Mechanics of Advanced Materials and Structures,2005; 12(2):113-128.
    [53]Goyal D and Whitcomb JD. Analysis of stress concentrations in 2×2 braided composites[J]. Journal of Composite Materials,2006; 40(6):533-546.
    [54]Goyal D and Whitcomb JD. Effect of fiber properties on plastic behavior of 2×2 biaxial braided composites[J]. Composites Science and Technology,2008; 68(3-4):969-977.
    [55]Goyal D, Whitcomb JD and Tang XD. Validation of full 3D and equivalent tape laminate modeling of plasticity induced non-linearity in 2×2 braided composites[J]. Composites Part A 2008; 39A(5):747-760.
    [56]Potluri P, Manan A, Francke M and Day RJ. Flexural and torsional behaviour of biaxial and triaxial braided composite structures [J]. Composite Structures 2006; 75(1-4):377-386.
    [57]Potluri P and Manan A. Mechanics of non-orthogonally interlaced textile composites[J]. Composites Part A 2007; 38A(4):1216-1226.
    [58]Fujihara K, Yoshida E, Nakai A, Ramakrishna S and Hamada H. Influence of micro-structures on bending properties of braided laminated composites[J]. Composites Science and Technology 2007; 67(10):2191-2198.
    [59]Song S, Waas AM, Shahwan KW, Xiao XR and Faruque O. Braided textile composites under compressive loads:modeling the response, strength and degradation[J]. Composites Science and Technology 2007; 67(15-16): 3059-3070.
    [60]Lomov SV, Ivanov DS, Verpoest I, Zako M, Kurashiki T, Nakai H, et al. Full-field strain measurements for validation of meso-FE analysis of textile composites[J]. Composites Part A 2008; 39A(8):1218-1231.
    [61]Tsai KH, Hwan CL, Chen WL and Chiu CH. A parallelogram spring model for predicting the effective elastic properties of 2D braided composites[J]. Composite Structures 2008; 83(3):273-283.
    [62]Iarve EV, Mollenhauer DH, Zhou EG, Breitzman T and Whitney TJ. Independent mesh method-based prediction of local and volume average fields in textile composites [J]. Composites Part A 2009; 40A(12):1880-1890.
    [63]Nasu S, Ohtani A, Nakai A and Hamada H.Deformation behavior and mechanical properties of braided rectangular pipes[J]. Composite Structures 2010; 92(3): 752-756.
    [64]Camanho PP, Davila CG, Pinho ST, Iannucci L, Robinson P. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear[J]. Composites A,2006,37:165-176.
    [65]Rammerstorfer FG, Starlinger A. Engineering mechanics of fiber reinforced polymers and composite structures. In:Lamination theory and failure mechanisms in composite shells[Z]. CISM courses and lectures, vol 348. Springer, New York,1994.
    [66]Davila CG, Camanho PP. Failure criteria for FRP laminates in plane stress[R]. Technical Report TM-2003-212663, NASA.
    [67]Pinho ST, Davila CG, Camanho PP, Iannucci L, Robinson P. Failure models and criteria for FRP under in-plane or threedimensional stress states including shear non-linearity[R]. Technical Report TM-2005-213530, NASA.
    [68]Puck A, Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,1998, 58:1045-1067.
    [69]范金娟,程小全,陶春虎.聚合物基复合材料构件失效分析基础[M].北京:国防工业出版社,2011.
    [70]Nairn JA, Hu S. Matrix microcracking. In:Talreja R (ed) Damage mechanics of composite materials[M]. Composite materials series, vol 9. Elsevier Science, Oxford, Chap.6,1994.
    [71]Schultheisz CR,Waas AM. Compressive failure of composites, part I:Testing and micromechanical theories[J]. Progress in Aerospace Sciences,1996,32:1-42.
    [72]Sjoblom P O, Hartness J Y, Cordell T M. On low-velocity impact testing of composite materials[J]. Journal of Composite Materials,1988,22(6):30-52.
    [73]Liu D, Malvern L E. Matrix cracking in impacted glass/epoxy plates[J]. Journal of Composite Materials,1987; 21(7):594-609.
    [74]范金娟,赵旭,程小全.复合材料层压板低速冲击后压缩损伤特征研究[J]. 失效分析与预防,2006,1(2):33-35.
    [75]Y. H. Yoo, D. Y. Yang. Finite element modelling of the high-velocity impact forging process by the explicit time integration method[J]. Journal ofMaterials Processing Technology,1997,63:718-723.
    [76]R.C. Tennyson, C. Lamontagne. Hypervelocity impact damage to composites[J]. Composites Part A,2000,31:785-794.
    [77]R.A. Clegg, D.M. White, W. Riedel, W. Harwick. Hypervelocity impact damage prediction in composites:Part Ⅰ-material model and characterisation[J]. International Journal of Impact Engineering,2006,33:190-200.
    [78]W. Riedel, H. Nahme, D.M. White, R.A. Clegg. Hypervelocity impact damage prediction in composites:Part Ⅱ-experimental investigations and simulations[J]. International Journal of Impact Engineering,2006,33:670-680.
    [79]M. Nishikawa, K. Hemmi, N. Takeda. Finite-element simulation for modeling composite plates subjected to soft-body, high-velocity impact for application to bird-strike problem of composite fan blades[J]. Composite Structures, 2011,93:1416-1423.
    [80]A. Faggiani, B.G. Falzon. Predicting low-velocity impact damage on a stiffened composite panel[J]. Composites Part A,2010,41:737-749.
    [81]M.O. W. Richardson and M. J. Wisheart. Review of low-velocity impact properties of composite materials[J]. Composites Part A,1996,27A:1123-1131.
    [82]David J. Elder, Rodney S. Thomson, Minh Q. Nguyen, Murray L. Scott. Review of delamination predictive methods for low speed impact of composite laminates[J]. Composite Structures,2004,66:677-683.
    [83]Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event[S]. American Society for Testing and Materials (ASTM), West Conshohocken, PA, USA,ASTM D7136/D7136M,2005.
    [84]Standard Test Method for Measuring Damage Resistance of Fiber-Reinforced Polymer-Matrix Composite to Concentrated Quasi-Static Indentation Force[S]. American Society for Testing and Materials (ASTM), West Conshohocken, PA, USA, ASTM D 6264-98(04),2004.
    [85]M.J. Laffan, S.T. Pinho, P. Robinson, A.J. McMillan. Translaminar fracture toughness testing of composites:A review[J]. Polymer Testing,2012, 31:481-489.
    [86]Carosena Meola, Giovanni M. Carlomagno. Impact damage in GFRP:New insights with infrared thermography[J]. Composites:Part A,2010,41: 1839-1847.
    [87]Freeman SM. Characterization of lamina and interlaminar damage in graphite-epoxy composites by the deply technique[C]. Composite materials: testing and design (Sixth Conference), ASTM STP,1982,787:50-62.
    [88]张子龙,程小全,益小苏.复合材料层合板准静态横压损伤及其压缩破坏研究[J].复合材料学报,2002,19(5):108-113.
    [89]Choi H. Y, Wu H. Y. T. and Chang F. K. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact:Part Ⅱ-analysis[J]. Journal of Composite Materials,1991, 25:1012-1038.
    [90]Jih C. J., Sun C. T. Prediction of delamination in composite laminates subjected to low velocity impact[J]. Journal of Composite Materials.1993,27(7): 684-701.
    [91]M. F. S. F. de Moura, A. T. Marques. Prediction of low velocity impact damage in carbon-epoxy laminates[J]. Composites:Part A,1999,33:361-368.
    [92]Chang F. K., Choi H. Y. and Jeng S. T. Study on impact damage in laminated composites[J]. Mechanics of Materials,1990,10:83-95.
    [93]Choi H. Y., Downs R. J. and Chang F. K. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact:Part I-Experiments[J]. Journal of Composite Materials, 1991,25:992-1011.
    [94]张颖军,梅志远,朱锡.FRP层合板低速冲击损伤特性研究现状与展望[J].玻璃钢/复合材料,2011,1:52-58.
    [95]Cesim Atas, Onur Sayman. An overall view on impact response of woven fabric composite plates[J], Composite Structures,2008,82:336-345.
    [96]Zuleyha Aslan, Ramazan Karakuzu, Buket Okutan. The response of laminated composite plates under low velocity impact loading[J]. Composite Structures, 2003,59:119-127.
    [97]Mitrevski T, Marshall I H, Thomson R. The effect of impactor shape on the impact response of composite laminates[J]. Composite Structures,2005, 67:139-148.
    [98]Mitrevski T, Marshall I H, Thomson R S. Low-velocity impacts on preloaded GFRP specimens with various impactor shapes[J]. Composite Structures, 2006,76:209-217.
    [99]沈真.机翼结构用复合材料的力学性能要求[J].航空制造技术2010,1:44-48.
    [100]Tien-Wei Shyr, Yu-Hao Pan. Impact resistance and damage characteristics of composite laminates[J]. Composite Structures.2003,62:193-203.
    [101]S. A. Hitchen and R. M. J. Kemp. The effect of stacking sequence on impact damage in a carbon fiber/epoxy composite[J]. Composites.1995,26:207-214.
    [102]C.S. Lopes, O. Seresta, Y. Coquet, Z. Gurdal, P.P. Camanho, B. Thuis. Low-velocity impact damage on dispersed stacking sequence laminates.Part I: Experiments [J]. Composites Science and Technology,2009,69:926-936.
    [103]C.S. Lopes, P.P. Camanho, Z. Gurdal, P. Maimi, E.V. Gonzalez. Low-velocity impact damage on dispersed stacking sequence laminates.Part Ⅱ:Numerical simulations[J]. Composites Science and Technology,2009,69:937-947.
    [104]魏俊,赵建华,梁越明,李剑荣.复合材料板受低速冲击时能量吸收的实验研究[J].实验力学.1998,13(2):207-211.
    [105]D.D.R. Cartie and P.E. Irving, Effect of resin and fiber properties on impact and compression after impact performance of CFRP[J]. Composites:Part A, 2002,33(4):483-493.
    [106]罗靓,沈真,杨胜春,李玉彬,张佐光.炭纤维增强树脂基复合材料层合板低速冲击性能实验研究[J].复舍材科学报,2008,3:20-24.
    [107]P. Robinson, G. A. O. Davies. Impactor mass and specimen geometry effects in low velocity impact of laminated composites[J]. International Journal of Impact Engineering.1992,12(2):189-120.
    [108]Dahsin Liu. Delamination resistance in stitched and unstitched composite plates subjected to impact loading[J]. Journal of Reinforced Plastics and Composites, 1990,9:59-69.
    [109]Olsson R. Analytical prediction of large mass impact damage in composite laminates[J]. Composites Part A,2001,32(9):1207-1215.
    [110]Olsson R, Donadon MV, Falzon BG. Delamination threshold load for dynamic impact on plates[J]. International Journal of Solids and Structures,2006, 43(10):3124-3141.
    [111]Abrate S. Modelling of impacts on composite structures[J]. Composite Structures,2001;51(2):129-138.
    [112]张彦.纤维增强复合材料层合结构冲击损伤预测研究[D].上海:上海交通大学,2007.
    [113]Minh Q. Nguyen, David J. Elder, Javid Bayandor, Rodney S. Thomson, Murray L. Scott. A review of explicit finite element software for composite impact analysis[J]. Journal of Composite Materials,2005,39:375-386.
    [114]Umar Farooq, Karl Gregory.Explicit dynamic simulation of drop weight low velocity impact on carbon fibrous composite panels. ARPN Journal of Engineering and Applied Sciences,2010,5(3):50-61.
    [115]XinranXiao, Mark E.Botkin, Nancy L.Johnson. Axial crush simulation of braided carbon tubes using MAT58 in LS-DYNA[J]. Thin-Walled Structures, 2009,47:740-749.
    [116]Paolo Feraboli, Bonnie Wade, Francesco Deleo, Mostafa Rassaian, Mark Higgins, Alan Byar. LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen[J]. Composites:Part A,2011,42:1809-1825.
    [117]Costantino Menna, Domenico Asprone, Giancarlo Caprino, Valentina Lopresto, Andrea Prota. Numerical simulation of impact tests on GFRP composite laminates[J]. International Journal of Impact Engineering.2011,38:677-685.
    [118]Jones RM. Mechanics of composite materials[M].2nd ed. Phladelphia, PA, USA:Taylor and Francis; 1999. p.522.
    [119]Olsson MD, Varizi R, Anderson DL. Damage in composites:a plasticity approach[J]. Journal of Composite Materials,1992,44:103-116.
    [120]Car E, Oller S, Onate E. A large strain plasticity model for anisotropic materials-composite material application. International Journal of Plasticity, 2001,17:1437-1463.
    [121]Garg AC. Delamination-a damage mode in composite structures[J]. Engineering Fracture Mechanics,1988; 29:557-584.
    [122]Zerbst U, Heinimann M, Dalle Donne C, Steglich D. Fracture and damage mechanics modeling of thin-walled structures e An overview[J]. Engineering Fracture Mechanics,2009,76:5-43.
    [123]Kachanov LM. Rupture time under creep conditions. Izv Akad Nauk SSSR Otd Tekhn Nauk 1958; 8:26-31 [in Russian].
    [124]Rabotnov YN. Creep problems in structural members[M]. Amsterdam: North-Holland; 1969. p.822.
    [125]Matzenmiller A, Lubliner J, Taylor RL. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials,1995;20:125-152.
    [126]Williams VK, Vaziri R, Poursartip A. A physically based continuum damage mechanics model for thin laminated composite structures [J]. International Journal of Solids and Structures,2003,40:2267-2300.
    [127]Iannucci L. Progressive failure modeling of woven carbon composite under impact[J]. International Journal of Impact Engineering,2006,32:1013-1043.
    [128]张行,崔德渝,孟庆春,王奇志,赵军,胡伟平,杨继运.断裂与损伤力学[M].北京:北京航空航天大学出版社,2009.
    [129]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [130]傅衣铭.损伤层合板壳非线性分析[M].北京:科学出版社,2010.
    [131]徐秉业,王建学.弹性力学[M].北京:清华大学出版社,2009.
    [132]杨伯源,张义同.工程弹塑性力学[M].北京:机械工业出版社,2003.
    [133]黄争鸣.复合材料细观力学引论[M].北京:科学出版社,2004.
    [134]陈烈民,杨宝宁.复合材料的力学分析[M].北京:中国科学技术出版社,2006.
    [135]Whitney, J.M., Riley, M.B.. Elastic properties of fiber reinforced composite materials[J]. AIAA Journal,1966,4:1537-1542.
    [136]Aboudi, J.. Mechanics of Composite Materials, A Unified Micromechanical Approach[M]. Elsevier Science Publishers, Amsterdam,1991.
    [137]Needleman, A., Tvergaard, V.. Comparison of crystal plasticity and isotropic hardening predictions for metal-matrix composites[J]. ASME Journal of Applied Mechanics,1993,60:70-76.
    [138]Sun, C.T., Vaidya, R.S.. Prediction of composite properties from a representative volume element[J]. Composite Science and Technology,1996,56: 171-179.
    [139]Suquet, P.. Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (Eds.), Homogenization Techniques for Composite Media[M]. Springer-Verlag, Berlin,1987, pp.194-275.
    [140]Hori, M., Nemat-Nasser, S.. On two micromechanics theories for determining micro-macro relations in heterogeneous solids[J]. Mechanics of Materials,1999, 31:667-682.
    [141]Hollister, S.J., Kikuchi, N.. A comparison of homogenization and standard mechanics analysis for periodic porous composites[J]. Computational Mechanics,1992,10:73-95.
    [142]Xia Z H,Zhang Y F,Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures,2003,40:1907-1921.
    [143]Xia Z H,Zhou C W,Yong Q L,Wang X W. On selection of repeated unit cell model andapplication of unified periodic boundary conditions in micro-mechanical analysis of composites. International Journal of Solids and Structures,2005,43(2):266-278.
    [144]Kachanov LM. Rupture time under creep conditions. Izv Akad Nauk SSSR Otd Tekhn Nauk 1958; 8:26-31 [in Russian].
    [145]Rabotnov YN. Creep problems in structural members[M]. Amsterdam: North-Holland; 1969. p.822.
    [146]Ristinmaa M, Ottosen NS. Viscoplasticity based on an additive split of the conjugated forces[J]. European Journal of Mechanics A-Solids, 1998;17(2):207-35.
    [147]Schapery RA. A theory of mechanical behavior of elastic media with growing damage and other changes in structure[J], Journal of the Mechanics and Physics of Solids,1990;38(2):215-53.
    [148]Murakami S, Kamiya K. Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics[J]. International Journal of Mechanical Sciences,1997;39(4):473-86.
    [149]Hayakawa K, Murakami S, Liu Y. An irreversible thermodynamics theory for elastic-plastic-damage materials[J]. European Journal of Mechanics A-Solids, 1998; 17(1):13-32.
    [150]A.C. Orifici, I. Herszberg, R.S. Thomson. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures, 2008,86:194-210.
    [151]Johnson AF, Pickett AK, Rozycki P. Computational methods for predicting impact damage in composite structures [J]. Composites Science and Technology,2001;61:2183-92.
    [152]Liu PF, Zheng JY. Recent developments on damage modeling and finite element analysis for composite laminates:A review[J]. Materials & Design, 2010;31:3825-34.
    [153]Padhi GS, Shenoi RA, Moy SSJ, Hawkins GL. Progressive failure and ultimate collapse of laminated composite plates in bending [J]. Composite Structures, 1998,40(3-4):277-291.
    [154]Sun Z, Daniel IM, Luo JJ. Statistical damage analysis of transverse cracking in high temperature composite laminates[J]. Journal of Materials Science,2003, 341:49-56.
    [155]Puck A, Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,1998,58:1045-1067.
    [156]Puck A, Kopp J, Knops M. Guidelines for the determination of the parameters in Puck's action plane strength criterion[J]. Composites Science and Technology,2002,62(3):371-378.
    [157]Puck A, Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,2002 62:1633-1662.
    [158]Talreja R. A continuum mechanics characterization of damage in composite materials[J]. Proceedings of the royal society of London A.1985,399:195-216.
    [159]Allix O, Feissel P, Thevenet P. A delay damage mesomodel of laminates under dynamic loading:basic aspects and identification issues[J]. Composite Structures,2003.81:1177-1191.
    [160]Ladeveze P, Lubineau G. On a damage mesomodel for laminates:micro-meso relationships, possibilities and limits[J]. Composites Science and Technology, 2001,61:2149-2158.
    [161]Kilic H, Haj-Ali R. Progressive damage and nonlinear analysis of pultruded composite structures[J]. Composites Part B,2003,34:235-250.
    [162]Phillips EA, Herakovich CT, Graham LL. Damage developmentin composites with large stress gradients[J]. Composites Science and Technology,2001,61: 2169-2182.
    [163]Williams KV, Vaziri R. Application of a damage mechanics model for predicting the impact response of composite materials[J]. Computers & Structures,2001,70:997-1011.
    [164]Xiao JR, Gama BA, Gillspie JW. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch shear loading[J]. Composites Structure,2007,78:182-96.
    [165]R.C. Batra, G. Gopinath, J.Q. Zheng. Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates[J]. Composite Structures, 2012,94:540-547.
    [166]杨序纲.复合材料界面[M].北京:化学工业出版社,2010.
    [167]X.-P. Xu, A. Needleman. Void nucleation by inclusion debonding in a crystal matrix [J]. Modelling and Simulation in Materials Science and Engineering, 1993,1(2):111-132.
    [168]K.Y. Volokh. Comparison between cohesive zone models[J]. Communications in Numerical Methods in Engineering,2004,20(11):845-856.
    [169]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003.
    [170]De Xie, Anthony M. Waas. Discrete cohesive zone model for mixed-mode fracture using finite element analysis[J]. Engineering Fracture Mechanics,2006, 73:1783-1796.
    [171]蒋维城.固体力学有限元分析[M].北京:北京理工大学出版社,1989.
    [172]徐次达,华伯浩.固体力学有限元理论、方法及程序[M].北京:水利电力出版社,1983.
    [173]白金泽LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [174]Timoshenko, S.. Theory of Elasticity[M]. McGraw-Hill, New York,3rd editon, 1970, pp.409-420.
    [175]Willis, J. R., Hertzain. Contact of anisotropic bodies[J]. Journal of the Mechanics and Physics of Solids,1966,14:163-176.
    [176]Cairns, D. S. and Lagace, P. A.. Thick composite plates subjected to lateral loading[J]. Journal of Applied Mechanics,1987,54:611-616.
    [177]Swanson, S. R.,Rezaee H. G. Strength loss in composites from lateral contact loads[J]. Composites Science and Technology,1990,38:43-54.
    [178]Christoforou, A. P.. On the contact of a spherical indenter and a thin composite laminate[J]. Composite Structures,1993,26:77-82.
    [179]Cairns D S. Simple elasto-plastic contact laws for composites[J]. Journal of Reinforced Plastics and Composites,1991,10(4):423-433.
    [180]Yigit, A. S. and Christoforou, A. P.. On the impact of a spherical indenter and an elastic-plastic transversely isotropic half-space [J]. Composites Engineering, 1994,4(11):1143-1152.
    [181]Christoforou, A. P. and Yigit, A. S.. Characterization of impact in composite plates [J]. Composite Structures,1998,43:15-24.
    [182]Yigit, A. S. and Christoforou, A. P.. Impact dynamics of composite beams[J]. Composite Structures,1995,32:187-195.
    [183]Sun W, Lin F and Hu X. Computer-aided design and modeling of composite unit cells. Composites Science and Technology 2001; 61(2):289-299.
    [184]Kelkar AD, Tate JS, Whitcomb JD and Tang X. Performance evaluation and modeling of braided composites[A]. Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference[C].2003; 1:674-684.
    [185]屈鹏.二维二轴编织复合材料细观力学分析[D].山东大学硕士学位论文, 2009.
    [186]张博平,李禹.层合板准静态压痕损伤分析[J].航空计算技术,2006,36(6):1-23.
    [187]李禹,张博平,张开达.复合材料层合板准静态压痕损伤实验研究与数值模拟[J].机械科学与技术,2007,26(1):115-117.
    [188]M.F.S.F. de Moura, J.P.M. Goncalves. Modelling the interaction between matrix cracking and delamination in carbon-epoxy laminates under low velocity impact[J]. Composites Science and Technology 64 (2004):1021-1027.
    [189]李禹.复合材料层合板准静态压痕损伤实验研究与数值分析[D].西北工业大学硕士学位论文,2006:1-60.
    [190]沈真,张子龙,王进,等.复合材料损伤阻抗和损伤容限的性能表征[J].复合材料学报,2004,21(5):140-145.
    [191]Chen Puhui, Shen Zhen, Xiong Junjie, et al. Failure mechanisms of laminated composites subjected to static indentation[J]. Composite Structures,2006, 75(1-4):489-495.
    [192]王璐璐,关志东.复合材料层板静压入破坏机制[J].复合材料学报,2007,24(6):135-139.
    [193]Kwon Y S, Sankar B V. Indentation-flexure and low-velocity impact damage in graphite epoxy laminates[J]. Journal of Composites Technology and Research, 1993,15(2):101-111.
    [194]Nettles A T, Douglas M J. A comparison of quasi-static indentation to low-velocity impact[R]. NASA/TP-2000-2210481. Springfield:NASA,2000: 116-130.
    [195]Zhang J Y, Yu T X, Kim J K, et al. Static indentation and impact behavior of reformed bamboo/aluminium laminated composites [J]. Composite Structures, 2000,50:207-216.
    [196]Seung-Hwan Lee, Jae-Heon Lee, Seong-Kyun Cheong, et al. A toughening and strengthening technique of hybrid composites with non-woven tissue[J]. Journal of Materials Processing Technology,2008,207(1-3):21-29.
    [197]罗靓,张佐光,李敏,沈真,杨胜春.复合材料层合板准静态压痕实验研究[J].复合材料学报,2007,24(3):154-159.
    [198]S.Guinard, O.Allix, D.Guedra-Degeorgesa,A.Vinet. A 3D damage analysis of low-velocity impacts on laminated composites[J]. Composites Science and Technology 62 (2002):585-589.
    [199]Dost E F, Ilcewicz L B, Avery W B, et al. Effects of stacking sequence on impact damage resistance and residual strength for quasi isotropic laminates [A]. Third Symposium on Composite Materials:Fatigue and Fracture[C]. Philadelphia:ASTM,1991:476-500.
    [200]Y.S.N. Reddy,J.N. Reddy.Linear and non-linear failure analysis of composite laminates with transverse shear[J]. Composites Science and Technology, 1992,44:227-255.
    [201]黄争鸣,张华山.纤维增强复合材料强度理论的研究现状与发展趋势--“破坏分析奥运会”评估综述[J].力学进展,2007,37(1):80-98.
    [202]Christophe Bouvet,Bruno Castanie, Matthieu Bizeulb,Jean-Jacques Barraul. Low velocity impact modeling in laminate composite panels with discrete interface elements[J]. International Journal of Solids and Structures, 2009,46:2809-2821.
    [203]Chang F, Chang K. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials 1987,21:834-855.
    [204]Hyung YC, Downs RJ, Chang FK. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact:part Ⅰ-experimental[J]. Journal of Composite Materials 1991,25(8):992-1011.
    [205]Hyung YC, Downs RJ, Chang FK. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact:part Ⅱ-analysis[J]. Journal of Composite Materials 1991,25(8):1012-1038.
    [206]Xi Liu, Guoping Wang. Progressive failure analysis of bonded composite repairs[J]. Composite Structures,2007,81:331-340.
    [207]Choi H.Y, Chang F.K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials,1992,26 (14):2134-2169.
    [208]矫桂琼,高峰,龙国荣等.层间增韧复合材料在静压痕力下的损伤阻抗和渐进损伤分析[J].机械强度,2007,29(3):399-403.
    [209]李磊,王毅等.带圆孔层合板孔边层应力分析、失效研究及软件开发[J].机械强度,2008,30(4):633-637.
    [210]Chien-Hua Huang, Ya-Jung Lee. Experiments and simulation of the static contact crush of composite laminated plates[J]. Composite Structures, 2003,61(3):265-270.
    [211]王仁鹏,陈普会,沈真.准静态压痕力作用下复合材料层压板的损伤阻抗分析[J].复合材料学报,2008,3:149-153.
    [212]Hashin Z. Failure criteria for unidirectional composites [J]. Journal of Applied Mechanics,1980,47:329-334.
    [213]M.L.Dano, G.Gendron, A.Picard. Stress and failure analysis of mechanically fastened joints in composite laminates[J]. Composite Structures,2000, 50:287-296.
    [214]禹建华.金属混杂层合板低速冲击损伤数值分析[D].华中科技大学硕士学位论文.2005:1-76.
    [215]Swanson S R. Introduction to design and analysis with advanced composite materials[M]. Prentice Hall,1997.
    [216]Brewer J C, Lagace P A. Quadratic stress criterion for initiation of delamination[J]. Journal of Composite Materials 1988,22(12):1141-1155.
    [217]Ankar B V. Low velocity impact response and damage in composite materials, fracture of composites [J]. Key Engineering Material,1996,121,122:549-582.
    [218]Yeh H Y,Kim C H.The Yeh-strain criterion for composite materials[J]. Journal of Composite Materials,1994,28:926-939.
    [219]Maria Kashtalyan,Costas Soutis. Analysis of composite laminates with intra-and interlaminar damage [J]. Progress in Aerospace Sciences,2005,41:152-173.
    [220]刘元镛.含低速冲击损伤复合材料层合板在压缩载荷下破坏过程和剩余强度模拟[D].西北工业大学硕士学位论文,2001:5-54.
    [221]Chang F K,Scott R A,Failure strength of nonlinearly elastic composite laminates containing a pin loaded hole[J]. Journal of Composite Materials, 1984,18:464-477.
    [222]蔡为仑.复合材料设计[M].北京:科学出版社,1989.
    [223]沈真,刘峰,杨胜春.复合材料韧性评定技术的实验研究[J].结构强度研究,2002,(4):6-12.
    [224]熊俊杰.复合材料层压板对集中准静态压痕力的损伤阻抗分析[D].南京航空航天大学硕士学位论文.2006:1-54.
    [225]Swanson, S.R. Limits of Quasi-Static Solutions in Impact of Composite Structures[J]. Composites Engineering,1992,2(4):261-267.
    [226]Kaczmarek H. Maison S. Comparative Ultrasonic Analysis of Damage in CFRP Under Static Indentation and Low-Velocity Impact[J]. Composites Science and Technology,1994,51:11-26.
    [227]Lee S M, Zahuta E. Instrumented Impact and Static Indentation of Composites [J]. Journal of Composite Materials,1991,25:204-222.
    [228]郭渊,关志东,刘德博,孟庆春.复合材料静压痕与落锤冲击初始损伤对比试验[J].北京航空航天大学学报,2009,Vo1.35 Issue(8):1018-1021.
    [229]Elices M, Guinea GV, Gomez J, Planas J. The cohesive zone model:advantages, limitations and challenges[J]. Engineering Fracture Mechanics,2002,69:137-63.
    [230]Fiolka M, Matzenmiller A. On the resolution of transverse stresses in solid-shells with a multi-layer formulation. Communications in Numerical [J] Methods in Engineering,2007,23:313-26.
    [231]Matzenmiller A, Gerlach S, Fiolka M. Progressive failure analysis of adhesively bonded joints in crash simulations[Z]. LS-DYNA Anwenderforum, Ulm 2006.
    [232]LS-DYNA keyword user's manual. Version 971/Rev 5[Z]. Livermore, California CA, USA:Livermore Software Technology Corporation; May 2010. p.2191.
    [233]Zhang P, Liu G, Hu X, Zhao W, Yi X. Improving the compression strength after impact of RTM composites by interlaminar thermoplastic nonwoven fabric[J]. American Journal of Engineering and Technology Research 2011;11(12):40-43.
    [234]Raimondoa L., Iannucci L., Robinson P. and Curtis P.T.. A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage[J]. Composites Science and Technology,2012,72: 624-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700