C/C复合材料与TC4钎焊接头组织及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着新型材料的发展,C/C复合材料由于其密度低、导热性能好、抗热冲击和抗疲劳性能好,特别是其优异的高温强度,被认为是一种理想的航空航天领域高温结构材料,已经成功应用于飞机刹车盘、核反应堆以及火箭发动机喷嘴等部件。将C/C复合材料与TC4连接制成火箭喷管构件,可大大降低重量,提高火箭发动机效率。本文利用AgCuTi和TiZrNiCu(加缓冲层)两种钎料来连接C/C复合材料与TC4,揭示了界面反应机理,并对接头微观组织与力学性能关系进行了深入研究。
     采用AgCuTi钎料时,接头的界面结构为C/C复合材料/TiC/TiCu/Ag(s.s) +Ti_3Cu_4+TiCu/Ti_3Cu_4/TiCu/Ti_2Cu/Ti(s.s)+Ti_2Cu/TC4 ;当钎焊工艺参数改变时,接头界面产物的种类没有发生改变,但界面各反应层的厚度均发生了相应的变化。随着钎焊温度的升高或保温时间的延长,TiC/TiCu以及Ti_3Cu_4/ TiCu/Ti_2Cu/Ti(s.s)+Ti_2Cu反应层的厚度增加,焊缝中心的Ag(s.s)+Ti_3Cu_4+ TiCu反应层厚度变小,TiCu+Ti_3Cu_4黑块数量减少;当钎焊温度为1183K、保温时间为600s时,接头的抗剪强度最高,为25MPa,低于或高于此工艺参数时,接头的抗剪强度下降;断口分析表明,接头断裂的位置与被连接界面的碳纤维方向有关,当碳纤维轴平行于连接面时,断裂发生在复合材料中;当碳纤维轴垂直于焊接面时,在钎焊温度较低或适中的条件下,断裂主要发生TiC层中。在钎焊温度较高的条件下,断裂主要发生在TiC层以及TiCu/Ti_2Cu界面处。
     为降低接头残余应力、提高接头的高温性能,采用TiZrNiCu钎料、Cu/Mo复合中间层对C/C复合材料与TC4进行了连接,结果发现,在较低工艺参数下,Cu/C/C复合材料界面结构为Cu/Cu_(51)Zr_(14)/Ti_2(Cu,Ni)+Ti(Cu,Ni) +TiCu+Cu_2TiZr/TiC/C/C复合材料。随着工艺参数的提高,TiCu和Cu_2TiZr反应相逐渐消失,Ti(Cu,Ni)_2新相生成,此时的界面结构为Cu/Cu_(51)Zr_(14)/ Ti_2(Cu,Ni)+Ti(Cu,Ni)+Ti(Cu,Ni)_2/TiC/C/C复合材料。钎焊工艺参数较高时界面结构为Cu/Cu_(51)Zr_(14)/Cu(s.s)+Ti(Cu,Ni)_2/TiC/C/C复合材料。随着钎焊温度的增加以及保温时间的延长,界面反应层Cu_(51)Zr_(14)和TiC反应层厚度增加;通过剪切试验发现当钎焊温度为1173K、保温时间为300s时,接头的室温抗剪强度最大,为21MPa,在923K时高温抗剪强度可达到27MPa,可满足实际应用的需要;改变Cu箔厚度,接头的室温抗剪强度增加,但增加幅度不大,最高不超过23MPa;断裂部位分析结果表明,当碳纤维轴平行于连接面时,断裂发生在复合材料中;当碳纤维轴垂直于焊接面时,断裂主要发生在C/C复合材料与钎料界面处的TiC层中。
     利用有限元方法,模拟了C/C复合材料/TC4接头残余应力的分布特征。结合断口分析表明,接头力学性能与断裂部位主要与残余剪应力τ_(xy)有关。最大剪应力τ_(xy)分布在接头边缘的C/C复合材料/钎料界面处。采用AgCuTi钎料钎焊C/C复合材料与TC4时,在C/C复合材料/钎料界面应力集中区域的剪应力τ_(xy)低于采用TiZrNiCu直接连接C/C复合材料与TC4的应力;当采用TiZrNiCu钎焊C/C复合材料与TC4时,中间层的加入有利于缓和接头残余应力,其中Cu/Mo复合中间层的缓和效果优于单一中间层Cu和Mo;改变中间层的厚度对接头剪应力τ_(xy)的分布影响不大,但剪应力τ_(xy)值随着中间层厚度的增加有所降低,且降低幅度不大。
     综合利用反应自由能理论及扩散理论对C/C复合材料钎焊过程中界面处反应产物及反应层厚度进行了研究,建立了C/C复合材料/钎料/TC4(Cu)界面反应层成长动力学方程,确定了反应层成长的动力学参数,为预测连接接头的组织结构与机械性能提供理论依据。
In the recent development of new materials, C/C composite has been considered to be an ideal high temperature material with potential application in aerospace field because of its low density, high thermal conductivity, high thermal shock and fatigue resistance, especially its high mechanical properties at high temperature. It has been successfully used as aircraft brakes materials, armour materials for the divertor and nozzle materials. The nozzle component made of C/C composite and TC4 can greatly decrease the weight and increase the efficient of rocket engine. In this paper, the interface reaction mechanism was analyzed, and the relationship between microstructures and mechanical properties was investigated when the C/C composite and TC4 were brazed with AgCuTi and TiZrNiCu (adding to interlayer) filler metals.
     The interface structure was C/C composite/TiC/TiCu/Ag(s.s)+Ti_3Cu_4+TiCu/ Ti_3Cu_4/TiCu/Ti_2Cu/Ti(s.s)+Ti_2Cu/TC4 with AgCuTi filler metal. The kinds of the reaction products were not changed but the thicknesses of the reaction layers were changed with different brazing parameters. With increased brazing temperature and bonding time, the thicknesses of the TiC/TiCu and Ti_3Cu_4/ TiCu/Ti_2Cu/Ti(s.s)+Ti_2Cu increased, while the Ag(s.s)+Ti_3Cu_4+TiCu in the middle of brazing seam decreased as well as the amount of TiCu+Ti_3Cu_4 decreased. When the brazing temperature was 1183K for 600s, the optimum shear strength was 25MPa. The shear strength decreased at other brazing parameters. The fracture surface analysis showed that the fracture location was related to the orientation of carbon fiber. When carbon fiber was parallel to the joined surface, the joints were fractured in the composites. When carbon fiber was vertical to the joined surface, the joints were fractured at TiC layer at low and middle brazing parameters and the joints were fractured at TiC layer or TiCu/Ti_2Cu interface at high brazing parameters.
     To release residual stress and increase the mechanical properties at high temperature, C/C composite and TC4 were brazed with TiZrNiCu filler metal and Cu/Mo composite interlayer. The interface structure was Cu/Cu+(51)Zr_(14)/Ti_2(Cu,Ni) +Ti(Cu,Ni)+TiCu+Cu_2TiZr/TiC/C/C composite at low brazing parameters. With the increased brazing parameter, TiCu and Cu_2TiZr disappeared, and Ti(Cu,Ni)2 appeared. The interface structure was Cu/Cu_(51)Zr_(14)/Ti_2(Cu,Ni)+Ti(Cu,Ni)+ Ti(Cu,Ni)2/TiC/C/C composite. At high brazing parameter, the interface structure was Cu/Cu_(51)Zr_(14)/Cu(s.s)+Ti(Cu,Ni)2/TiC/C/C composite. The thicknesses of Cu_(51)Zr_(14) and TiC reaction layers increased with the increased brazing temperature and holding time. The maximum shear strength was 21MPa at room temperature and 27MPa at 923K when the brazing parameter was 1173K for 300s, which can meet the performance requirement. The shear strength gradually increased with the increased thickness of Cu, but the maximum shear strength was no more than 23MPa. The fracture surface analysis showed that the situation of fracture was related to the orientation of carbon fiber. When carbon fiber was parallel to the joined surface, the joints were fractured in the composites. When carbon fiber was vertical to the joined surface, the joints were fractured at TiC at low and middle brazing parameters and the joints were fractured at TiC and TiCu/Ti_2Cu interface at high brazing parameters.
     The distribution of residual stress of the C/C composite/TC4 brazed joint was simulated by FEM calculation. Combining the analyses of fracture, it was shown that the mechanical properties and fracture location were mainly related to the shear stressτ_(xy). The shear stressτ_(xy) at the edge of the C/C composite/filler metal interface using AgCuTi filler metal was lower than that of TiZrNiCu filler metal. Using TiZrNiCu filler metal, the residual stress of the joint would be released with interlayers. The releasing the residual stress of Cu/Mo composite interlayer was better than that of Cu or Mo single interlayer. With the increased of thickness of interlayer, the distribution of shear stressτ_(xy) was not changed, but the shear stressτ_(xy) gradually decreased.
     Based on the Gibbs energies of formation and diffusion theory, the reaction phases and thickess of reaction layers were studied. The kinetic equations of C/C composite/filler metal/TC4 (or Cu) interface were set up. The kinetic equation parameters were achieved which can predict the microstructure and mechanical properties of the joint.
引文
1 贺福, 王茂章. 碳纤维及其复合材料. 科学出版社. 1997
    2 李林远, 林得春. 炭/炭复合材料的特殊性与复杂性. 固体火箭技术. 1991, (4): 87-96
    3 苏君明. 高效高冲质比. C/C 喷管的应用与进展.新型碳材料. 1996, 11(3): 18-23
    4 韩杰才, 胡平, 张幸红, 孟松鹤. 超高温材料的研究进展. 固体火箭技术. 2005, 28(4): 289-294
    5 廖勋鸿, 廖名华, 王鑫秀等. C/C 复合材料在火箭发动机和飞机上的应用. 炭素. 2002, (2): 11-13
    6 M. Lacoste, A. Lacomebe, P. Joyez. Carbon/carbon Extendible Nozzles. Acta Astronautica. 2002, 50(6):357-367
    7 L.M. Manocha, Ashish Warrier, S. Manocha et al.. Thermophysical Properties of Densified Pitch Based Carbon/carbon Materials—I. Unidirectional Composites. Carbon. 2006, 44: 480–487
    8 L.M. Manocha, Ashish Warrier, S. Manocha et al.. Thermophysical Properties of Densified Pitch Based Carbon/carbon Materials—II. Bidirectional Composites. Carbon. 2006, 44: 488–4495
    9 Jiping Wang, Junmin Qian, Guanjun Qiao et al.. A rapid Fabrication of C/C Composites by a Thermal Gradient Chemical Vapor Infiltration Method with Vaporized Kerosene as a Precursor. Materials Chemistry and Physics. 2007, 101 (1): 7-11
    10 熊翔, 黄伯云, 肖鹏等. 准三维 C/C 复合材料的层间剪切性能及其断裂机理. 2004, 14(11): 1799-1804
    11 刘建军, 李铁虎, 郝志彪等. 针刺炭布/网胎复合织物的组分形态及性能研究. 固体火箭技术. 2005, 28(4): 299-302
    12 李翠云, 李辅安. 碳/碳复合材料的应用研究进展. 化工新型材料. 2006, 34(13): 18-20
    13 刘皓, 李克智, 李贺军等. 纤维表面处理对 C/C 复合材料组织与性能的影响. 材料科学与工艺. 2007, 15(1): 19-22
    14 张永辉, 王继平, 乔冠军等. 化学液相气化渗透法制备炭/炭复合材料研究的进展. 硅酸盐学报. 2007, 35(3): 389-394
    15 王臣, 梁军, 杜善义. C/C 复合材料表面烧蚀细观形貌损伤分析. 固体火箭技术. 2007, 30(2): 150-154
    16 尹健, 张红波, 熊翔等. 不同预制体结构炭/炭复合材料烧蚀性能. 复合材料学报. 2007, 24(1): 40-44
    17 Williams S D, Curry D M, Chao D C. Ablation Analysis of the Shuttle Orbiter Oxidation Protected Reinforced Carbon/carbon, AIAA-94-2084. Colorado Springs : AIAA , 1994
    18 In-Ting Hong, Chun-Hao Koo. The Study of Vacuum-furnace Brazing of C103 and Ti–6Al–4V Using Ti–15Cu–15Ni Foil. Materials Chemistry and Physics. 2005, 94: 131–140
    19 H.Y. Chan, D.W. Liaw, R.K. Shiue. The Microstructural Observation of Brazing Ti–6Al–4V and TZM using the BAg-8 Braze Alloy. International Journal of Refractory Metals & Hard Materials. 2004, 22: 27–33
    20 F. Karimzadeh, A. Ebnonnasir, A. Foroughi. Artificial Neural Network Modeling for Evaluating of Epitaxial Growth of Ti6Al4V Weldment. Materials Science and Engineering A. 2006, 432(1-2,25): 184-190
    21 Bulent Kurt, Nuri Orhan, Ertan Evin et al.. Diffusion Bonding between Ti–6Al–4V Alloy and Ferritic Stainless Steel. Materials Letters. 2007, 61(8-9): 1747-1750
    22 Wenbo Han, Kaifeng Zhang, Guofeng Wang. Superplastic Forming and Diffusion Bonding for Honeycomb Structure of Ti–6Al–4V Alloy. Journal of Materials Processing Technology. 2007, 183(2-3, 23): 450-454
    23 Ho-Sung Lee, Jong-Hoon Yoon, Chan Hee Park et al.. A Study on Diffusion Bonding of Superplastic Ti–6Al–4V ELI Grade. Journal of Materials Processing Technology. 2007, 187-188(12): 526-529
    24 Kathy L. Elias, Glenn S. Daehn, William A. Brantley et al.. An Initial Study of Diffusion Bonds between Superplastic Ti-6Al-4V for Implant Dentistry Applications. The Journal of Prosthetic Dentistry. 2007, 97( 6):357-365
    25 张启运, 庄鸿寿. 钎焊手册. 机械工业出版社, 1998: 314-315
    26 陈腾飞. 炭纤维。坯体结构及增密方式对炭/炭复合材料界面及性能的影响研究. 中南大学博士论文. 2003
    27 吴凤秋. 炭/炭复合材料的力学性能及其断裂机理的研究. 中南大学硕士论文. 2004
    28 赵建国, 李克智, 李贺军. 碳/碳复合材料导热性能的研究. 航空学报. 2005, 26(4): 501-503
    29 Yuexian Cui, Qingchang Meng, Baoyou Zhang et al.. Fracture Analysis of Ti–6Al–4V Bolts. Engineering Failure Analysis. 2006, 13(4): 669-672
    30 M.J.R. Barboza, E.A.C. Perez, M.M. Medeiros et al.. Creep Behavior of Ti–6Al–4V and a Comparison with Titanium Matrix Composites. Materials Science and Engineering: A. 2006, 428( 1-2, 25): 319-326
    31 C.Y. Yu, C.C. Shen, T.P. Perng. Microstructure of Ti–6Al–4V Processed by Hydrogenation. Scripta Materialia. 2006, 55(11): 1023-1026
    32 Chaur-Jeng Wang, Shih-Ming Chen. Microstructure and Cyclic Oxidation Behavior of Hot Dip Aluminized Coating on Ni-base Superalloy Inconel 718. Surface and Coatings Technology. 2006, 201(7, 20): 3862-3866
    33 周永军, 王瑞丹. 镍基超合金的发展和研究现状. 沈阳航空工业学院学报. 2006, 23(1): 35-37
    34 秦成娟,王新生, 周文孝. 碳化硅陶瓷的研究进展.山东陶瓷. 2006, 29(4): 17-19
    35 佘继红, 江东亮. 碳化硅陶瓷的发展与应用. 陶瓷工程. 1998, (33): 3 - 11
    36 魏明坤, 张丽鹏, 张广军.碳化硅耐火材料的发展与性能.硅酸盐通报. 2001, (3): 36-51
    37 葛毅成, 易茂中, 李丽娅. 基体炭含量对 C/C 复合材料滑动摩擦磨损行为的影响. 粉末冶金材料科学与工程. 2007, 12(3): 171-173
    38 Shin Hyun-kyu, Lee Hong-bun, Kim Kwang-soo.Tribological Properties of Pitch-based 2-D Carbon-carbon Composite. Carbon. 2001, 39(4): 959-970
    39 Hutton T H, Johnson D, Mcenaney B. Effects of Fibre Orientation on the Tribology of a Model Carbon-carbon Composite[J]. Wear. 2001, 249: 647-655
    40 曹宁, 李木森,马泉生等. 医用碳/碳复合材料的制备及骨组织相容性研究. 山东大学学报(工学版). 2007, 37(1): 1-5
    41 翟言强,李克智,李贺军.碳/碳复合材料表面改性及其生物响应特性. 材料工程. 2006, (4): 60-66
    42 Adams D, Williaams Df. Hill J.. Carbon Fiber-reinforced Carbon as a Potential Implant Material. Journal of Biomedical Materials Research. 1978,12(1): 35-42
    43 任家烈, 吴爱萍. 先进材料的连接. 北京: 机械工业出版社, 2000: 237-257
    44 奥洛别依[著]. 复合材料结构连接技术. 北京: 国防工业出版社, 1991
    45 Masashi Koyama, Hiroshi Hatta, Hiroshi Fukuda. Effect of Temperature and Layer Thickness on These Strengths of Carbon Bonding for Carbon/carbon Composites. Carbon. 2005, (43) :171–177
    46 石国庆, 陈洪, 姚军.飞机炭刹车盘粘接修复技术研究. 新型炭材料. 2000, 15(4): 62–64
    47 王继刚, 郭全贵, 刘朗等. 炭材料的高温粘结剂(I). 兵器材料科学与工程. 2003, 26(2): 63-66
    48 王继刚, 郭全贵, 刘朗等. 炭材料的高温粘结剂(II). 兵器材料科学与工程. 2003, 26(5): 68-72
    49 关常参, 李秀兰. 石墨密封滑片(PPS)胶粘剂. 化学与粘合. 1991, (4): 197-202
    50 张哓虎, 李崇俊, 苏红. 炭/ 炭复合材料高温粘接剂的研究. 第 18 届炭/石墨材料学术会议论文集. 西安, 2000: 237-240
    51 王继刚, 郭全贵, 刘朗. 白炭黑、B4C 改性酚醛树脂粘接石墨高温性能研究. 材料工程. 2001, (9): 14-17
    52 Dadras P et al. Joining of Carbon-carbon Composites by Graphite Formation. Journal of the American Ceramic Society. 1994, 77(6): 1419-1424
    53 C. Isola, M. Salvo, M. Ferraris et al.. Joining of Surface Modified Carbon/carbon Composites using a Barium-aluminum-borosilicate Glass. Journal of the European Ceramic Society. 1998, 18: 1017-1024.
    54 Tomoyuki Nishida,Hidekazu Sueyoshi. Effects of Carbon Fiber Orientation and Graphitization on Solid State Bonding of C/C Composite to Nickel. Materials Transactions. 2002, 44(1): 148-154
    55 Melena Salvo et al. Joining of Carbon-carbon Composites for Thermonuclear Fusion Application. Journal of the American Ceramic society. 1997, 80(1): 206-212
    56 M. Salvo, M. Ferraris, P. Lemoine. Joining of CMCs for Thermonuclear Fusion Application. Journal of Nuclear Material. 1996, 233-237: 949-953
    57 Parviz Dadras, Thomas T, Ngai. Joining of Carbon-carbon Composites usingBoron and Titanium Disilicide interlayers. Journal of the American Ceramic Society. 1997, 80(1): 125-132
    58 Dadras P et al. Solid-state Diffusion Bonding of Carbon-carbon Composites with Borides and Carbides. Journal of the American Ceramic Society. 1993, 76(5): 1274-1280
    59 Hidekazu Sueyoshi, Tomoyuki Nishida. Solid State Bonding of Graphite to Inconel 718. Materials transations. 2001, 42(9): 1945-1951
    60 Hidekazu Sueyoshi, Nobuyuki Fukuda, Tomoyuki Nishida. Solid State Bonding of Graphite to S45C Steel. Materials transations. 1998, 39(10): 1084-1092
    61 Hidekazu Sueyoshi, Tomoyuki Nishida. Solid State Bonding of Graphite to SUS304. Materials transations. 2000, 41(3): 414-419
    62 Hidekazu Sueyoshi, Tomoyuki Nishida. Solid State Bonding of Graphite to Nickel. Materials transations. 2000, 42(1): 163-170
    63 宋明霞, 赵锡华, 郭伟等. 钛合金与非金属材料扩散连接研究现状与发展. 焊接. 2005, (10): 9-12
    64 李争显, 周廉, 徐重等. 一种碳基复合材料与钛合金的连接方法. 专利号02116859.8
    65 P. Appendino, V. Casalegno, M. ferraris. Joining of C/C Composites to Copper. Fusion Engineering and Design. 2003:1-5
    66 P. Appendino, M. Ferraris, V. Casalegno. Direct Joining of CFC to Copper. Journal of Nuclear Materials. 2004, 329-333: 1563-1566
    67 Hisanori Okamura, Louji Kajiura, Masato Akiba. Bonding between Carbon Fiber/carbon Ccomposite and Copper Aalloy. Quarterly journal of the Japan Welding Society. 1996, 14(1): 39-46[in Japanese]
    68 马文利, 毛唯, 李晓红等. 采用银基活性钎料钎焊碳/碳复合材料. 材料工程, 2001, (1): 9-11
    69 G.N. Morscher, M. Singh, T.P. Shpargel et al.. A Simple Test to Determine the Effectiveness of Different Braze Compositions for Joining Ti Tubes to C/C Composite Plates. Material Science and Engineering. 2006, A 418(1-2): 19-24
    70 M. Singh, T.P. Shpargel, R. Asthana et al.. Effect of Composite Substrate Properties on the Mechanical Bahavior of brazed Joints in Metal-composite System. Brazing and Solding (3rd International Conference on Brazing and Soldering,San Antonio, TX, April 24-26, 2006: 246-251
    71 M. Singh, T.P. Shpargel, G.N. Morscher et al.. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-carbon Composites. Material Science and Engineering. 2005, A 412: 123-128.
    72 鈴村曉男, 山崎敬久, 高橋邦大. ダィャチント-活性金属ろう界面にずる凝固现象ずよび结合强度-ダィャチントと金属の接合に関よる研究(第 1 報)溶接学会論文集. 1994, 12(4): 509-514
    73 鈴村曉男, 山崎敬久, 高橋邦大. ダィャチント-活性金属ろう界面組織とその形成過程-ダィャチントと金属の接合に関よる研究(第 2 報). 溶接学会論文集. 1995, 13(1): 39-45
    74 孙凤莲. CVD 金刚石厚膜焊接工艺的研究. 博士论文. 2002
    75 孙凤莲, 冯吉才, 刘会杰等. Ag-Cu-Ti 钎料中 Ti 元素在金刚石界面的特征. 中国有色金属学报. 2001, 11(1): 103-106
    76 孙凤莲, 赵密, 李丹等. CVD 金刚石膜的钎焊界面反应层及微结构. 焊接学报. 27(9): 70-74
    77 赵婷, 孙凤莲, 赵密等. Ag-Cu-Ti 钎料在石墨表面的润湿. 哈尔滨理工大学学报. 2004, 9(2): 94-96
    78 邹贵生, 吴爱萍, 高守传等. Ag-Cu-Ti 活性钎料真空钎焊钨、石墨与铜的研究. 新技术新工艺. 2002, (6): 40-42
    79 亢世江, 陈学广, 吕志勇等. 钎焊金刚石膜的试验研究及机理分析. 焊接学报. 2005, 26(2): 77-81
    80 Y. Gotoh, H. Okamura, S. Kajiura. Development and Material Testing of OF-Cu /DS-Cu/OF-Cu Triplex Tube (Dispersion Strengthened Copper Clad with Oxygen Free-Copper) and Trial Fabrication of a Vertical Target Mock-up for ITER divertor. Journal of Nuclear Materials. 1998, 258-263: 271-274
    81 P. W. Trester, P. G. Valentine, W. R. Johnson et al.. Tensile Fracture Characterization of Braze Joined Copper-to CFC Coupon Assemblies. Journal of Nuclear Materials. 1996, 233-237: 906-912
    82 M. Salvo, P. Lemoine, M. Ferraris et al.. Cu-/Pb Rheocast Alloy as Joining Material for CFC Composites. Journal of Nuclear Materials. 1995, 226: 67-71
    83 Jiayan Liu. Brazing of Carbon-carbon Composites: Filler metals andtechniques for Brazing C-C composite to Metals. PH.D research ,1993
    84 Jiayan Liu. Brazing of Vanadium and Carbon-carbon Composites to Stainless Steel for Fusion Reactor Applications. Journal of Nuclear Materials, 1994, 212-1: 1590-1593
    85 V. Branca, A. Federici, M. Grattarola et al.. The Brazing Technology for High Heat Flux Components.10th International Workshop on Carbon Materials for Fusion Applications Jülich, Germany, 17-19 September 2003:1-18
    86 A. Kurumada, T. Oku, Y. Imamura et al. The Thermal Shock Resistance of a Joining Material of C/C Composite and Copper. Journal of nuclear materials. 1998, 258-263:821-827
    87 A. Kurumada, B. Mcenaney, T. Oku et al. Observation and X-ray Analysis of The Microstructures for a Bonding Material of C/C Composite and Copper. Journal of nuclear materials. 1996, 240: 43-50
    88 王艳艳, 李树杰, 闫联生. 用 Ti+Cr 活性钎料高温钎焊高强石墨.硅酸盐学报. 2005, 33(2): 175-179
    89 熊国刚. 石墨与钼合金钎焊材料与钎焊工艺的研究.硕士论文.2004
    90 王艳艳, 李树杰, 闫联生. 采用钛基活性钎料高温钎焊高强石墨. 稀有金属材料与工程. 2005, 34(6): 970-973
    91 钟志宏, 周张健, 宋书香等. 掺杂石墨与铜钎焊的显微组织. 稀有金属材料与工程. 2006, 35 (suppl.2): 117-120
    92 钟志宏, 周张健, 葛昌纯. 掺杂石墨/Cu 钎焊接头残余应力的分布及中间层的作用. 焊接技术. 2005, 34(6): 14-16
    93 邹贵生, 吴爱萍, 任家烈. 热核聚变反应堆关键结构件的连接技术进展. 焊接技术. 2001, 30(5): 8-9
    94 席琛. 李贺军. 张秀莲. 碳/碳复合材料工艺的研究进展. 2003, (2): 19-22
    95 陈俊华, 耿浩然, 陈广立等. 碳/碳复合材料焊接技术研究进展.焊接. 2006, 35(11): 75- 78
    96 徐庆元, 李宁, 熊国刚等. 钛基钎料钎焊石墨与 TZM 合金接头组织和性能研究. 稀有金属. 2005, 29(6): 823-826
    97 韩绍昌, 李学谦, 徐仲榆. 铬对改善铜与炭石墨材料润湿性的作用. 湖南大学学报, 1998, 10 (5) : 30-33
    98 刘金状. 段辉平. 李树杰等. 石墨/Ni+Ti 体系润湿性研究. 粉末冶金技术. 2005, 23 (3): 168-171
    99 Xue liang. Carbon-carbon Composites Joining. Ceramic Engineering and Science Proceedings. 1996, 17(4): 211-224
    100 Xue liang. Electrically Insulating Joining of Carbon-carbon Composites for High Temperature Applications. Ceramic Engineering and Science Proceedings. 1997, 18(3A): 167-175
    101 N. L. Kareta, N. N. Nefedov. The Welding of Graphitic Carbon Substance. Autom. Weld.. 1967, 20(1): 61-64
    102 B. Schedler, T. Huber, E. Eidenberger et al.. Methods to Determine the Joint Strength of C/C to Copper Joints. Fusion Engineering and Design. 2007, in press
    103 J.L. Li, J.T. Xiong. F.-S. Zhang. Transient Liquid-phase Diffusion Bonding of Two-dimensional Carbon–carbon Composites to Niobium Alloy. Materials Science and Engineering. 2007, in press
    104 Pietro Appendino, Monica Ferraris, Valentina Casalegno et al.. Proposal for a New Technique to Join CFC Composites to Copper. Journal of Nuclear Materials. 2006, 348: 102–107
    105 Th Koppitz, G Pintsuk, U Reisgen, J Remmel et al. High-temperature Brazing for Reliable Tungsten–CFC Joints. Physica. Scripta. 2007, T128: 175–181
    106 M. Singh, R. Asthana, T.P. Shpargel. Brazing of Carbon–carbon Composites to Cu-clad Molybdenum for Thermal Management Applications. Materials Science and Engineering. 2007, 452-456(15): 699-704
    107 Zhang-Jian Zhou, Zhi-Hong Zhong, Chang-Chun Ge. Silicon Doped Carbon/Cu Joints Based on Amorphous Alloy Brazing for First Wall Application. Fusion Engineering and Design. 2007, 82(1): 35-40
    108 Найди Ю. В., калесниченко Г .А.. Исследнание смачивания алмаза и графита жидкими металлами. Порошковая . 1963, (1): 23
    109 Найди Ю. В., калесниченко Г .А.. Исследнание смачивания алмаза и графита жидкими металлами. Порошковая. 1964, (3): 49
    110 Pervertarlo V. M., Loginovo O. B. Wettability and Contact Interactions in the Graphite- nickel- chromium Melt System. Sverkhwerd Mater., 1987, 20(4): 1988
    111 Donnelly R. G., Slaughter, G. M.. The Brazing of Graphite. Weld. J. 1962, 41(5): 462
    112 Mortimer D. A., Nicholas O. B.. The Wetting of Carbon and Carbides by Copper Alloys. Journal of Material Science. 1973, (8): 640
    113 Wener W. J., Slaugter G. M. Brazing graphite to Hastelloy N for Nuclear Reactors. Welding Engineering. 1968, (3): 65
    114 Chasteen J W , Metzger G E . Brazing of Hastelloy X with Wide Clearance Butt Joints. Welding Journal. 1979, (4): 111s-117s
    115 Hammoned J. P., Slaughter G. M. Bonding Graphite to Metal with Transition Pieces. Weld. J. 1971, 50(1): 33
    116 裘楚湘. 石墨与 95%氧化铝瓷、钨、钼的钎焊探索. 第四届全国钎焊学术会议论文集. 黄山, 1987
    117 F. J. Oliveira, R. F. Silva. J. M. Vieira. Thermochemistry of Contacts between Silicon Nitride Ceramics and Steels. Acta. Materialia. 2000, 48: 4659-4665
    118 W.Tillmann, E. Lugsheider. Kinetic and Microstructure Aspects of the Reaction Layer at Ceramic/metal Brazed Joints. Journal of Materials Science. 1996, 31: 445-452
    119 T. Torvund and O. Grong. A Process Model for Active Brazing of Ceramics: Part I Growth of Reaction Layers. Journal of Materials Science. 1996, 31: 6215-6222
    120 T. Torvund, O. Grong. A Process Model for Active Brazing of Ceramics: Part II Optimization of Brazing Condition and Joint Properties. Journal of Materials Science. 1997, 32: 4437-4442
    121 龚礼兵, 孙文婷. 超声冲击法消除焊接残余应力的效果评估. 现代焊接. 2007, (3): 32-35
    122 杨彦涛, 张永洋, 余巍. 超声冲击处理钛合金焊接接头的性能研究. 材料开发与应用. 2007, 22(1): 27-31
    123 吕明, 吴建青, 饶平根等. X 射线衍射分析微晶玻璃陶瓷复合砖表面残余应力. 中国陶瓷. 2007, 43(2): 21-23
    124 张定铨, 何家文. 材料中残余应力的 X 射线衍射分析和作用[M]. 西安:西安交通大学出版社, 1999.4
    125 Keisuke Tanaka, Yoshiaki Akiniwa. Diffraction Measurements of ResidualMacrostress and Microstress Using X-Rays. Synchrotron and Neutrons, JSME International Journal, Series A. 2004, 147(3): 252-263
    126 吴铭方, 周小丽, 马骋等. Ti(C,N)/40Cr 钎焊接头残余应力数值计算. 焊接学报. 2006, 27(12): 65-69
    127 黄小丽, 林实, 肖纪美. 缓冲层化学成分对钎焊接头强度的影响. 焊接学报. 1998, 19(4): 215 – 220
    128 Zhang J X, Chandel R S, et al. Effect of Residual Stress on the Strength of an Alumina/steel Joint by Partial Transient Liquid Phase (PTLP) Brazing. Journal of Materials Processing Technology. 2002, 122(2): 220– 225
    129 何鹏, 冯吉才, 钱乙余. 异种材料扩散连接接头残余应力的分布特征及中间层的作用. 焊接学报, 2002 , 23(2): 76 - 80.
    130 吴昌忠, 陈静, 陈怀宁等. 钎料对金属/陶瓷钎焊接头残余应力的影响.机械工程学报. 2005, 29(9): 18-21
    131 穆云超, 卢金斌. 基于有限元对 Ag - Cu - Ti 钎焊金刚石膜残余应力分析. 金刚石与磨料磨具工程. 2006, (4): 26-28
    132 D.W. Liawa, Z.Y. Wu , R.K. Shiue et al.. Infrared Vacuum Brazing of Ti–6Al–4V and Nb using the Ti–15Cu–15Ni Foil. Materials Science and Engineering A. 2007, 454-455(25):104-113
    133 Gupta KP. Phase Diagrams of Ternary Nickel Aalloys. Calcutta: Indian Institute of Metals. 1990: 258
    134 C.T. Chang, Z.Y. Wu, R.K. Shiue et al.. Infrared Brazing Ti–6Al–4V and SP-
    700 Alloys using the Ti–20Zr–20Cu–20Ni Braze Alloy. Materials Letters. 2007, 61(3): 842-845
    135 O. Botstein. Brazing of Titanium-based Alloys with Amorphous 25wt. %Ti- 25wt.%Zr- 20wt. % Cu Filler Metal. Materials Science and Engineering. 1994, A188(1,2,30): 305-315
    136 R. Arroyave, T.W.Eagar, L. Kaufman. Thermodynamic assessment of the Cu- Ti- Zr system. Journal of Alloys and Compounds. 2003, 351:158-170
    137 K.P. Gupta. The Cu-Ni-Ti (Copper-Nickel-Titanium) System. Journal of Phase Equilibria.2002, 23( 6):541-546
    138 C. G. Woychic, T.B Massalski, Z. Metallkd. 1988, 79(3): 149-153
    139 T.Y. Yanga, R.K. Shiueb, S.K. Wu. Infrared Brazing of Ti50Ni50 Shape Memory Alloy using Pure Cu and Ti–15Cu–15Ni Foils. Intermetallics. 2004,12(12): 1285–1292
    140 O BotsteiP, A. Schwarzman, A. Rabinkinb. Induction Brazing of Ti-6Al-4V Alloy with Aamorphous 25Ti-25Zr-50Cu Brazing Filler Metal. Materials Science and Engineering. 1995, A206: 14-23
    141 Na Wang, Changrong Li, Zhenmin Du et al.. The Thermodynamic Re-assessment of the Cu–Zr system. Computer Coupling of Phase Diagrams and Thermochemistry. 2006, (30): 461–469
    142 X.D. Liu, M. Nagumo, M. Umemoto. Characterizations of Mechanically Alloyed Ti–Zr–Cu–Ni Powders. Materials Science and Engineering. 1998, A252: 179-187
    143 梁英教, 车荫昌. 无机物热力学数据手册. 东北大学出版社. 1994: 476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700