西南太平洋劳盆地与西南印度洋中脊深海热液区底栖动物初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海热液活动和热液生物研究是目前国际海洋研究的热点之一,深海热液生态系统给人们展示了一个独特的海底生命奇观。本论文分析了中国大洋科考第19和第20航次在西南太平洋劳盆地热液区及西南印度洋中脊热液区获得的45个站位的沉积物和生物样品,对其中的底栖动物群落进行了生态学和分类学方面的初步研究,主要结果如下:
     1.在劳盆地调查区共检出13个小型底栖动物类群,其中线虫为个体数最优势类群,占45.29%,其次为蜱螨类,占30.53%,桡足类居第三位,占17.56%;其他类群的个体数量都很少。小型底栖动物群落平均丰度、平均生物量和平均生产量分别为18.67±10.12 ind/10cm2、34.79±23.57μg?dwt/10cm2和313.09±212.12μg?dwt/10cm2?a。
     2.在西南印度洋调查区29个站位中分布检出小型底栖动物11个类群,大型底栖动物12个类群,巨型底栖动物14个类群,总共检出22个底栖动物类群。调查区的小型底栖动物群落生物多样性较高,主要为以线虫为个体数第一优势类群、桡足类为第二优势类群、其它类群优势度较低的群落,但少数调查站位的端足类和原足类较多,线虫较少。与劳盆地的底栖动物群落相比,西南印度洋的端足类和原足类拥有较高的个体数比例,但蜱螨类相对少得多。
     3.在西南印度洋调查站位,含有大量多金属硫化物的沉积物中的底栖动物群落类群组成较单一、多样性程度低,仅检出线虫和桡足类两个类群,其中线虫占有个体数的绝对优势;粗硬的有孔虫钙质软泥沉积物中的底栖动物类群最多,多样性程度相对较高,主要为桡足类-端足类群落,原足类、等足类和线虫也有一定比例;细软的有孔虫钙质软泥沉积物中的底栖动物类群中线虫占有个体数绝对优势,主要为线虫-桡足类群落;含有大量蛋白石的硅质软泥沉积物中的底栖动物为以线虫-桡足类为主、端足类-原足类次之的群落。
     4.从形态学角度描述和鉴定了在西南印度洋调查区获得的部分巨型底栖生物样品,包括铠茗荷、锉石鳖、贻贝、铠甲虾以及与热液活动相关的鳞脚腹足类和翼足类等生物外壳。初步探讨了铠甲虾的形态分类,整理出铠甲虾总科下属科的分类检索简表。
Studies on deep-sea hydrothermal activities and hydrothermal lives have been one of the most interesting topics in international marine researches, and the deep-sea hydrothermal ecosystem is showing us a unique benthal picture about lives. This paper analyses the sediment and fauna samples of 45 sites collected during the Chinese DY115-19 and DY115-20 expeditions from the hydrothermal fields both in Lau Basin and in Southewest Indian Ridge (SWIR). Ecology and taxonomy preliminary researches about these benthic communities have been done, follows are the main results:
     1. Thirteen meiobenthos groups are detected in Lau Basin hydrothermal fields, nematode is the dominant one in individual amount, takes 45.29% of the total benthos, acari followed, 30.53%, and copepoda is the third one, 17.56%, the other groups are few. Average abundance, biomass, and production of meiobenthos is 18.67±10.12 ind/10cm2、34.79±23.57μg?dwt/10cm2 and 313.09±212.12μg?dwt/10cm2?a respectively.
     2. Twenty-two benthic groups are detected in twenty-nine sites in hydrothermal surveyed fields of SWIR, meiobenthos have eleven groups, macrobenthos have twelve groups, and megabenthos have fourteen groups. The meiobenthos community is mainly dominated by nematode in individual amount, followed by copepoda, but the amount of the other groups is low. In another side, amphipoda and tanaidacea are the dominated groups in a few sites while nematode is few. Comparing with the meiobenthos community of Lau Basin, amphipoda and tanaidacea are richer in individual amount in SWIR but acari are few correspondingly.
     3. In those surveyed sites of SWIR, only nematode and copepoda are detected in the sediment which containing much sulfides, showing the least groups number and diversity index. Copepoda and amphipoda dominate the benthic community in harder foraminifers’mud which has the highest groups number and diversity index. Tanaidacea, Isopoda and nematode take not low percentages in this community either. The community in softer foraminifers’mud which is dominated by nematode and copepoda, and nematode is the richest groups. Community in silidous mud with much opal is dominated by nematode-copepoda and followed by amphipoda-tanaidacea.
     4. Morphological taxon researches in several megabenthic groups from SWIR hydrothermal fields have been carried out, including scalpellomorpha, ischnochitonidae, mytilidae, squat lobster and some other lives related with hydrothermal activities: scaly-foot gastropod, thecosomata, et al. The preliminary studies on galathea’morphological taxons have been done too, and a table of abridged keys to families of Galatheoidea is presented.
引文
[1]王春生,杨俊毅,张东声,等.深海热液生物群落研究综述[J].厦门大学学报(自然科学版), 2006, 45(2): 141-149.
    [2]栾锡武.现代海底热液活动区的分布与构造环境分析[J].地球科学进展, 2004, 19(6): 931-938.
    [3]刘长华,殷学博.关于现代浅海型海底热液活动的研究进展[J].地球科学进展, 2006, 21(9): 918-924.
    [4]庞艳春,林丽,朱利东,等.古热液生物群的研究进展及意义[J].地球科学进展, 2005, 20(9): 954-960.
    [5]阮灵伟.深海热液区管状蠕虫的分子特征及对虾microRNA的初探[D].厦门:厦门大学博士论文, 2009.
    [6]陈荣发.新一轮"蓝色圈地运"动悄然兴起[J].科学24小时, 2006, (1): 4-8.
    [7]赵才生.海底热液作用与极端生态系统[J].地球科学进展, 2005, 20(2): 257-260.
    [8]黄威,陶春辉,邓显明,等.西南印度洋脊49°39′E热液活动区IODP钻探计划的科学意义[J].海洋学研究, 2009, 27(2): 97-106.
    [9]冯军,李江海,牛向龙.现代海底热液微生物群落及其地质意义[J].地球科学进展, 2005, 20(7): 733-740.
    [10]王丽玲,林景星,胡建芳.深海热液喷口生物群落研究进展[J].地球科学进展, 2008, 23(6): 606-612.
    [11]杨作升,范德江,李云海,等.热液羽状流研究进展[J].地球科学进展, 2006, 21(10): 999-107.
    [12] Boetius, A., Lost city life [J]. Science, 2005, 307(5714): 1420-1422.
    [13]冯军,李江海,陈征,等.海底黑烟囱与生命起源述评[J].北京大学学报(自然科学版), 2004, 40(2): 318-325.
    [14]李江海,牛向龙,冯军,海底黑烟囱的识别研究及其科学意义[J].地球科学进展, 2004, 19(1): 17-25.
    [15]真允庆,海底热液成矿作用[J].矿产与地质, 1991, 5(3): 157-163.
    [16]季敏,现代海底典型热液活动区环境特征分析[D].青岛:中国海洋大学硕士论文, 2004.
    [17] Bertine K K, Keene J. Submarine barite-opal rocks of hydrothermal origin [J]. Science, 1975, (188): 150-152.
    [18] Corliss JB, Dymond J, Gordon L, et al. Submarine thermal springs on the Galapagos Rift [J].Science, 1979, 203: 1073-1083.
    [19]翟世奎,陈丽蓉,张海启.冲绳海槽的岩浆作用与海底热液活动[M].北京:海洋出版社,2001,pp200.
    [20]党宏月,李铁刚,曾志刚.深海极端环境深部生物圈微生物学研究综述[J].海洋科学集刊, 2006, 47:41-60.
    [21] Ramirez-Llodra E, Shank TM, German CR. Biodiversity and biogeography of hydrothermal vent species: thirty years of discovery and investigations [J]. Oceanography, 2007, 20(1): 30-41.
    [22] Edmonds HN, Michael PJ, Baker ET, et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean[J]. Nature, 2003, 421(6920): 252-256.
    [23] Van Dover CL, Humphris SE, Fornari D, et al. Biogeography and Ecological Setting of Indian Ocean Hydrothermal Vents[J]. Science, 2001, 294(5543): 818-823.
    [24] German, CR, Livermore RA, Baker ET, et al. Hydrothermal plumes above the East Scotia Ridge: an isolated high-latitude back-arc spreading centre [J]. Earth and Planetary Science Letters, 2000, 184(1): 241-250.
    [25] Klinkhammer, GP, Chin CS, Keller RA, et al. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica [J]. Earth and Planetary Science Letters, 2001, 193(3-4): 395-407.
    [26] Desbruyères, D, Segonzac M, Bright M, et al. Handbook of deep-sea hydrothermal vent fauna [M]. Linz, Austria: Land Ober?sterreich, Biologiezentrum der Ober?sterreichische Landesmuseen, 2006, pp544.
    [27]栾锡武,翟世奎,干晓群.冲绳海槽中部热液活动区构造地球物理特征分析[J].沉积学报, 2001, 19(1): 43-47.
    [28] Reysenbach AL, Shock E. Merging genomes with geochemistry in hydrothermal ecosystems [J]. Science, 2002, (296): 1077-1082.
    [29]李小虎,初凤友,雷吉江,等.慢速-超慢速扩张西南印度洋中脊研究进展[J].地球科学进展, 2008, 23(6): 596-603.
    [30]王春生,中国首次环球大洋科学考察[J].科学, 2006, 58(4): 5-7.
    [31]丁六怀,陈新明,高宇清.海底热液硫化物———深海采矿前沿探索[J].海洋技术, 2009, 28(1): 126-132.
    [32] Lin J, Zhang C. The first collaborative China-International cruises to investigate Mid-Ocean ridge hvdrothermal vents [J]. Ridge Crest News, 2006, (15): 33-34.
    [33] Tao C, Lin J, Guo S, et al. Discovery of the first active hydrothermal vent field at the ultraslow spreading Southwest Indian Ridge: The Chinese DY115一19 Cruise [J]. Ridge Crest News, 2007, (16): 25-26.
    [34]刘大正,郭强.“大洋一号”昨日凯旋[N].齐鲁晚报, 2009-3-18.
    [35] Tao C, Wu G, Su X, et al. Inactive Hydrothermal Vent Field Discovered at the Southwest Indian Ridge 50.5oE[EB]. http://www.interridge.org/en/node/5706, 2010-06-01.
    [36]阮煜琳,中国第21航次大洋科考取得六大历史性突破[EB]. http://www.chinanews.com.cn/ gn/news/2010/05-28/2311390.shtml, 2010-05-28.
    [37]中华人民共和国中央人民政府门户网站.中国完成第21航次大洋科考在大西洋发现热液区[EB]. http://www.gov.cn/jrzg/2010-05/29/content_1616102.htm, 2010-05-29.
    [38]李日辉,侯贵卿,深海热液喷口生物群落的研究进展[J].海洋地质与第四纪地质, 1999, 19(4):103-108.
    [39]沈国英,施并章.海洋生态学[M].北京:科学出版社, 2002, pp446.
    [40]魏曼曼,王玉光,郑甲,等.劳盆地深海热液喷口沉积物中细菌多样性研究[J].微生物学通报, 2009, 36(4): 538-543.
    [41] Vieille C, Zeikus GJ. Hyperthermophilic enzymes sources uses and molecular mechanisms for thermostability [J]. Microbiol Mol Biol Rev, 2001, 65(1): 1-43.
    [42]王淑军,陆兆新,吕明生,等.一株深海热液口超嗜热古菌的分类鉴定及高温酶活性研究[J].南京农业大学学报, 2009, 32(2): 130-136.
    [43] Stetter KO. Extremophiles and their adaptation to hot environments [J]. FEBS Lett, 1999, (452): 22-25.
    [44] Wirsen CO, Molyneaux SJ. A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat [J]. Applied and Environmental Microbiology, 1999, 65(12): 5314-5321.
    [45] Reysenbach AL, Longnecker K, Kirshtein J. Novel bacterial and archaeal lineages from anin situ growt chamber deployed at a mid-Atlantic Ridge Hydrothermal vent [J]. Applied and Environmental Microbiology, 2000, 66(9): 3798-3806.
    [46]彭亚林.印度洋深海热液区盐单胞菌和地衣芽胞杆菌的筛选、鉴定及生理生化特性研究[D].青岛:中国海洋大学硕士论文, 2008.
    [47]刘欣,邵宗泽.东太平洋海隆深海热液区沉积物微生物多样性的研究[J].台湾海峡, 2008, 27(3): 272-278.
    [48]杨德渐,孙世春.海洋无脊椎动物学[M].青岛:中国海洋大学出版社,2006,pp596.
    [49] Shank TM, Fornari DJ, Von Damm KL, et al. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50'N, East Pacific Rise) [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(1-3): 465-515.
    [50] Desbruyères D, Almeida A, Biscoito M, et al. A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs environmental controls [J]. Hydrobiologia, 2000, (440): 201-216.
    [51] Gebruk AV, Galkin SV, Vereshchaka AL, et al. Ecology and Biogeography of the Hydrothermal Vent Fauna of the Mid-Atlantic Ridge [J]. Advances in Marine Biology. Academic Press, 1997, 93-144.
    [52] Copley JTP, Flint HC, Ferrero TJ, et al. Diversity of meiofauna and free-living nematodes in hydrothermal vent mussel beds on the northern and southern East Pacific Rise [J]. Journal of the Marine Biological Association of the UK, 2007, 87(05): 1141-1152.
    [53] Galkin SV, Goroslavskaya EI. Bottom fauna associated with Bathymodiolus azoricus (Mytilidae) mussel beds in the hydrothermal fields of the Mid-Atlantic Ridge [J]. Oceanology, 2010, 50(1): 51-60.
    [54] Zekely J, Van Dover CL, Nemeschkal HL, et al. Hydrothermal vent meiobenthos associated with mytilid mussel aggregations from the Mid-Atlantic Ridge and the East Pacific Rise [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(8): 1363-1378.
    [55] Zeppilli D, Danovaro R. Meiofaunal diversity and assemblage structure in a shallow-water hydrothermal vent in the Pacific Ocean [J]. Aquatic Biology, 2009, (5): 75-84.
    [56] Tarasov VG, Gebruk AV, Mironov AN, et al. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? [J]. Chemical Geology, 2005, 224(1-3): 5-39.
    [57] Bortnikov NS, Fedorov DT, Muravev KG. Mineral composition and conditions of the formation of sulfide edifices in the Lau Basin (southwestern sector of the Pacific Ocean) [J]. Geology of Ore Deposits, 1993, (35) : 476-488.
    [58] Fouquet Y, Von Stackellberg U, Charlou JL. Metallogenesis in Back-arc environments: The Lau basin example [J]. Economic Geology, 1993, (88): 2154-2181.
    [59] Herzig PM, Hannington MD, Fouquet Y, et al. Gold-rich polymetallic sulfides from the Lau Back Arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the southwest Pacific [J]. Econ. Geol., 1993, (88): 2182-2209.
    [60] Stackelberg U Von. Hydrothermal Sulfide Deposits in Back Arc Spreading Centers in the Southwest Pacific [J]. Bundesanst. Geowiss. Rohstoffe, Circ., 1985, (2): 3-14.
    [61]鄢全树,石学法,李乃胜.西南太平洋劳海盆地质学研究进展[J].海洋地质与第四纪地质, 2010, (1): 132-140.
    [62] Snow JE, Edmonds HN. Ultraslow-spreading ridges rapid Paradigm changes [J]. Oceanography, 2007, 20(1): 90-101.
    [63] Fornari DJ, Haymon RM, Perfit MR, et al. Geological characteristics and evolution of the axial zone on fast spreading mid-ocean ridges: Formation of an axial summit trough along the East Pacific Rise, 9°~10°N [J]. Journal of Geophysical Research, 1998, (103): 9827-9855.Phipps
    [64] MJ, Chen Y. Dependence of ridge-axis morphology on magma supply and spreading rate [J]. Nature, 1993, (364): 706-708.
    [65] Bevis M, Taylor FW, Schutz BE, et al. Geodetic Observations of Very Rapid Convergence and Back-Arc Extension at the Tonga Trench [J]. Nature, 1995, (374): 249-251.
    [66]陶春辉.中国大洋矿产资源研究开发协会DY115-19航次报告[R](内部). 2009.
    [67] Bachraty C, Legendre P, Desbruyères D. Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(8): 1371-1378.
    [68] Denis F, Jollivet D, Moraga D. Genetic separation of two allopatric populations of hydrothermal snails Alviniconcha spp. (Gastropoda) from two South Western Pacific back-arc basins [J]. Biochemical Systematics and Ecology, 1993, 21(4): 431-440.
    [69] Desbruyères D, Hashimoto J, Fabri MC. Composition and biogeography of hydrothermal vent communities in western Pacific back-arc basins [J]. Geophysical Monograph Series, 2006, 166: 215-234.
    [70] German CR, Baker ET, Mevel C, et al. Hydrothermal activity along the southwest Indian ridge [J]. Nature, 1998, 395(6701): 490-493.
    [71] Hashimoto J, Ohta S, Gamo T, et al. First hydrothermal vent communities from the Indian Ocean discovered [J]. zoological science, 2001, (18): 717-721.
    [72] Juniper SK, Tunnicliffe V, Desbruyères D. Regional-scale features of Northeast Pacific,East Pacific Rise,and Gulf of Aden vent communities [A].- In: McMurray G.R. (Ed.): Gorda Ridge: A Seafloor Spreading Center in the United States Exclusive Economic Zone, 1990, Springer, NY: 265-278.
    [73] Shana KG, Warén A, Victoria JO, et al. Novel Forms of Structural Integration between Microbes and a Hydrothermal Vent Gastropod from the Indian Ocean [J]. Applied and Environmental Microbiology, 2004, 70(5): 3082-3090.
    [74] Warén A, Bengtson S, Gffredi SK, et al. A Hot-Vent Gastropod with Iron Sulfide Dermal Sclerites [J]. Science, 2003, 302(5647): 1007-1007.
    [75] Pósfai M, Dunin-Borkowski RE. Sulfides in Biosystems [J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1): 679-714.
    [76] Bonnivard E, Catrice O, Ravaux J, et al. Survey of genome size in 28 hydrothermal vent species covering 10 families. Genome, 2009, 52(6): 524-536.
    [77]徐汉卿,薛怀平,廖小韵,等.中国首次环球大洋科考航线图[J].地理空间信息, 2006, 4(5): 74-76.
    [78]李明春,孙银玲.执行中国大洋DY115-19航次科考任务——“大洋一号”青岛起航[N].中国海洋报, 2007,第1570期.
    [79] Olav GIERE. Meiobenthology: The microscopic fauna in aquatic sediments [M]. Berlin: Springer-Verlag, 1993, pp328.
    [80] Wieser. Free-living marine nematodes: I. Enoploidea [J]. Acta University Lund, 1953, 49(6): 1-55.
    [81] Juario JV. Nematode species composition and seasonal flucturation of a sublittoral meiofluna community in the German Bight [J]. Verff Inst Meeresforsch Bremerh, 1975, 15: 283-337.
    [82] Widbom B. Determination of average individual dry weight and ash-free dry weight in different sieve fractions of marine meiofauna [J]. Marine Biology, 1984, 84: 101-108.
    [83]张志南,周红,于子山, et al.胶州湾小型底栖生物的丰度和生物量[J].海洋与湖沼, 2001, 32(3): 140-148.
    [84] McIntyre AD. Ecology of marine meiobenthos [J]. Biol. Rev., 1969, 44: 245-290.
    [85] Coull BC. Ecology of the marine meiofauna [A]. Introduction to the study of meiofauna, Higgins R.P. and Thiel H. Simthsonian Institution Press, Washington,DC, 1992: 18-38.
    [86] Clarke KR, Warwick RM. Changes in marine communities: an approach to statistical analysis and interpretation [M]. Plymouth Marine Laboratory, Plymouth, UK, 1994, pp144.
    [87]周红,张志南.大型多元统计软件PRIMER的方法原理及其在底栖群落生态学中的应用[J].青岛海洋大学学报, 2003, 33(1): 58-64.
    [88] Gauch Jr HG, Whittaker RH. Comparison of Ordination Techniques [J]. Ecology, 1972, 53(5): 868-875.
    [89]张艳,张志南,黄勇,等.南黄海冬季小型底栖生物丰度和生物量[J].应用生态学报, 2007, 18(2): 411-419.
    [90]张玉红,台湾海峡及邻近海域小型底栖动物密度和生物量研究[D].厦门:厦门大学硕士论文, 2009.
    [91]华尔,张志南,张艳.长江口及邻近海域小型底栖生物丰度和生物量[J].生态学报, 2005, 25(9): 2235-2243.
    [92]刘海滨.青岛太平湾砂质潮间带小型底栖生物群落结构与多样性的研究[D].青岛:中国海洋大学硕士论文, 2007.
    [93]杨俊毅,王春生,刘镇盛,等.热带北太平洋深海小型底栖生物大尺度空间分布[J].海洋科学研究, 2005, 23(3): 23-29.
    [94] Danovaro R, Croce ND, Eleftheriou A, et al. Meiofauna of the deep Eastern Mediterranean Sea: distribution and abundance in relation to bacterial biomass, organic matter composition and other environmental factors [J]. Progress In Oceanography, 1995, 36(4): 329-341.
    [95] Bussau C, Schriever G, Thiel H. Evaluation of abyssal metazoan meiofauna from manganese nodule area of the eastern South Pacifica Ocean [J]. Vie Milieu, 1995, 45(1): 39~48.
    [96]邹丽珍.中国合同区小型底栖动物及其深海沉积物中18SrDNA基因多样性研究[D].厦门:国家海洋局第三海洋研究所硕士论文, 2006.
    [97] Drazen JC, Baldwin RJ, Smith Jr KL. Sediment community response to a temporally varying food supply at an abyssal station in the NE pacific [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(4-5): 893-913.
    [98] Snider, LJ, Burnett BR, Hessler RR. The composition and distribution of meiofauna and nanobiota in a central North Pacific deep-sea area [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1984, 31(10): 1225-1249.
    [99] Dinet A, Grassle F, Tunnicliffe V. Premières observations sur la meiofaune des sites hydrothermaux de la dorsale East-Pacifique (Guaymas, 21°N) et de l`Exlorer Ridge [J]. Oceanologica Acta, 1988, (85): 7-14.
    [100]吴绍渊,慕芳红.山东南部沿海冬季小型底栖生物的初步研究[J].海洋与湖沼, 2009, 40(6): 682-691.
    [101] Sommer S, Pfannkuche O. Metazoan meiofauna of the deep Arabian Sea: standing stocks, size spectra and regional variability in relation to monsoon induced enhanced sedimentation regimes of particulate organic matter [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(14): 2957-2977.
    [102]马藏允,刘海,王惠卿,等.底栖生物群落结构变化多元变量统计分析[J].中国环境科学, 1997, 17(4): 298-300.
    [103] Field JG, Clarke KR, Warwick RM. A practical strategy for analysing multispecies distributionpatterns [J]. Marine Ecology Progress Series, 1982, (8): 37-52.
    [104] Soltwedel T, Pfannkuche O, Thiel H. The Size Structure of Deep-Sea Meiobenthos in the North-Eastern Atlantic: Nematode Size Spectra in Relation to Environmental Variables. Journal of the Marine Biological Association of the UK, 1996, 76(02): 327-344.
    [105] Southward AJ, Jones DS. A revision of stalked barnacles (Cirripedia: Thoracica: Scalpellomorpha: Eolepadidae: Neolepadinae) associated with hydrothermalism, including a description of a new genus and species from a volcanic seamount off Papua New Guinea [J]. Marine Biodiversity, 2003, 32(1-2): 77-93.
    [106] Newman WA. A new scalpellid (Cirripedia); a Mesozoic relic living near an abyssal hydrothermal spring [J]. Trans. San Diego Soc. natur. Hist., 1979, 19: 153-167.
    [107] Newman WA. The abyssal hydrothermal vent invertebrate fauna: a glimpse of antiquity? [J]. Bull. Biol. Soc. Washington, 1985, 6: 231-242.
    [108] Newman WA. Sous-classe des Cirripedes (Cirripedia BURMEISTER, 1834) Super-ordres des thoraciques et des acrothoraciques (Thoracica DARWIN, 1854-Acrothoracica GRUVEL, 1905)[A].- In: GRASSE, P. P. [Ed.]: Traite de Zoologie, Crustaces, 1996, 7(2): 453-540.
    [109] Buckeridge JS. Fossil barnacles (Cirripedia: Thoracica) of New Zealand and Australia [J]. New Zeal. geol. Surv. paleont. Bull., 1983, 50: 1-151.
    [110]刘瑞玉,任先秋.中国动物志:无脊椎动物·第四十二卷(甲壳动物亚门、蔓足下纲、围胸总目)[M].北京:科学出版社, 2006, pp633.
    [111] Buckeridge JS, Newman WA. A revision of the Iblidae and the stalked barnacles (Crustacea: Cirripedia: Thoracica), including new ordinal, familial and generic taxa, and two new species from New Zealand and Tasmanian waters. Zootaxa, 2006, 1136: 1-38.
    [112] Baba K, Macpherson E, Lin CW, et al. Crustacean fauna of Taiwan: squat lobsters (Chirostylidae and Glatheridae) [M]. Taiwan: National Taiwan Ocean University, 2009, pp311.
    [113]王复振,李志诚.东海深海铠甲虾类[J].海洋科学, 1986, 10(5): 28-31.
    [114] Richer de Forges B and Justine JL. Introduction In: Richer de Forges, B. and Justine, J.L. (eds)[A]. Tropical Deep-Sea Benthos [M]. Mémoires du Muséum national d'Histoire naturelle, Paris, 2006, 193(24): 9-13.
    [115] Bouchet P, Heros V, Lozouet P, et al. A quater-century of deep-sea malacological exploration in the South and West Pacific : Where do we stand ? How far to go?[A] In: Heros V, Cowie R.H and Bouchet O. Tropical Deep-sea Benthos [M]. Mémoires du Muséum national d'Histoire naturelle, Paris, 2008, 196(25): 9-40.
    [116] Baba K, Macpherson E, Poore GCB, et al. Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura - families Chirostylidae, Galatheidae and Kiwaidae) [J]. Zootaxa, 2008, (1905): 1-220.
    [117] Annual Highlights Report for Census of Marine Life 2007/2008 [EB]. http://www.coml.org/media-resources/reports-archive, 2010-05-24.
    [118]王复振,胡月妹.我国铠甲虾类的新记录[J].海洋通报, 1983, 2(4): 79-83.
    [119]王复振.中国的铠甲虾.海洋湖沼通报[J], 1989, (2): 62-65.
    [120] WOLFF Torben. Composition and endemism of the deep-sea hydrothermal vent fauna [J]. Cahiers de Biologie marine, 2005, 46: 97-104.
    [121] McLaughlin PA, Rafael L, Sorhannus U. Hermit crab phylogeny: a reappraisal and its“fall-out”[J]. Journal of Crustacean Biology, 2007, 27(1): 97-115.
    [122] Ahyong ST, Schnabel KE, Maas E. Anomuran phylogeny: new insights from molecular data [A]. In: Martin, J.W., Crandall, K. & Felder, D.F (eds.), Decapod Crustacean Phylogenetics [M]. Crustacean Issues, 2009, 18: 399-414.
    [123] Janet Haig. First report of the crab family Chirostylidae off California, and description of a new species of Chirostylus [J]. California Fish and Game. 1968, 54(4): 270-277.
    [124] Macpherson E JW, Segonzac M. A new squat lobster family of Glatheoidea (Crustacea, Decapoda, Anomura) from the hydrothermal vents of the Pacific-Antarctic Ridge [J]. Zoosystema, 2005, 27(4): 709-723.
    [125] Martin J.W, Davis G.E. An updated classification of the Recent Crustacea [M]. Natural History Museum of LosAngeles County, Science Series, 2001, 39:1-124.
    [126]郑重,李少菁,许振祖.海洋浮游生物学[M].北京:海洋出版社, 1984, pp653.
    [127] S?彼得?丹斯.贝壳[M].北京:中国友谊出版公司, 2002, pp256.
    [128]自然与人文数位博物馆.筒蝶螺[EB]. http://emuseap.nmns.edu.tw/DigiMuse/showMetadat a.aspx?ObjectId=0b00000180ae33fa&TypeKind=kuUK&Type=mollusca&Part=, 2010-05-23.
    [129]梁象秋,方纪祖,杨和荃.水生生物学(形态和分类)[M].北京:中国农业出版社, 1996, pp410.
    [130]顾继红,胡震.美国载人深潜器新ALVIN号研制[J].中外船舶科技, 2006, (4): 5-9.
    [131]任沁沁.中国已具备1000米深度载人深潜能力[EB]. http://news.eastday.com/c/2010lh/u1 a5072879.html, 2010-03-09.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700